
Conference Paper, Published Version

Gijsbers, Peter; Hummel, Stef; Vanecek, Stanislav; Groos, Jesper;
Harper, Adrian; Knapen, Rob; Gregersen, Jan; Schade, Peter; Antonello,
Andrea; Donchyts, Gennadii
From OpenMI 1.4 to OpenMI 2.0

Verfügbar unter/Available at: https://hdl.handle.net/20.500.11970/100783

Vorgeschlagene Zitierweise/Suggested citation:
Gijsbers, Peter; Hummel, Stef; Vanecek, Stanislav; Groos, Jesper; Harper, Adrian; Knapen,
Rob; Gregersen, Jan; Schade, Peter; Antonello, Andrea; Donchyts, Gennadii (2010): From
OpenMI 1.4 to OpenMI 2.0. In: Swayne, David A.; Yang, Wanhong; Voinov, A. A.; Rizzoli, A.;
Filatova, T. (Hg.): 2010 International Congress on Environmental Modelling and Software
Modelling for Environment's Sake, Fifth Biennial Meeting, July 5 - 8 2010, Ottawa, Ontario,
Canada.

Standardnutzungsbedingungen/Terms of Use:

Die Dokumente in HENRY stehen unter der Creative Commons Lizenz CC BY 4.0, sofern keine abweichenden
Nutzungsbedingungen getroffen wurden. Damit ist sowohl die kommerzielle Nutzung als auch das Teilen, die
Weiterbearbeitung und Speicherung erlaubt. Das Verwenden und das Bearbeiten stehen unter der Bedingung der
Namensnennung. Im Einzelfall kann eine restriktivere Lizenz gelten; dann gelten abweichend von den obigen
Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Documents in HENRY are made available under the Creative Commons License CC BY 4.0, if no other license is
applicable. Under CC BY 4.0 commercial use and sharing, remixing, transforming, and building upon the material
of the work is permitted. In some cases a different, more restrictive license may apply; if applicable the terms of
the restrictive license will be binding.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hydraulic Engineering Repository

https://core.ac.uk/display/326239256?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

International Environmental Modelling and Software Society (iEMSs)
 2010 International Congress on Environmental Modelling and Software

Modelling for Environment’s Sake, Fifth Biennial Meeting, Ottawa, Canada
David A. Swayne, Wanhong Yang, A. A. Voinov, A. Rizzoli, T. Filatova (Eds.)

http://www.iemss.org/iemss2010/index.php?n=Main.Proceedings

From OpenMI 1.4 to 2.0

Peter Gijsbers1,2, Stef Hummel1,3, Stanislav Vaneçek1,4, Jesper Groos 1,5, Adrian

Harper 1,6, Rob Knapen1,7, Jan Gregersen 1,8, Peter Schade1,9, Andrea Antonello1,10,

Gena Donchyts
1,11

1 The OpenMI Association, Lelystad, The Netherlands
2 Deltares USA Inc., Silver spring, Maryland, USA, Peter.Gijsbers@deltares-usa.us

 3 Stichting Deltares, Delft, The Netherlands, Stef.Hummel@deltares.nl;
4 DHI, Prague, Czech Republic, S.Vanecek@dhi.cz

5 DHI, Hørsholm, Denmark, jgr@dhigroup.com
6 MHW Soft, Wallingford, UK Adrian.Harper@wallingfordsoftware.com

7 Alterra, Wageningen, The Netherlands, Rob.Knapen@wur.nl
8 Hydroinform, Kirke Hyllinge, Denmark, Gregersen@hydroinform.com

9 Bundesanstalt für Wasserbau, Hamburg, German,y Peter.Schade@baw.de
10 University of Trento, Italy, Andrea.Antonello@ing.unitn.it

11 Stichting Deltares, Delft, The Netherlands, Gennadii.Donchyts@deltares.nl

Abstract: The Open Modelling Interface (OpenMI) was launched end of 2005 with the
aim to become a global standard for linking models and tools in the environmental domain
with focus on water. Over the past few years, the user and development community has
grown substantially and various well known models have become compliant. Some of the
uses did not adopt the OpenMI.Standard interfaces completely, but used a slight deviation
to achieve their goal in a similar style. Improvements would be necessary to become a true
global interface standard instead of a style for developing new model codes. Starting in
2007, a core group of six institutes has worked on an upgrade of the OpenMI towards
version 2.0. A long list of deficiencies was composed, having a few use cases as general
guidance for improvement. The proposed redesign, based on similar leading concepts and a
similar data model, required however a non-backward compatible upgrade of the interface
standard to remove the weak points from the first version. This decision allowed the
OpenMI to become more suitable for a larger range of applications, from non-time
dependent Geographical Information Systems (GIS) towards e.g. master-slave controlled
modelling frameworks. The OpenMI 2.0 standard has been open for review early 2010.
Once completed and processed, the release of OpenMI 2.0, in both C# and Java is expected
late 2010. This paper will discuss the reasons for change in more detail and highlights how
the proposed solution meets the needs in a better way.

Keywords: Open Modelling Interface; linking; model interoperability; integrated modelling

1. THE USER COMMUNITY OF OPENMI EXPANDS

The Open Modelling Interface (OpenMI) was launched end of 2005 with the aim to
become a global interface standard for linking models and tools in the water domain. A
scope that later was expanded to the environmental domain. The OpenMI [Gregersen et al.
2007] was developed by a consortium existing of NERC-CEH (UK), DHI (DK), HR
Wallingford/Wallingford Software (now MHW Soft, UK), Delft Hydraulics (now Deltares,
NL), RIZA (now partly Deltares, NL) and many others in the HarmonIT-project, an EU 5th
Framework project (Contract EVK1-CT-2001-00090). From the beginning onwards
OpenMI was presented as a software interface that could be utilized to couple models or
even frameworks. To stimulate uptake of the Application Programming Interface (API)
standard and demonstrate its suitability, a software implementation was delivered for the
API, supported with a Software Development Kit (SDK) and Graphical User Interface
(GUI) to facilitate component wrapping and model coupling. Although OpenMI users are
not obliged to apply these supporting products, the SDK and GUI do give many scientists

Gijsbers P. et al. / From OpenMI 1.4 to 2.0

in the field the impression that OpenMI is another framework, similar to e.g. TIME,
CSDMS, ESMF or OMS. The OpenMI Association has not the intention to provide a
framework, but deems an open source software implementation necessary to reach world
wide adaptation of the standard, given its current development and acceptance phase.

To take the OpenMI from a research output to an operationally viable technology,
the OpenMI Life started under the EU-Life programme (LIFE06 ENV/UK/000409). In this
project, water management agencies in Belgium, the Netherlands and Greece applied the
OpenMI to connect their models from different suppliers and conduct crosscutting analysis
on real world issues that require integrated assessments.

In order to support this process, a legal association was established to take
ownership of the OpenMI and stimulate the use and support for the OpenMI: The OpenMI
Association. After some initial hurdles to understand what it takes to deliver an open
source standard and SDK, the confidence grew outside the core group that the OpenMI was
a highly potential technology for the larger community. Other parties started joining the
Association and contributed to the development. Alterra (part of Wageningen UR, NL)
adopted the OpenMI in various EU-projects (e.g. SEAMLESS, SENSOR), developing and
launching an open source Java implementation of the OpenMI, with support from
Univ.Trento (I). The Bundesanstalt für Wasserbau (BAW, GER) ported the C#
implementation from Microsoft .Net to the Mono platform and tested this implementation
on a Linux based proprietary file based database to exchange initial and boundary data with
the (Windows based) three-dimensional flow model Delft3D [Schade et al. 2008]. New
public models have become OpenMI compliant (e.g. SWAT, migrated by UNESCO-IHE)
while the USACE-HEC and USGS are collaborating towards an OpenMI compliant
implementation of HEC-RAS and Modflow. CUAHSI has demonstrated that its
WaterOneFlow web service can be connected to OpenMI compliant models [Goodall et al.
2007] and are keen to explore model-based web services using OpenMI as an important
vehicle. CSDMS, has adopted the OpenMI as its model interoperability interface using the
Common Component Architecture (CCA) as implementation framework for its HPC-model
platform [Peckham, et al. 2009]. USDA has implemented the OpenMI interface on top of
its Object modelling System (OMS) [David et al. 2009]. CSIRO is experimenting with
OpenMI while US-EPA has announced that the new version of its multi-model multi-media
framework, Frames 3, will be using the OpenMI interface. Finally, the Open Geospatial
Consortium (OGC) shows a keen interest in OpenMI as a means towards model
interoperability services. In addition to those known users, i.e. known to the Association,
many other users exist. Bulatewitz et al. [2009] demonstrates that, even without questions
to the help forum, people take the OpenMI concept and build integrated multi-disciplinary
modelling applications with it.

Some of those uses did not adopt the OpenMI.Standard interfaces completely, but used a
slightly deviation to achieve their goal in a similar style. This indicated room for
improvement, an observation that was supported by experiences in the core group as well.
This paper will take those experiences as a starting point to discuss in general terms the
changes that have been made to make OpenMI more flexible, more efficient and more
intuitive for integrated modelling applications in the wider environmental domain.

2. USER EXPERIENCES EXPRESSING A DESIRE FOR IMPROVEMENT

2.1 User experiences with OpenMI 1.x

OpenMI 1.x was developed with an extensive focus on numerical models, primarily in the
field of hydraulics and groundwater-surface water interaction. Gregersen at al. [2010]
demonstrate such application. Although notice was taken of the needs of other domains,
e.g. economics, this hardly influenced the outcome of OpenMI version 1.

After OpenMI 1.x was released and OpenMI was being used in real practice, many
successful applications have been developed. Simultaneously however, a few design
decisions became apparent as being not well equipped to meet the desired flexibility and
performance. An important nuisance appeared to be the link object, i.e. the interface that

Gijsbers P. et al. / From OpenMI 1.4 to 2.0

defines what data is exchanged between two components. The link had no clear ownership,
thus creating a confusing situation when adding data operations. Another less favourable
feature of the link was the need of a full interface implementation on both sides of a link,
also for potentially simple components such as data viewers. The link object also
stimulated memory resource intensive implementations, as each link would typically buffer
the source data it needed to support the data request from its target. Viewing the data being
passed over a link to a model actually required instantiation of a second similar link, often
resulting in the same data being duplicated in memory to support the second link.
Especially with larger grids, the memory consumption could become substantial. The link
also played a prominent role in the request for data (the GetValues method). Unfortunately,
this call referred to a link by its linkId, introducing a performance hit at each call when the
internal list of links became large. Finally, the link design also stimulated the use of a non-
intuitive trigger object, an object which often was added to create a ‘trigger’ link for
starting the data exchange and computation process.
 Within OpenMI, data is exchanged on a request-reply basis, in other words: data is
pulled to a component. This pull-concept enabled Goodall et al. [2007] to implement
OpenMI as a web-service, hence demonstrating its applicability as a service-oriented
architecture. However, the implementation as a modelling web-service was not intuitive as
OpenMI 1.x only allowed values being exchanged per timestamp, and not as a time series
object in one go [Goodall et al. in press]. Such capability would be highly desirable for
web-service implementations to reduce the number of calls needed over a network.

Prototype applications with OpenMI 1.x illustrated that data assimilation [Seymour,
2005] and decision support applications [Dirksen et al., 2005, Knapen et al., 2009a, b]
could be developed with OpenMI, but the pull-based concept was not very fit for purpose.
These applications typically conduct multiple model runs, redefining the input after
evaluation results from a previous run. A ‘set value’ approach would be natural, but
OpenMI 1.x required an unnatural call back construct to pull new input into the engine.

OpenMI 1.x provides optional interfaces to implement state management.
Unfortunately, the interface could not guarantee support for persistent state management.
So far, few applications have been using state management functions, partly since its
application was mostly limited to engines iterating back and forth to arrive at numerical
stable conditions. Generation of multi-model restart files, desirable to prevent numerical
instability of complex interacting models at start-up, could not be facilitated. The same
applies to forecasting systems requiring frequent model restarts from ‘warm states’.

Application in the SEAMLESS and SENSOR projects [Knapen et al. 2009a, b,
Wien et al. 2009, Verweij et al. 2007] illustrated that the OpenMI data model was not very
suitable for interdisciplinary modelling applications requiring exchange of non-numerical
data. Furthermore, its tight connection with the concept of time as well as its over
elaborated spatial data model made OpenMI 1.x not very attractive for combination with
Geographic Information Systems or databases holding non-transient data.

For above reasons, various OpenMI users deviated from the Standard specification in the
applications. Given these experiences, the OpenMI Association Technical Committee
(OATC) proposed to the OpenMI Association Executive Board to develop a non-backward
compatible upgrade to overcome some of the issues identified. This redesign, conducted
over the past three years, was guided by the user experiences and an integrated modelling
domain analysis to highlight the needs that had not sufficiently been met by OpenMI 1.4.

2.2 Domain analysis

The OATC started the development of the next version of the OpenMI with an analysis of
experiences, focussing on domain modelling characteristics in (to be) integrated modelling
disciplines. Its results are expressed in an abstract perspective focussing on spatial and
temporal characteristics of various component types as illustrated in Table 1.

Gijsbers P. et al. / From OpenMI 1.4 to 2.0

Table 1 Characteristics of selected component types

Component Type Spatial characteristic Temporal characteristic

Numerical model ID-based and/or geo-
referenced (x, y , z)

proceeds in time, may step
backwards for numerical
stability

Constant value provider constant in space constant in time

0-D time series (boundary
condition) provider

ID-based data varies over time

Geographical Information Systems geo-referenced constant in time

Tools for Optimization, Calibration
and Scenario Management /
Decision Support

with/without geo-
reference

proceed in time

Analytical functions exact geo-referenced
(without interpolation)

exact in time (without
interpolation)

Database or reader with/without geo-
reference

values of all time steps are
available from the start

As indicated, OpenMI 1.4 was relatively strong in support of numerical models, but
required considerable improvement for the other types. The major changes are:

 The link object is replaced by a direct reference to the consumers respectively
producers of data.

 Exchange items get a new role as the port for data provision and consumption.

 Time has become an integrated part of the query for data.

 Progress in time is less tightly bounded to the call for data transfer.

 Enhanced support for non-numerical data.

3. CHANGES FROM OPENMI 1.4 TO 2.0

3.1 Replacing the link - A new role for exchange items

In OpenMI 1.4 the link object was used to connect components, containing a reference to
the source component and the target component, as well as to the source output (exchange)
item and the target input (exchange) item. Exchange items had been introduced to describe
the data being exchanged in terms of ‘what’ (IQuantity) and ‘where’ (IElementSet). To
make output items compatible with input items, a series of data operations
(IDataOperation) was specified in the link object. Experience has shown that the link object
was not very efficient and intuitive for many applications. ‘Ownership’ of the object was
unclear, therefore creating confusion how additional data operations could be implemented.

Adopting a port concept would make the addition of data operations much more intuitive,
especially if a chain of data operations could be implemented on top of a port. In addition, a
port concept would make connecting a (non-compliant) data viewer to an OpenMI
component much easier. Many model providers used the internal exchange item object for
holding the data that the IExchangeItem interface described. This interface thus would
offer an intuitive place to act as a port for data provision and consumption. Two types are
identified with different tasks. InputItems provide an entry point for data input, while
OutputItems provide an exit point for output. Data viewers only need to implement the
input interface such that they can register themselves as a consumer to output of another
component. Data viewers thus do not need to implement all data providing capabilities.
 In OpenMI 2.0 a connection between a source component and a target component is
realized by a direct reference between an output item and an input item. The GetValues
method, called for actual data transfer, has been moved from the LinkableComponent level
to the exchange item level. The link, as a separate interface, has been removed from the
specification. If the values of an output do not exactly fits the required input, an ‘adapted’
output needs to be provided. The adapter pattern (similar to a decorator pattern) is used for

Gijsbers P. et al. / From OpenMI 1.4 to 2.0

this purpose, enabling the addition of data-operations in between the original output and
input item, realizing a truly piping and filtering pattern.
 The adapted outputs take over the role of data operations in OpenMI 1.4. Typically,
such intermediate adapted outputs are spatial and time interpolations and unit conversions.
The sequence of adapted outputs defines explicitly in which order the operations are
carried out. The adapted output can, via the Refresh() method, be notified that the values of
its parent output may have been changed.

An important advantage of the ability to ‘stack output adaptations’ is the ability to
reuse adapted outputs for various consumers (Figure 1). E.g. a model requiring point input
data at to different locations from a grid model, forced the grid model - under OpenMI 1.4 -
to hold two internal copies of the grid data. With version 2.0, the source model only needs
to hold an internal copy of the interpolated points. Similarly, data viewers monitoring a
connection do not enforce a duplication of the link (and its data) anymore, as they can
directly tap the same adapted output as the direct model-to-model connection.

Finally, the adapted output mechanism enables the user to define the order of a
series of operations. By performing the operation with the greatest data reduction first, the
subsequent operations can significantly be sped up.

Link

Input-

item

Output

item

Linkable

Component

Legend:

Adapted

Output

1.4

Point1.H

Point2.H

Outflow Inflow

Grid.H

t

t

polygon

to point

2.0

Point1.H

Point2.H

Grid.H

t

t

Provider /

Consumer

relation

Figure 1 Re-use of adapted outputs

3.2 Reformulating the query for values

In OpenMI 1.4, values were asked from a linkable (model) component for a certain time
and for a certain link through the GetValues call. The component had the responsibility to
return the values asked as specified by the target quantity and target element set of the link.
Components that had no temporal knowledge still were enforced to deal with time. This
annoyance has been removed.

In OpenMI 2.0, the link identifier is gone, as a direct relation between producers and
consumers defines the connection between components. The query specifies the value
definition and either the element set (space), the time set or both. The query is passed as an
InputItem argument in the GetValues call on the OutputItem. In this manner, all variations
in component types - as identified in the domain analysis - can be supported with their
specific query needs. Components dealing with time can be informed beforehand at what
time stamps the consumer requires data. This allows a providing component to prepare
itself e.g. by creating appropriate internal buffers or by computing ahead if possible.

Gijsbers P. et al. / From OpenMI 1.4 to 2.0

3.3 Redefining the data model

Users requests have also resulted in a some adjustments and extensions of the data model in
order to accommodate non-numerical data, to improve interoperability with OGC-feature
types and to enable retrieval of time series objects in one go.
 To support non-numerical data, the values have changed from doubles -
representing a numerical scalar or (xyz) vector - to objects. The value definition has been
extended from numerical quantities to both quantities and so-called qualities, the latter
being categorized items enabling representation of e.g. soil types, land use, seasons and
fuzzy values.
 The spatial domain of an OpenMI component is described by the element set.
IElementSet is an overarching interface allowing high-performance access to individual
elements of a specific element type. The list of element types is GIS-oriented, but the
separation between the horizontal and vertical dimension, as defined in OpenMI 1.4,
showed to be overdone. Both the GIS-world and the numerical modelling world did not fit
into this design. Hence, the number of element types has been reduced and is harmonized
with the feature types as common in the GIS-world. For numerical modellers, both Z-
coordinates (geo-referenced) and M-coordinates (model layer reference) are supported.
 The actual data values being exchanged are held in a so-called value set. For
OpenMI 2.0, the IValueSet interface has been redesigned as well. New methods have been
introduced to retrieve the value objects for all element values for a specific time or for all
time series values of a specific element. In addition, the interface provides a method to set
values into the object. This method, combined with the accessibility of a value set as a
property of an input exchange item, allows external components to set a value if needed.
Tools used for data assimilation, calibration and optimization will benefit from this
capability, while the dominant data exchange mechanism remains pull-based.

3.4 Extending control flow options

In OpenMI 1.4, the GetValues call served various purposes: data transfer, progress in time
and triggering calculations at other components when needed to progress. The control flow
was purely pull driven, since linkable components were triggered to perform an action
when there was a request to produce data.
 In OpenMI 2.0 this is pull mechanism is still the same, with components actively
triggering other components when they need data. However, a second control flow option,
called the ‘loop’ approach, has been added to accommodate progress control from the
outside. An external controller can invoke each linkable component separately, by calling
its Update() method. This will let the linkable component progress to its next step, but only
if all necessary data for that component is available. If the data is not available yet – e.g.
because another component has not computed it yet - the component specifies its state as
"waiting for data", and returns the control flow. During the next Update() call, the
component checks whether the required data is available, (and if so) computes the new
value and sets its state to "updated". A typical application of this approach could be master-
slave computational system where a master component controls the computation sequence
of its various computational domains enabling parallel computing.
 Note that the loop approach doesn’t offer wider usage of linked components, it is
only an alternative way of controlling the data flow. Implementing the loop approach is
optional. A linkable component that does not support it is still OpenMI compliant.

3.5 Enabling persistent states

While OpenMI 1.4 allowed models to manage their state and roll back to a previous state, it
was up to the developer to implement this in memory or with so-called restart files. Various
use cases would benefit if OpenMI could enforce a persistent state to be saved and restored.
A complex model combination could reduce its numerical instability problems at start-up if
the various components could save a restart file on request when the shared system is in
balance. In addition, operational forecasting systems need this ability to keep the latest

Gijsbers P. et al. / From OpenMI 1.4 to 2.0

model state update-to-date. OpenMI 2.0 therefore accommodates conversion of a model
state from a memory object to a persistent byte stream and back.

3.6 Improving component status information

OpenMI 1.4 contained a message mechanism to broadcast component status. This design
has shown to impact performance as the composition of messages could take substantial
time as compared to the calculation time. In OpenMI 2.0, status is handled as property of
the linkable component. The states can be used in both the pull-based as the loop-based
control flow to make decisions. The available states can be defined in two types: action
states (e.g. updating) and idle states (e.g. updated). States are related to the call sequence
conducted on the component.

4. CONCLUSIONS AND FINAL REMARKS

The redesign presented in this paper, supported with more technical details in Donchyts et
al. (2010), is expected to be a major step forward towards improving the applicability of
OpenMI as an Application Programming Interface for interoperability between
computational models, databases, geographic information systems and web-services. Its
updated interface specification is much more in line with the actual implementation at
computational cores, while it simultaneously has improved capabilities for utilization in
GIS or web service environments.

However, not all requests and wishes are supported yet. Additional funding and resources
will be needed to test the OpenMI 2.0 interface design in a High Performance Computing
environment in order to decide if extensions are essential. Similarly, more experience needs
to be gained in the utilization of ontology in combination with OpenMI 2.0, based on the
initial steps taken in the SEAMLESS project [Knapen, 2009a,b]. Furthermore, new web-
service experience needs to be gained to leverage the capabilities of the OpenMI in this
field if needed.

The expectation is that extending the available or implementing new Software
Development Kits can facilitate most of these requests. Most likely, some extension will be
required to the interface standard to accommodate specific needs. However, the current
interface design is foreseen to be sufficiently mature, such that any of those requests does
not need to result in another non-backward compatible upgrade.

ACKNOWLEDGEMENTS

The development of OpenMI version 2.0 has been funded by the members of the OpenMI
Association as well as the European Commission through various 6th Framework Programs
and the LIFE Environment program.

REFERENCES

Bulatewicz, T., X. Yang, J. M. Peterson, S. Staggenborg, S. M. Welch, and D. R. Steward

(2009) Accessible integration of agriculture, groundwater, and economic models using
the Open Modeling Interface (OpenMI): methodology and initial results. Hydrol. Earth
Syst. Sci. Discuss., 6, 7213–7246, 2009

David, O, Lloyd, W, Carlson, J, Leavesley, G H, Geter, F (2009) Use of Annotations for

Component and Framework Interoperability Eos Trans. AGU, 90(52) Fall Meeting
Abstracts Suppl., abstract #IN11A-1044

Dirksen P.W., Blind M.W., Bomhof T. and Srikrisnhudu Nagandla, (2006) Proof of

Concept of OpenMI for Visual DSS Development, Modsim 2006 International Congres
on Modelling and Simulation, Melbourne, Australia, pp.184-189

Gijsbers P. et al. / From OpenMI 1.4 to 2.0

Donchyts, G., Hummel S., Vaneçek S., Groos J., Harper A., Knapen R., Gregersen J.

Schade P., Antonelli A, Gijsbers P. (2010) OpenMI 2.0 What’s New. This conference,
iEMSs 2010 Fifth Biennial Meeting, Ottawa, Canada

Goodall, J. L.; Robinson, B. F.; Shatnawi, F. M. and Castronova, A. M. (2007) Linking

hydrologic models and data: The OpenMI approach, Eos Trans. AGU, 88(52) Fall
Meeting Abstracts Suppl., abstract #H13H-1682

Goodall, J.L., Robinson, B., and Castronova, A.M. (in press), Modeling complex water

resource systems with service-oriented computing. Submitted to Environmental
Modelling & Software

Gregersen, J.B. , P.J.A. Gijsbers and S.J.P. Westen (2007) OpenMI: Open modelling
interface, Journal of Hydroinformatics Vol.9 No 3. pp 175–191

Knapen, M.J.R.; Verweij, P.J.F.M.; Wien, J.J.F.; Hummel, S. (2009a) OpenMI - The

universal glue for integrated modelling? In: 18th World IMACS Congress and
MODSIM09 International Congress on Modelling and Simulation, Cairns, Australia

Knapen, M.J.R.; Athanasiadis, I.N.; Jonsson, B.; Huber, D.; Wien, J.J.F.; Rizzoli, A.E.;

Janssen, S. (2009b) Use of OpenMI in SEAMLESS. In: Proceedings of the Conference
on Integrated Assessment of Agriculture and Sustainable Development: Setting the
Agenda for Science and Policy (AgSAP 2009). Egmond aan Zee, The Netherlands

Peckham S. D., Hutton E. (2009) Componentizing, standardizing and visualizing: How

CSDMS is building a new system for integrated modeling from open-source tools and
standards Eos Trans. AGU, 90(52) Fall Meeting Abstracts Suppl., abstract #IN11A-1045

Schade, P.; Lang, G. and Jürges, J.; (2008) OpenMI Compliant Import of Initial and

Boundary Data into a numerical 3D Model. In: Proceedings of the iEMSs Fourth Biennial
Meeting: International Congress on Environmental Modelling and Software (iEMSs
2008) Vol. 2, pp 1086-1093

Seyoum S (2005), A generic software tool for OpenMI-compliant Ensemble Kalman

Filtering, M.Sc thesis, April 2005, UNESCO-IHE, Delft, The Netherlands

Verweij, P.J.F.M.; Knapen, M.J.R.; Wien, J.J.F. (2007) The Use of OpenMI in Model

Based Integrated Assessments In: MODSIM 2007 International Congress on Modelling
and Simulation,Christchurch, New Zealand, December 2007

Wien, J.J.F.; Rizzoli, A.E.; Knapen, M.J.R.; Athanasiadis, I.N.; Janssen, S.; Ruinelli, L.;

Villa, F.; Svensson, M.; Wallman, P.; Jonsson, B. (2009) Architecture of SEAMLESS-IF
as framework In: Integr. Assessm. of Agriculture and Sustainable Development; Setting
the Agenda for Science and Policy (AgSAP 2009), Egmond aan Zee, The Netherlands

