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6.  A r m o u r e d  r u b b l e  s l o p e s  a n d  m o u n d s 

6.1  I n t r o d u c t i o n

This manual describes three types of flood defences or coastal structures: 

Sometimes there will be combinations and it will be difficult to place them only in one 
category. For example, a vertical wall or sloping embankment with a large rock berm in front. 
Armoured rubble slopes and mounds () are characterized by a mound with some porosity or 
permeability, covered by a sloping porous armour layer consisting of large rock or concrete 
units. In contrast to dikes and embankment seawalls the porosity of the structure and armour 
layer plays a role in wave run-up and overtopping. The cross-section of a rubble mound 
slope, however, may have great similarities with an embankment seawall and may consist of 
various slopes.

As rubble mound structures are to some extent similar to dikes and embankment sea-
walls, the basic wave run-up and overtopping formulae are taken from Chapter 5. They will 
then be modified, if necessary, to fit for rubble mound structures. Also for most definitions 
the reader is referred to Chapter 5 (or Chapter 1.4). More in particular:

b, f and 

m–1,0

The main calculation procedure for armoured rubble slopes and mounds is given in  
Table 6.1.

Table 6.1: Main calculation procedure for armoured rubble slopes and mounds
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6.2  W a v e  r u n - u p  a n d  r u n - d o w n  l e v e l s , 
n u m b e r  o f  o v e r t o p p i n g  w a v e s

Through civil engineering history the wave run-up and particularly the 2 % run-up 
height was important for the design of dikes and coastal embankments. Till quite recently the 
2 % run-up height under design conditions was considered a good measure for the required 
dike height. With only 2 % of overtopping waves the load on crest and inner side were con-
sidered so small that no special measurements had to be taken with respect to strength of 
these parts of a dike. Recently, the requirements for dikes changed to allowable wave over-
topping, making the 2 % run-up value less important in engineering practice. 

Wave run-up has always been less important for rock slopes and rubble mound struc-
tures and the crest height of these type of structures has mostly been based on allowable 
overtopping, or even on allowable transmission (low-crested structures). Still an estimation 
or prediction of wave run-up is valuable as it gives a prediction of the number or percentage 
of waves which will reach the crest of the structure and eventually give wave overtopping. 
And this number is needed for a good prediction of individual overtopping volumes per 
wave.

Fig. 6.2 gives 2 % wave run-up heights for various rocks slopes with cot  = 1.5, 2, 3 and 
4 and for an impermeable and permeable core of the rubble mound. These run-up measure-
ments were performed during the stability tests on rock slopes of VAN DER MEER (1988). 
First of all the graph gives values for a large range of the breaker parameter m–1,0, due to the 
fact that various slope angels were tested, but also with long wave periods (giving large 

m–1,0-values). Most breakwaters have steep slopes 1:1.5 or 1:2 only and then the range of 

Fig. 6.1: Armoured structures
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breaker parameters is often limited to m–1,0 = 2-4. The graph gives rock slope information 
outside this range, which may be useful also for slopes with concrete armour units.

The highest curve in Fig. 6.2 gives the prediction for smooth straight slopes, see  Fig. 5.1 
and Equation 5.3. A rubble mound slope dissipates significantly more wave energy than an 
equivalent smooth and impermeable slope. Both the roughness and porosity of the armour 
layer cause this effect, but also the permeability of the under layer and core contribute to it. 
Fig. 6.2 shows the data for an impermeable core (geotextile on sand or clay underneath a thin 
under layer) and for a permeable core (such as most breakwaters). The difference is most 
significant for large breaker parameters.

Equation 5.1 includes the influence factor for roughness f. For two layers of rock on an 
impermeable core f = 0.55. This reduces to f = 0.40 for two layers of rock on a permeable 
core. This influence factor is used in the linear part of the run-up formula, say for 0 ≤ 1.8. 
From m-1,0 = 1.8 the roughness factor increases linearly up to 1 for m-1,0 = 10 and it remains 
1 for larger values. For a permeable core, however, a maximum is reached for Ru2%/Hm0 = 
1.97. The physical explanation for this is that if the slope becomes very steep (large 0-value) 
and the core is impermeable, the surging waves slowly run up and down the slope and all the 
water stays in the armour layer, leading to fairly high run-up. The surging wave actually does 
not “feel” the roughness anymore and acts as a wave on a very steep smooth slope. For an 
permeable core, however, the water can penetrate into the core which decreases the actual 
run-up to a constant maximum (the horizontal line in Fig. 6.2).

Fig. 6.2: Relative run-up on straight rock slopes with permeable and impermeable core, compared to 
smooth impermeable slopes
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The prediction for the 2 % mean wave run-up value for rock or rough slopes can be 
described by:

 

 6.1
 

Equation 6.1 may also give a good prediction for run-up on slopes armoured with con-
crete armour units, if the right roughness factor is applied (see Section 6.3).

Deterministic design or safety assessment: For design or a safety assessment of the crest 
height, it is advised not to follow the average trend, but to include the uncertainty of the pre-
diction, see Section 5.2. As the basic equation is similar for a smooth and a rough slope, the 
method to include uncertainty is also the same. This means that for a deterministic design or 
safety assessment Equation 5.4 should be used and adapted accordingly as in Equation 6.1:

 

 6.2
 

Probabilistic design: For probabilistic calculations Equation 6.1 is used together with a 
normal distribution and variation coefficient of ’ = 0.07. For prediction or comparison of 
measurements the same Equation 6.1 is used, but now for instance with the 5 % lower and 
upper exceedance lines.

Till now only the 2 % run-up value has been described. It might be that one is interested 
in an other percentage, for example for design of breakwaters where the crest height may be 
determined by an allowable percentage of overtopping waves, say 10–15 %. A few ways exist 
to calculate run-up heights for other percentages, or to calculate the number of overtopping 
waves for a given crest height. VAN DER MEER and STAM (1992) give two methods. One is an 
equation like 6.1 with a table of coefficients for the 0.1  %, 1 %, 2 %, 5 %, 10 % and 50 % 
(median). Interpolation is needed for other percentages.

with a maximum of

From m–1,0
 = 1.8 the roughness factor f surging increases linearly up to 

1 for  m–1,0
 = 10, which can be described by:

f surging = f + ( m–1,0
 – 1.8) * (1 – f)/8.2

f surging = 1.0 for m–1,0
 > 10.

For a permeable core a maximum is reached for Ru2%/Hm0 = 1.97

with a maximum of

From m–1,0
 = 1.8 the roughness factor f surging increases linearly up to 

1 for  m–1,0
 = 10, which can be described by:

f surging = f + ( m–1,0
 – 1.8) * (1 – f)/8.2

f surging = 1.0 for m–1,0
 > 10.

For a permeable core a maximum is reached for Ru2%/Hm0 = 2.11
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The second method gives a formula for the run-up distribution as a function of wave 
conditions, slope angle and permeability of the structure. The distribution is a two-parame-
ter Weibull distribution. With this method the run-up can be calculated for every percentage 
wanted. Both methods apply to straight rock slopes only and will not be described here. The 
given references, however, give all details. 

The easiest way to calculate run-up (or overtopping percentage) different from 2 % is 
to take the 2%-value and assume a Rayleigh distribution. This is similar to the method in 
Chapter 5 for dikes and embankment seawalls. The probability of overtopping Pov = Now/
Nw (the percentage is simply 100 times larger) can be calculated by:

 6.3

Equation 6.3 can be used to calculate the probability of overtopping, given a crest free-
board Rc or to calculate the required crest freeboard, given an allowable probability or per-
centage of overtopping waves. 

One warning should be given in applying Equations 6.1, 6.2 and 6.3. The equations give 
the run-up level in percentage or height on a straight (rock) slope. This is not the same as the 
number of overtopping waves or overtopping percentage. Fig. 6.3 gives the difference. The 
run-up is always a point on a straight slope, where for a rock slope or armoured mound the 
overtopping is measured some distance away from the seaward slope and on the crest, often 
behind a crown wall. This means that Equations 6.1, 6.2 and 6.3 always give an over estima-
tion of the number of overtopping waves. 
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Fig. 6.3: Run-up level and location for overtopping differ
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Fig. 6.4 shows measured data for rubble mound breakwaters armoured with Tetrapods 
(DE JONG 1996), Accropode™ or a single layer of cubes (VAN GENT et al. 1999). All tests 
were performed at Delft Hydraulics. The test set-up was more or less similar to Fig. 6.2 with 
a crown wall height Rc a little lower than the armour freeboard Ac. CLASH-data on specific 
overtopping tests (see Section 6.3) for various rock and concrete armoured slopes were added 
to Fig. 6.4. This Fig. gives only the percentage of overtopping waves passing the crown wall. 
Analysis showed that the size of the armour unit relative to the wave height had influence, 
which gave a combined parameter Ac*Dn/Hm0

2, where Dn is the nominal diameter of the ar-
mour unit.

The Fig. covers the whole range of overtopping percentages, from complete overtopping 
with the crest at or lower than SWL to no overtopping at all. The CLASH data give maximum 
overtopping percentages of about 30 %. Larger percentages mean that overtopping is so large 
that it can hardly be measured and that wave transmission starts to play a role. 

Taking 100 % overtopping for zero freeboard (the actual data are only a little lower), a 
Weibull curve can be fitted through the data. Equation 6.4 can be used to predict the number 
or percentage of overtopping waves or to establish the armour crest level for an allowable 
percentage of overtopping waves.

 
 

6.4

It is clear that equations 6.1–6.3 will come to more overtopping waves than equation 6.4. 
But both estimations together give a designer enough information to establish the required 
crest height of a structure given an allowable overtopping percentage.

Fig. 6.4: Percentage of overtopping waves for rubble mound breakwaters as a function of relative 
(armour) crest height and armour size (Rc ≤ Ac)
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When a wave on a structure has reached its highest point it will run down on the slope 
till the next wave meets this water and run-up starts again. The lowest point to where the 
water retreats, measured vertically to SWL, is called the run-down level. Run-down often is 
less or not important compared to wave run-up, but both together they may give an idea of 
the total water excursion on the slope. Therefore, only a first estimate of run-down on straight 
rock slopes is given here, based on the same tests of VAN DER MEER (1988), but re-analysed 
with respect to the use of the spectral wave period Tm–1,0. Fig. 6.5 gives an overall view.

The graph shows clearly the influence of the permeability of the structure as the solid 
data points (impermeable core) generally show larger run-down than the open data symbols 
of the permeable core. Furthermore, the breaker parameter m–1,0 gives a fairly clear trend of 
run-down for various slope angles and wave periods. Fig. 6.5 can be used directly for design 
purposes, as it also gives a good idea of the scatter.

Fig. 6.5: Relative 2 % run-down on straight rock slopes with impermeable core (imp), permeable core 
(perm) and homogeneous structure (hom)

6.3  O v e r t o p p i n g  d i s c h a r g e s

6.3.1  S i m p l e  a r m o u r e d  s l o p e s

The mean overtopping discharge is often used to judge allowable overtopping. It is easy 
to measure and an extensive database on mean overtopping discharge has been gathered in 
CLASH. This mean discharge does of course not describe the real behaviour of wave over-
topping, where only large waves will reach the top of the structure and give overtopping. 
Random individual wave overtopping means random in time and each wave gives a different 
overtopping volume. But the description of individual overtopping is based on the mean 
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overtopping, as the duration of overtopping multiplied with this mean overtopping discharge 
gives the total volume of water overtopped by a certain number of overtopping waves. The 
mean overtopping discharge has been described in this section. The individual overtopping 
volumes is the subject in Section 6.4

Just like for run-up, the basic formula for mean wave overtopping discharge has been 
described in Chapter 5 for smooth slopes (Equation 5.8 or 5.9). The influence factor for 
roughness should take into account rough structures. Rubble mound structures often have 
steep slopes of about 1:1.5, leading to the second part in the overtopping equations.

Deterministic design or safety assessment: The equation, including a standard devia-
tion of safety, should be used for deterministic design or safety assessment:

 6.5

Probabilistic design: The mean prediction should be used for probabilistic design, or 
prediction of or comparison with measurements. This equation is given by:

 
 6.6

The coefficient 2.6 in Equation 6.6 gives the mean prediction and its reliability can be 
described by a standard deviation of  = 0.35. 

As part of the EU research programme CLASH (BRUCE et al. 2007) tests were under-
taken to derive roughness factors for rock slopes and different armour units on sloping per-
meable structures. Overtopping was measured for a 1:1.5 sloping permeable structure at a 
reference point 3Dn from the crest edge, where Dn is the nominal diameter. The wave wall 
had the same height as the armour crest, so Rc = Ac. As discussed in Section 6.2 and Fig. 6.3, 
the point to where run-up can be measured and the location of overtopping may differ. Nor-
mally, a rubble mound structure has a crest width of at least 3Dn. Waves rushing up the slope 
reach the crest with an upward velocity. For this reason it is assumed that overtopping waves 
reaching the crest, will also reach the location 3Dn further.

Results of the CLASH-work is shown in Fig. 6.6 and Table 6.2. Fig. 6.6 gives all data 
together in one graph. Two lines are given, one for a smooth slope, Equation 6.4 with f = 
1.0, and one for rubble mound 1:1.5 slopes, with the same equation, but with  

f = 0.45. The lower line only gives a kind of average, but shows clearly the very large influ-
ence of roughness and permeability on wave overtopping. The required crest height for a 
steep rubble mound structure is at least half of that for a steep smooth structure, for similar 
overtopping discharge. It is also for this reason that smooth slopes are often more gentle in 
order to reduce the crest heights.

In Fig. 6.6 one-layer systems, like Accropode™, CORE-LOC®, Xbloc® and 1 layer of 
cubes, have solid symbols. Two-layer systems have been given by open symbols. There is a 
slight tendency that one-layer systems give a little more overtopping than two-layer systems, 
which is also clear from Table 6.2. Equation 6.4 can be used with the roughness factors in 
Table 6.2 for prediction of mean overtopping discharges for rubble mound breakwaters. 
Values in italics in Table 6.2 have been estimated/extrapolated, based on the CLASH re-
sults.
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Table 6.2: Values for roughness factor f for permeable rubble mound structures with slope of 1:1.5. 
Values in italics are estimated/extrapolated

Type of armour layer f

Smooth impermeable surface 1.00

Rocks (1 layer, impermeable core) 0.60

Rocks (1 layer, permeable core) 0.45

Rocks (2 layers, impermeable core) 0.55

Rocks (2 layers, permeable core) 0.40

Cubes (1 layer, random positioning) 0.50

Cubes (2 layers, random positioning) 0.47

Antifers 0.47

HARO’s 0.47

Accropode™ 0.46

Xbloc® 0.45

CORE-LOC® 0.44

Tetrapods 0.38

Dolosse 0.43

Fig. 6.6: Mean overtopping discharge for 1:1.5 smooth and rubble mound slopes
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6.3.2  E f f e c t  o f  a r m o u r e d  c r e s t  b e r m

Simple straight slopes including an armoured crest berm of less than about 3 nominal 
diameters (Gc ≈ 3Dn) will reduce overtopping. It is, however, possible to reduce overtopping 
with a wide crest as much more energy can be dissipated in a wider crest. BESLEY (1999) de-
scribes in a simple and effective way the influence of a wide crest. First the wave overtopping 
discharge should be calculated for a simple slope, with a crest width up to 3Dn. Then the 
following reduction factor on the overtopping discharge can be applied:

Cr =  3.06 exp (–1.5Gc /Hm0)       Gc /Hm0     with maximum  Cr = 1 6.7

Equation 6.7 gives no reduction for a crest width smaller than about 0.75 Hm0. This is 
fairly close to about 3Dn and is, therefore, consistent. A crest width of 1 Hm0 reduces the 
overtopping discharge to 68 %, a crest width of 2 Hm0 gives a reduction to 15 % and for a 
wide crest of 3 Hm0 the overtopping reduces to only 3.4 %. In all cases the crest wall has the 
same height as the armour crest: Rc = Ac.

Equation 6.7 was determined for a rock slope and can be considered as conservative, as 
for a slope with Accropode more reduction was found.

6.3.3  E f f e c t  o f  o b l i q u e  w a v e s

Section 5.5.3 describes the effect of oblique waves on run-up and overtopping on smooth 
slopes (including some roughness). But specific tests on rubble mound slopes were not per-
formed at that time. In CLASH, however, this omission was discovered and specific tests on 
a rubble mound breakwater were performed with a slope of 1:2 and armoured with rock or 
cubes (ANDERSEN and BURCHARTH, 2004). The structure was tested both with long-crested 
and short-crested waves, but only the results by short-crested waves will be given.

For oblique waves the angle of wave attack  (deg.) is defined as the angle between the 
direction of propagation of waves and the axis perpendicular to the structure (for perpen-
dicular wave attack:  = 0˚). And the direction of wave attack is the angle after any change of 
direction of the waves on the foreshore due to refraction. Just like for smooth slopes, the 
influence of the angle of wave attack is described by the influence factor . Just as for smooth 
slopes there is a linear relationship between the influence factor and the angle of wave attack, 
but the reduction in overtopping is much faster with increasing angle:

 6.8

The wave height and period are linearly reduced to zero for 80˚ ≤ | | ≤ 110˚, just like for 
smooth slopes, see Section 5.3.3. For | | > 110˚ the wave overtopping is assumed to be 
q = 0 m3/s/m.

0063.01         for 0� � | | � 80� 

                                     for | | > 80� the result  = 80� can be applied 

for 0º ≤ | | ≤ 80º

for | | > 80º the result  = 80º can be applied

Die Küste, 73 EurOtop (2007), 111-129



121 

6.3.4  C o m p o s i t e  s l o p e s  a n d  b e r m s ,  i n c l u d i n g  b e r m  
b r e a k w a t e r s

In every formula where a cot  or breaker parameter m–1,0 is present, a procedure has to 
be described how a composite slope has to be taken into account. Hardly any specific re-
search exists for rubble mound structures and, therefore, the procedure for composite slopes 
at sloping impermeable structures like dikes and sloping seawalls is assumed to be applicable. 
The procedure has been described in Section 5.3.4.

Also the influence of a berm in a sloping profile has been described in Section 5.3.4 and 
can be used for rubble mound structures. There is, however, often a difference in effect of 
composite slopes or berms for rubble mound and smooth gentle slopes. On gentle slopes the 
breaker parameter m–1,0 has large influence on wave overtopping, see Equations 5.8 and 5.9 
as the breaker parameter will be quite small. Rubble mound structures often have a steep 
slope, leading to the formula for “non-breaking” waves, Equations 6.5 and 6.6. In these equa-
tions there is no form factor present. 

This means that a composite slope and even a, not too long, berm leads to the same 
overtopping discharge as for a simple straight rubble mound slope. Only when the average 
slope becomes so gentle that the maximum in Equations 5.8 or 5.9 does not apply anymore, 
then a berm and a composite slope will have effect on the overtopping discharge. Generally, 
average slopes around 1:2 or steeper do not show influence of the slope angle, or only to a 
limited extend. 

A specific type of rubble mound structure is the berm breakwater (see Fig. 6.7). The 
original idea behind the berm breakwater is that a large berm, consisting of fairly large rock, 
is constructed into the sea with a steep seaward face. The berm height is higher than the 

Fig. 6.7: Icelandic Berm breakwater
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minimum required for construction with land based equipment. Due to the steep seaward 
face the first storms will reshape the berm and finally a structure will be present with a fully 
reshaped S-profile. Such a profile has then a gentle 1:4 or 1:5 slope just below the water level 
and steep upper and lower slopes, see Fig. 6.8.

Fig. 6.8: Conventional reshaping berm breakwater

Fig. 6.9: Non-reshaping Icelandic berm breakwater with various classes of big rock

The idea of the reshaping berm breakwater has evolved in Iceland to a more or less non-
reshaping berm breakwater. The main difference is that during rock production from the 
quarry care is taken to gather a few percent of really big rock. Only a few percent is required 
to strengthen the corner of the berm and part of the down slope and upper layer of the berm 
in such a way that reshaping will hardly occur. An example with various rock classes (class I 
being the largest) is given in Fig. 6.9. Therefore distinction has been made between conven-
tional reshaping berm breakwaters and the non-reshaping Icelandic type berm breakwater.

In order to calculate wave overtopping on reshaped berm breakwaters the reshaped 
profile should be known. The basic method of profile reshaping is given in VAN DER MEER 

(1988) and the programme BREAKWAT (WL | Delft Hydraulics) is able to calculate the 
profile. The first method described here to calculate wave overtopping at reshaping berm 
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breakwaters is the method described in Chapter 5 (equations 5.8 or 5.9) with the roughness 
factors given in Table 6.1 of f = 0.40 for reshaping berm breakwaters and f = 0.35 for non-
reshaping Icelandic berm breakwaters. The method of composite slopes and berms should 
be applied as described above.

The second method is to use the CLASH neural network (Section 4.4). As overtopping 
research at that time on berm breakwaters was limited, also this method gives quite some 
scatter, but a little less than the first method described above. 

Recent information on berm breakwaters has been described by LYKKE ANDERSEN 
(2006). Only part of his research was included in the CLASH database and consequently in 
the Neural Network prediction method. He performed about 600 tests on reshaping berm 
breakwaters and some 60 on non-reshaping berm breakwaters (fixing the steep slopes by a 
steel net). The true non-reshaping Icelandic type of berm breakwaters with large rock classes, 
has not been tested and, therefore, his results might lead to an overestimation.

One comment should be made on the application of the results of LYKKE ANDERSEN 

(2006). The maximum overtopping discharge measured was only q/(gHm0
3)0.5 = 10–3. In prac-

tical situations with wave heights around 5 m the overtopping discharge will then be limited 
to only a few l/s per m width. For berm breakwaters and also for conventional rubble slopes 
and mounds allowable overtopping may be much higher than this value.

The final result of the work of LYKKE ANDERSEN (2006) is a quite complicated formula, 
based on multi-parameter fitting. The advantage of such a fitting is that by using a large 
number of parameters, the data set used will be quite well described by the formula. The 
disadvantage is that physical understanding of the working of the formula, certainly outside 
the ranges tested, is limited. But due to the fact that so many structures were tested, this effect 
may be negligible.

The formula is valid for berm breakwaters with no superstructure and gives the overtop-
ping discharge at the back of the crest (Ac = Rc). In order to overcome the problem that one 
has to calculate the reshaped profile before any overtopping calculation can be done, the 
formula is based on the “as built” profile, before reshaping. Instead of calculating the profile, 
a part of the formula predicts the influence of waves on recession of the berm. The parameter 
used is called fH0, which is an indicative measure of the reshaping and can be defined as a 
“factor accounting for the influence of stability numbers”. Note that fH0 is a dimensionless 
factor and not the direct measure of recession and that H0 and T0 are also dimensionless 
parameters.

fH0 = 19.8s0m
–0.5 exp(– 7.08/H0) for T0 ≥ T0

*

fH0 = 0.05 H0T0 + 10.5) for T0 < T0
* 

6.9

where H0 = Hm0/ Dn50, T0 = (g/Dn50)
0.5 Tm0,1, 

and T0
* = {19.8 s0m

-0.5 exp(–7.08/H0) –10.5}/(0.05 H0).

The berm level dh is also taken into account as an influence factor, dh
*. Note that the berm 

depth is positive if the berm level is below SWL, and therefore, for berm breakwaters often 
negative. Note also that this influence factor is different than for a bermed slope, see Section 
5.3.4. This influence factor is described by:

d *h = (3Hm0 – dh)/(3Hm0 + Rc) for dh < 3Hm0

d *h = 0 for dh ≥ 3Hm0 
6.10
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The final overtopping formula then takes into account the influence factor on recession, 
fH0, the influence factor of the berm level, dh

*, the geometrical parameters Rc, B and Gc, the 
wave conditions Hm0 and the mean period Tm0,1. It means that the wave overtopping is de-
scribed by a spectral mean period, not by Tm–1,0.

 6.11

Equation 6.11 is only valid for a lower slope of 1:1.25 and an upper slope of 1:1.25. For 
other slopes one has to reshape the slope to a slope of 1:1.25, keeping the volume of material 
the same and adjusting the berm width B and for the upper slope also the crest width Gc. 
Note also that in Equation 6.11 the peak wave period Tp has to be used to calculate sop, where 
the mean period Tm0,1 has to be used in Equation 6.9.

Although no tests were performed on the non-reshaping Icelandic berm breakwaters 
(see Fig. 6.7), a number of tests were performed on non-reshaping structures by keeping the 
material in place with a steel net. The difference may be that Icelandic berm breakwaters show 
a little less overtopping, due to the presence of larger rock and, therefore, more permeability. 
The tests showed that Equation 6.11 is also valid for non-reshaping berm breakwaters, if the 
reshaping factor fH0 = 0.

6.3.5  E f f e c t  o f  w a v e  w a l l s

Most breakwaters have a wave wall, capping wall or crest unit on the crest, simply to 
end the armour layer in a good way and to create access to the breakwater. For design it is 
advised not to design a wave wall much higher than the armour crest, for the simple reason 
that wave forces on the wall will increase drastically if directly attacked by waves and not 
hidden behind the armour crest. For rubble mound slopes as a shore protection, design waves 
might be a little lower than for breakwaters and a wave wall might be one of the solutions to 
reduce wave overtopping. Nevertheless, one should realise the increase in wave forces if 
designing a wave wall significantly above the armour crest.

Equations 6.5 and 6.6 for a simple rubble mound slope includes a berm of 3Dn wide and 
a wave wall at the same level as the armour crest: Ac = Rc. A little lower wave wall will hardly 
give larger overtopping, but no wave wall at all would certainly increase overtopping. Part of 
the overtopping waves will then penetrate through the crest armour. No formula are present 
to cope with such a situation, unless the use of the Neural Network prediction method (Sec-
tion 4.4). 

Various researchers have investigated wave walls higher than the armour crest. None of 
them compared their results with a graph like Fig. 6.6 for simple rubble mound slopes. Dur-
ing the writing of this manual some of the published equations were plotted in Fig. 6.6 and 
most curves fell within the scatter of the data. Data with a wider crest gave significantly lower 
overtopping, but that was due to the wider crest, not the higher wave wall. In essence the 
message is: use the height of the wave wall Rc and not the height of the armoured crest Ac in 
Equations 6.5 and 6.6 if the wall is higher than the crest. For a wave wall lower than the crest 
armour the height of this crest armour should be used. The Neural Network prediction might 
be able to give more precise predictions.
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6.3.6  S c a l e  a n d  m o d e l  e f f e c t  c o r r e c t i o n s

Results of the recent CLASH project suggested significant differences between field and 
model results on wave overtopping. This has been verified for different sloping rubble struc-
tures. Results of the comparisons in this project have led to a scaling procedure which is 
mainly dependent on the roughness of the structure f [–]; the seaward slope cot  of the 
structure [–]; the mean overtopping discharge, up-scaled to prototype, qss [m3/s/m]; and 
whether wind is considered or not. 

Data from the field are naturally scarce, and hence the method can only be regarded as 
tentative. It is furthermore only relevant if mean overtopping rates are lower than 1.0 l/s/m 
but may include significant adjustment factors below these rates. Due to the inherent uncer-
tainties, the proposed approach tries to be conservative. It has however been applied to pilot 
cases in CLASH and has proved good corrections with these model data.

The adjustment factor fq for model and scale effects can be determined as follows:

 
6.12

where fq,max is an upper bound to the adjustment factor fq and can be calculated as follows:

 6.13

and fq,r is the adjustment factor for rough slopes which is mainly dependent on the slope of 
the structure and whether wind needs to be included or not.

 6.14

in which fw accounts for the presence of wind and is set to fw = 1.0 if there is wind and  
fw = 0.67 if there is no wind. 

This set of equations include the case of smooth dikes which will – due to f = 0.9 in this 
case – always lead to an adjustment factor of fq = 1.0. In case of a very rough 1:4 slope with 
wind fq,max = fqr = 30.0 which is the maximum the factor can get to (but only if the mean 
overtopping rates gets below qss = 10–5 m3/s/m). The latter case and a steep rough slope is 
illustrated in Fig. 6.8.
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6.4  O v e r t o p p i n g  v o l u m e s  p e r  w a v e 

Wave overtopping is a dynamic and irregular process and the mean overtopping dis-
charge, q, does not cover this aspect. But by knowing the storm duration, t, and the number 
of overtopping waves in that period, Now, it is easy to describe this irregular and dynamic 
overtopping, if the overtopping discharge, q, is known. Each overtopping wave gives a cer-
tain overtopping volume of water, V. The general distribution of overtopping volumes for 
coastal structures has been described in Section 4.2.2.

As with many equations in this manual, the two-parameter Weibull distribution de-
scribes the behaviour quite well. This equation has a shape parameter, b, and a scale param-
eter, a. For smooth sloping structures an average value of b = 0.75 was found to indicate the 
distribution of overtopping volumes (see Section 5.4). The same average value will be used 
for rubble mound structures, which makes smooth and rubble mound structures easily com-
parable. The exceedance probability, PV, of an overtopping volume per wave is then similar 
to Equations 4.2 and 4.3.

 
6.15

with:

 6.16

Fig. 6.10: Proposed adjustment factor applied to data from two field sites (Zeebrugge 1:1.4 rubble 
mound breakwater, and Ostia 1:4 rubble slope)
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Equation 6.16 shows that the scale parameter depends on the overtopping discharge, but 
also on the mean period and probability of overtopping, or which is similar, on the storm 
duration and the actual number of overtopping waves.

The probability of wave overtopping for rubble mound structures has been described in 
Section 6.2, Fig. 6.4 and Equation 6.4. 

Equations for calculating the overtopping volume per wave for a given probability of 
exceedance, is given by Equation 5.34. The maximum overtopping during a certain event is 
fairly uncertain, as most maxima, but depends on the duration of the event. In a 6 hours 
period one may expect a larger maximum than only during 15 minutes. The maximum during 
an event can be calculated by Equation 5.35.

6.5  O v e r t o p p i n g  v e l o c i t i e s  a n d  s p a t i a l  d i s t r i b u t i o n

The hydraulic behaviour of waves on rubble mound slopes and on smooth slopes like 
dikes, is generally based on similar formulae, as clearly shown in this chapter. This is differ-
ent, however, for overtopping velocities and spatial distribution of the overtopping water. A 
dike or sloping impermeable seawall generally has an impermeable and more or less horizon-
tal crest. Up-rushing and overtopping waves flow over the crest and each overtopping wave 
can be described by a maximum velocity and flow depth, see Section 5.5. These velocities and 
flow depths form the description of the hydraulic loads on crest and inner slope and are part 
of the failure mechanism “failure or erosion of inner slopes by wave overtopping”.

This is different for rubble mound slopes or breakwaters where wave energy is dissi-
pated in the rough and permeable crest and where often overtopping water falls over a crest 
wall onto a crest road or even on the rear slope of a breakwater. A lot of overtopping water 
travels over the crest and through the air before it hits something else. 

Only recently in CLASH and a few other projects at Aalborg University attention has 
been paid to the spatial distribution of overtopping water at breakwaters with a crest wall 
(LYKKE ANDERSEN and BURCHARTH, 2006). The spatial distribution was measured by vari-
ous trays behind the crest wall. Fig. 6.11 gives different cross-sections with a set-up of three 
arrays. Up to six arrays have been used. The spatial distribution depends on the level with 

Fig. 6.11: Definition of y for various cross-sections
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respect to the rear side of the crest wall and the distance from this rear wall, see Fig. 6.12. The 
coordinate system (x, y) starts at the rear side and at the top of the crest wall, with the positive 
y-axis downward. 

Fig. 6.12: Definition of x- and y-coordinate for spatial distribution

The exceedance probability F of the travel distance is defined as the volume of overtop-
ping water passing a given x- and y-coordinate, divided by the total overtopping volume. The 
probability, therefore, lies between 0 and 1, with 1 at the crest wall. The spatial distribution 
can be described with the following equations, which have slightly been rewritten and mod-
ified with respect to the original formulae by LYKKE ANDERSEN and BURCHARTH (2006). The 
probability F at a certain location can be described by:

 6.17

Equation 6.17 can be rewritten to calculate the travel distance x directly (at a certain 
level y) by rewriting the above equation:

 
6.18

Suppose cos  = 0, then we get:
F = 1 x = 0
F = 0.1 x = 1.77 Hs

F = 0.01 x = 3.55 Hs

It means that 10 % of the volume of water travels almost two wave heights through the 
air and 1 % of the volume travels more than 3.5 times the wave height. These percentages will 
be higher if y ≠ 0, which is often the case with a crest unit.
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The validity of Equations 6.17 and 6.18 is for rubble mound slopes of approximately 1:2 
and for angles of wave attack between 0˚ ≤ | | < 45˚. It should be noted that the equation is 
valid for the spatial distribution of the water through the air behind the crest wall. All water 
falling on the basement of the crest unit will of course travel on and will fall into the water 
behind and/or on the slope behind.

6.6  O v e r t o p p i n g  o f  s h i n g l e  b e a c h e s

Shingle beaches differ from the armoured slopes principally in the size of the beach 
material, and hence its mobility. The typical stone size is sufficiently small to permit signifi-
cant changes of beach profile, even under relatively low levels of wave attack. A shingle beach 
may be expected to adjust its profile to the incident wave conditions, provided that sufficient 
beach material is available. Run-up or overtopping levels on a shingle beach are therefore 
calculated without reference to any initial slope.

The equilibrium profile of shingle beaches under (temporary constant) wave conditions 
is described by VAN DER MEER (1988). The most important profile parameter for run-up and 
overtopping is the crest height above SWL, hc. For shingle with Dn50 < 0.1 m this crest height 
is only a function of the wave height and wave steepness. Note that the mean wave period is 
used, not the spectral wave period Tm–1,0.

hc/Hm0 = 0.3 som
–0.5 6.19

Only the highest waves will overtop the beach crest and most of this water will percolate 
through the material behind the beach crest. Equation 6.19 gives a run-up or overtopping 
level which is more or less close to Ru2%.

6.7  U n c e r t a i n t i e s

Since wave overtopping formulae are principally identical to the ones for sea dikes, 
uncertainties of the models proposed in this chapter should be dealt with in the same way as 
those proposed in section 5.8 already. 

It should however be noted that some of the uncertainties of the relevant parameters 
might change. For rubble mound structures the crest height is about 30 % more uncertain 
than for smooth dikes and will result in about 0.08 m. Furthermore, the slope uncertainty 
increases by about 40 % to 2.8 %. All uncertainties related to waves and water levels will 
remain as discussed within section 5.8. 

The minor changes in these uncertainties will not affect the lines as shown in Fig. 5.43. 
Hence, the same proposal accounting for uncertainties as already given in Section 5.8 is ap-
plied here. 

Again, it should be noted that only uncertainties for mean wave overtopping rates are 
considered here. Other methods as discussed in this chapter were disregarded but can be dealt 
with using the principal procedure as discussed in Section 1.5.4.
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