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Prediction of flow structures around an attracting groin, of which head is shifted toward downstream, 

is important because such groin has a disadvantage in a submerged situation, namely, the flow over 

the groin attacks a bank and erodes it. In this paper, 3D turbulent flow structures around an attracting 

groin with scour hole are studied numerically. The basic equations on generalized curvilinear 

movable coordinate are used to consider the complex topography and free surface elevation. A 

refined non-linear k-ε model is adopted as a turbulence model in order to reproduce secondary 

currents of second kind and a vortex formations. The computational conditions are same as those of 

the laboratory tests by Ishigaki et al (2003). The numerical results show that the fundamental 

turbulence structres with a circular flow, which may be a main trigger of the local scour, can be 

reasonably predicted by the present model. 

1 Introduction 

In recent years, groins are set not only for the protection of riverbank erosion but also for 

the environmental preservation in Japan. Groins have a function to form a varied bed 

configuration as well as a function to deflect a flow and reduce velocity near the 

riverbank. The recent groins are usually set perpendicular to a riverbank, which is called 

a deflecting groin. On the other hand, many old groins in Japan were set at angles to a 

riverbank. The groin which head is shifted toward downstream is called attracting groin 

and is not commonly used in a submerged situation because a flow over the groin attacks 

a bank and erodes it. Ishigaki et al (2003) studied the flow structures around a old 

attracting groin built about 400 years ago in Kyoto Prefecture and pointed out that the 

scour hole depends on the hydraulic condition and that there is a hydraulic condition for 

preventing severe bank erosion. They also referred to the possibility that the scour hole 

caused by the flow around an attracting groin functions as a biotope. Those results 
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indicate that the attracting groin can be useful both for flood control and environment 

under certain hydraulic conditions. Therefore, it is very important to predict the flow 

structures and bed configuration around an attracting groin. A numerical simulation with 

RANS type modeling for turbulence has been recognized as a powerful tool to predict 

detailed 3D flow structures around bluff bodies. Kimura and Hosoda (2003) proposed a 

modified non-linear k-ε model through the consideration of realizability and applied it to 

the flows around a rectangular cylinder. Kimura et al (2002, 2003) modified the same 

turbulence model to a generalized curvilinear form and applied it to the flow around 

upstream / downstream inclined sub-merged groins. Those studies showed that the non-

linear k-ε model could predict not only time-mean flow structures but also unsteady flow 

structures such as vortex shedding from the tip of groins with practical accuracy. In this 

study, characteristics of 3D turbulent flow structures around an attracting submerged 

groin with a scour hole are numerically investigated. A generalized curvilinear movable 

coordinate is employed to simulate the free surface oscillation and take into account the 

complex topography. The computations were performed under the conditions of the 

laboratory tests performed by Ishigaki et al (2003). The flow features around an 

attracting groin are discussed through the comparison of computational and experimental 

results. 

2 Computational Model 

2.1. Governing Equations 

The Reynolds averaged 3D flow equations with contravariant components of velocity 

vectors on a generalized curvilinear movable coordinate system are used as governing 

equations in this study. The governing equations are described as 
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where ξI = generalized curvilinear coordinate, t = time, Vi = contravariant component of 

the velocity vector of flows, Wi = contravariant component of the velocity vector of grid 

motion, p = pressure, ν = molecular dynamic viscosity, ρ = density of water, k = 

turbulent energy, ε = turbulent energy dissipation rate, gij and gij = covariant and 



3 
 

 

contravatiant component of metric tensor, g = det(gij) and Fi = contravariant component 

of gravity acceleration. ∇ i indicates a covariant differential, for instance, 
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where Γij
k is a Christoffel symbol. 

2.2. Turbulence Model 

To calculate a complex turbulent flow with separation and vortex shedding, a 2nd-order 

non-linear k-ε model by Kimura and Hosoda (2003) is adopted as a turbulence model. 

The constitutive equations of the model are described as follows. 
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The model coefficients are not constants but functions of the strain parameter S and 

the rotation parameter Ω. In this study, all the coefficients are given as functions with 

one variable M for simplicity as follows (Kimura and Hosoda, 2003). 
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In above equations, α1-α3 were adjusted through the consideration of the distribution 

of turbulent intensities in a simple shear flow compared with the previous experimental 

results. Cµ[Μ] was tuned to satisfy the realizability in a simple shear flow and singular 

points in both 2D and 3D flow fields. 

2.3. Outline of Numerical Method 

The differential equations governing the mean-velocities and the turbulence field are 

solved with the finite volume method on full-staggered grid system. The metric tensors 

and the Cristoffel symbols are defined only at grid points to save computer memory and 

the values at other positions are interpolated at each computational step. 

QUICK scheme is applied to the convection terms and the central differencing is 

used for the diffusion terms in the momentum equations. The hybrid central upwind 

scheme is applied to the k and ε equations for the computational stability. Adams-
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Bashforth scheme with second-order accuracy in time is used for time integration in each 

equation. The basic equations are discretized as fully explicit forms and are solved 

successively along the time axis step by step. The pressure field is solved using iterative 

procedure at each time step using SOLA algorithm. 

2.4. Boundary and Initial Conditions 

Since the present turbulence model is a high Reynolds number type, the wall function 

approach is applied as the wall boundary conditions for k and ε. The wall friction is 

evaluated by the log-law. At the downstream end of the computational domain, the 

longitudinal gradients of all variables are assumed to be zero. At the boundary inlet, the 

level of k is chosen to be (0.02U0)
2 (U0 = averaged velocity). The value of ε at the inlet is 

determined from the value of k at the inlet by specifying the ratio Dt/ν = 10.  

The free surface motion is solved by a simple relation in equation (12) since the 

contravariant components of the velocity vector are used in the basic equations. 

 tVgh ∆=∆ 3

33  (12) 

where ∆t = time increment and ∆h = surface elevation during ∆t. To consider the rapid 

attenuation of turbulent intensities in the depth-wise direction near the free surface, the 

eddy viscosity is multiplied by the following dumping function (Hosoda, 1990). 
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Figure 1. Attracting groin used in the laboratory test by Ishigaki et al (2003) (left:plan view, right:vertical view) 

. 

Table 1 Hydraulic parameters in the laboratlry test (Case A5) by Ishigaki et al (2003). 

H/h H (cm) Q (l/s) u∗/u∗c 

1.92 9.48 17.38 0.83 

 

 
Figure 2. Bed configuration in Case-A5 in the laboratory test by Ishigaki et al (2003). 
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where sub-s indicates the value at the surface. ε at the surface is evaluated by the 

following formula to calculate the secondary currents of 2nd kind (Sugiyama, 1995). 
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At the beginning of the calculation, U (= velocity in the longitudinal direction (x-

direction)) = U0 (=averaged bulk velocity), V (= velocity in the transverse direction (y-

direction) = 0, k = kin and ε = εin (kin and εin are the values of k and ε at the inlet 

boundary) are specified over the whole computational domain.  

3 3D Computation of Flows around an Attracting Groin 

3.1. Computational Conditions 

Computations are performed under the conditions of the laboratory tests by Ishigaki et al 

(2003). The experiment was performed in a 10 m long, 0.9 m wide and 0.3 m deep 

straight flume. The middle part of the flume was made of movable bed filled with fine 

sand of which the mean diameter was 0.26mm. Fig. 1 shows the plan and cross-sectional 

view of the attracting groin model. The groin model was set on the right hand side bank 

of the experimental flume. The experiment was performed under 5 different submerged 

and non-submerged hydraulic conditions. The computation was performed under the 

conditions of Case A5 (submerged case). The hydraulic parameters in Case A5 were 

listed in Table 1. Fig.2 shows the bed topography in Case A5 at 1 hour after the 

beginning of the experiment. A scour hole is formed at the downstream area of the groin. 

The computation was performed under the fixed bed condition with the scour hole. 

Fig. 3 shows plan and vertical views of the computational grid. The grid in the x-y 

plane was made using geometric series. The number of the grid in a horizontal plane is 

plan view 

 vertical view 

Figure 3. Plan and vertical views of numerical grid at y = 0cm (8-layers model). 
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180 (x-direction) × 50 (y-direction). The grid in the z-direction was made by dividing the 

local depth into layers with equal thickness. To consider effects of a grid size, two grids 

with different layer number (8-layers and 16-layers) were tested. The vertical view of the 

grid (8-layers model) in the x-z plane at y = 0 cm is shown in Fig.3. 

3.2. Flow Patterns in Cross Sections 

Fig. 4 shows the cross-sectional flow patterns at x = 75, 100 and 150cm in the 

computational result (8-layers grid). The time of the result is at 112 seconds after the 

initial conditions. Note that the scale of the vertical direction is enlarged in these figures. 

The characteristic flow of attracting groin, namely, a strong flow toward the riverbank 

can be seen at x = 75 and 100cm. The flow tends toward the downward direction behind 

the groin and goes into the sour hole. The marked flows are likely to be a main cause of 

formations of the deep scour hole. The flow at x = 150cm forms two vortices in the 

clockwise direction. Fig.5 are the computational results in cross-sections at x = 75, 100 

and 150cm with 16-layers grid. The flow patterns are similar to those in Fig.4. Therefore, 

the grid with 8-layers in a vertical direction is likely to be enough to reproduce 

fundamental flow structures. However, slight difference can be seen between two results, 

i.e., the flow separation behind the groin is only captured by the 16-layers grid. 

3.3. Flow Patterns in Vertical and Horizontal Sections 

Fig.6 (a) and (b) are computational velocity vectors with the 16-layers grid in vertical 

longitudinal sections at y = 1 and y = 10cm, respectively. These figures indicate that an 

upward flow is dominant near the side wall (y=1cm) at the downstream region of the 

 
Figure 4. Cross-sectional flow patterns at x = 75, 100, 150 cm (8-layers model). 

 
Figure 5. Cross-sectional flow patterns at x = 75, 100, 150 cm (16-layers model). 
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groin, while a downward flow is dominant at the section of y = 10cm. The flow 

separation is not generated behind the groin in both sections.  

Fig.7 (a) and (b) show the plan view of computational flow patterns with the 16-

layer grid at the middle layer and at the bottom layer, respectively. The flow from the 

main channel toward the riverbank can be seen just downstream the groin at the middle 

layer. The flow toward the riverbank also can be seen over the groin at the bottom layer. 

The computational results demonstrate again the risk of attracting groins to erode the 

riverbank. The flow pattern near the bed at the downstream region of the groin is much 

disturbed because of the complex topography of the scour hole. Fig.8 shows the 

comparison of surface-velocity distributions in the longitudinal direction in the 

experimental and numerical results. In the experimental result, the velocity profile has an 

inflection point at the downstream area of the groin because the flow over the groin is 

decelerated near the head of the groin. The computation could capture the profile with an 

inflection point though the profile is damped more rapidly than the experimental result. 

(a) y = 1cm  

(b) y = 10cm  

Figure 6. Flow patterns in vertical sections at y = 1, 10 cm (16-layers model). 

(a) middle layer  

(b) bottom layer  

Figure 7. Plan views of flow patterns at middle and bottom layers (16-layers model). 
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4 Conclusions 

It is important that hydraulic engineers have to recognize the risk of attracting groin 

under a submerged condition and predict flow structures in detail in planning such groin. 

In this paper, 3D turbulent flow structures around an attracting groin with a scour hole 

were studied numerically. A modified non-linear k-ε model, which was tuned 

considering the realizability, was adopted as a turbulence model. A generalized 

curvilinear movable coordinate was used to consider the complicated bed topography and 

water surface elevation. Computations were performed under the conditions of the 

laboratory test by Ishigaki et al (2003). The computational results indicated that the 

present model could capture the fundamental aspects of 3D flow features, such as a flow 

which attacks a riverbank at the downstream region of an attracting groin. 
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(a) Experiment  

 

(b) Computation  

Figure 8. Comparison of stream-wise velocity distributions at a surface. 


