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The objective of the paper is to study scour downstream of a block ramp. Block ramps are often used 

for river restoration, because they dissipate a considerable amount of hydraulic energy. The 

experiments were carried out in two different channels. The first channel was 0.8 m wide whereas the 

second smaller channel had a width of 0.25 m. Different sediments for both the ramp and the 

downstream bed were used. Also, different ramp slopes were tested ranging from 1V:4H to 1V:12H; 

both the maximum and the medium scour depths were considered. The prominent non-dimensional 

parameters are highlighted first. Equations and graphs then demonstrate that the results can be 

interpreted by means of simple relationships for the condition in  which a ridge is present downstream 

of the scour hole. 

 

1 Introduction 

 

Block ramps are hydraulic structures often used for river rehabilitation to preserve an 

ecosystem and to produce an acceptable and sustainable river environment (Pagliara, 

Dazzini 2002). Block ramps may substitute the classical check dams and in parallel are 

often used as fish passages. The toe of these structures is characterized by supercritical 

approach flow with the potential for a scour. The scour hole due to a jet has been recently 

investigated with new techniques by Canepa and Hager (2003). The objective of this 

study is to describe the end scour hole downstream of a block ramp to allow for a 

hydraulic design.  

2 Experimental setup 

The experiments were conducted at the Hydraulic Laboratory of Pisa University. Two 

channels were employed: Channel I was 0.8 m wide, 20 m long and 0.7 m high. 

Discharges up to 120 l/s were investigated.  Channel II was 0.25 m wide and 3.5 m long, 

with discharges up to 10 l/s and continuously variable slope. In both channels filtration 

across the sediment matrix was inhibited to control the hydraulic conditions for the ramp 
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flow. The tests involved exclusively stable ramp conditions with sediment erosion 

confined to the downstream reach of the ramp toe. A total of 72 tests were conducted.  
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Figure 1.  Sketch of the experimental apparatus (a) Longitudinal section, (b) Cross section of maximum scour 

 

The bed and ramp materials used had a density of ρs=2690 kg/m3. In total five crushed 

rock bed sediments and two ramp materials were employed, as shown in Table 1. There, 

d is the sediment size and the number indicates the percentage of passage across a 

sediment net. The sediment non-uniformity parameter is σ=(d84/d16)
1/2
. In all tests the 

ramp was not submerged, meaning that a hydraulic jump formed upstream from the scour 

hole at the toe of the ramp itself. This involves a minimum tailwater depth and 

consequently results in the maximum scour conditions. 

 
Table 1. Materials used for the bed of the channel, and for the ramps 

Material  d50 (m) d90 (m) σ Notes 

1 0.0123 0.0187 1.32 channel 1 

2 0.0068 0.0118 1.35 channel 1 

3 0.0313 0.0342 1.11 channel 1 

4 0.0035 0.0047 1.44 channel 2 

5 0.020 0.0239 1.21 channel 2 

6 0.080 0.090   1.1 ramp channel 1 

7 0.015 0.020 1.2 ramp channel 2 

 

3 Results 

Maximum scour depths 

Two scour mechanisms were observed during the tests, depending on the presence or not 

of a ridge downstream of the end scour hole. In the following, only conditions with ridge 

presence are considered. Figure 2 shows the difference between the so called transport 
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and non-transport conditions. In Figure 2 (a), no sediment is transported beyond the 

ridge, whereas Figure 2 (b) shows conditions with sediment transport in the downstream 

channel, i.e. no ridge is present. The second condition results in larger scour depths 

because the presence of a dune is a limiting factor for scour formation (Pagliara, et.al. 

2005). In addition, no difference between static and dynamic flow conditions as for 

plunge pool scour was found (Pagliara, et.al. 2004). 

 

 

b) 

 

a) 

 

Figure 2 (a) Non-transport condition and ridge presence beyond scour hole, (b) transport condition beyond 

scour end associated with no ridge formation. 

 

 

The medium (subscript m) cross-sectional scour depth zm divided by the approach flow 

depth h1 at the ramp toe (Zm=zm/h1) was correlated with the densimetric Froude number 

Fd=V1/(g’d)1/2 with V1=Q/(Bh1) as the average approach flow velocity, g’=[(ρs−ρ)/ρ]g as 

the reduced gravitational acceleration where ρs=sediment density and ρ=water density 

with d as the sediment diameter of the scour hole and g as gravitational acceleration. 

Tests were terminated when sediment transport stopped, usually after test duration 

between 30 minutes and 2 hours in the present experimental configuration. All 

experiments had a relative tailwater depth T=ho/h1 between 1.5 and 2, where ho=is the 

downstream flow depth. 



4 

The following relationship was found for the relative scour depth Zm=zm/h1 in terms of 

the ramp slope i (Figure 3) 

Zm=A·ln(Fd50)+B                                              (1) 

with 

A=2.93·i+1.01  ,   B=−0.83·i –0.62 

 

Using sediment size d90 instead of d50 gives (Figure 4) 

 

       Zm=C·ln(Fd90)+D                                                                               (2) 

with 

C=+3.77·i+1.25,    D=−0.92·i –0.63 

0

1

2

1 2 3 4 5

Fd 50

zm/h1
i = 1:4

rampa 1:8

i = 1:12

i = 1:8

 

Figure 3. Mean scour depth Zm versus Fd50 for various ramp slopes i 

 

Both figures 3 and 4 show a significant effect of the ramp slope i; for steep ramps, the 

relative scour depth is larger than for small ramp slope. Evidently, the approach flow 

velocity V1 is then larger, and the approach flow depth h1 is smaller.  

At the ramp end of short ramps, uniform flow conditions are normally not yet established 

because of limited ramp length. The scour hole geometry is not bi-dimensional such that 

a mean and a maximum scour hole depth at the same cross-section were observed. The 

maximum (subscript max) scour hole depth is located usually in the channel axis. Figure 

5 shows the ratio between the maximum and mean scour hole depths zmax/zm as a 

function of the densimetric Froude number Fd90. As Fd90 increases, the difference between 

the maximum and the mean scour depths decreases with the ratio zmax/zm tending to unity.   
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As the approach flow velocity V1 increases, the water jet at the end of the ramp generates 

more uniform scour in the transverse direction, therefore. The effect of ramp slope on the 

scour depth ratio in Figure 5 appears to be of minor importance.  

 

0

1

2

1 2 3 4

Fd 90

zm/h1
i = 1:4

i = 1:8

i = 1:12

 
Figure 4 Mean scour depth Zm versus Fd90 for various ramp slopes i 

 

If the maximum scour depth zmax at the ramp end instead of the average scour depth zm is 

considered, the data may be expressed with Zmax=zmax/h1 as (Figure 6)  

 

                                     Zmax=E·ln(Fd50)+F                                                      (3)  

with 

   E=+6.21·i+0.74 ,  F=−2.18·i –0.24 

 

Using sediment size d90 instead of d50 gives alternatively (Figure 7) 

 

                   Zmax=G·ln(Fd50)+M                                                       (4) 

with 

G=+7.53·i+1.00,    M=−2.04·i−0.33 

 

In Figures 3 to 7 the agreement between the data and the predictions is better for Zm than 

for Zmax; this is due to the two-dimensional phenomenon for a supercritical approach flow 

and its typical non-uniformity due to the presence of the blocks along the ramp surface. 
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Figure 5 Ratio between zmax/zm as a function of Fd90 for different ramp slopes i 
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Figure 6. Non-dimensional maximum scour depth Zmax versus Fd50 

 

Scour length 

 

An important design parameter is the length L of the scour hole. Figure 8 shows the 

relative length L/h1 as a function of average scour depth zm/h1 for the ramp slopes i 

previously considered. It may be observed that the ramp slope i is of relevance here. 

The data may be described with the following relation 

 

L/h1= 3 .60 i - 0 . 5 4  ⋅ Zm                                                                (5) 
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Figure 7 Relative maximum scour depth Zmax versus Fd90 for various ramp slopes i 

 

 

The length of scour hole thus increases as the scour hole deepens and as the ramp slope 

reduces.  
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Figure 8 Relative length of scour hole L/h1 as function of relative scour hole depth Zm for various ramp slopes i 
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Conclusions 

 

Data collected from experimental tests result in relationships among the scour depth, 

scour length, the densimetric Froude number and the slope of a block ramp. These apply 

to the particular condition when a ridge is formed downstream of the scour hole, 

corresponding to non-transport of sediment into the tailwater channel and for non-

submerged hydraulic conditions on the ramp. These data may be of interest in 

preliminary design of block ramps, to determine the geometry of the end scour hole in 

terms of approach flow conditions at the ramp toe. More research is needed for the 

description of the flow along the block ramp; this was considered beyond the scope of 

the present research, however. 
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