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I. INTRODUCTION 

When the process of scouring is examined in a 
numerical model, flow and sediment transport are 
simulated in order to achieve knowledge of the temporal 
evolution and final scour depth. The modeling is limited 
to fluid flow, sediment transport at the bottom surface 
layer and resulting bottom evolution. Additional bottom 
movements are reduced to sliding sediment at the 
developing slopes. Less attention has until now been 
drawn to the modeling of the inner stability and the 
response of the bottom to shear stress and sediment 
transport. In order to gain more knowledge about the 
bottom and its behavior while the scouring process takes 
place, a finite element model for solids was implemented. 
The bottom surface geometry resulting from the sediment 
transport and the near-bed shear stress are taken into 
account as boundary conditions.  

 

II. MODEL DESCRIPTION 

A. Flow 

To simulate a scouring processs the sediment transport 
model needs the input from a flow model, which 
calculates the near-bed shear stresses. Considering a 
cylinder in a steady current, the relevant flow effects for 
the scouring process are the horseshoe vortex, the 
increased flow velocities at the side of the pile and the 
vortex shedding. Especially the horseshoe vortex is a 
truly three-dimensional flow effect and therefore the 
incompressible Reynolds-averaged Navier-Stokes 
equations are solved for all three dimensions. Turbulence 
modeling is done by the k-ω  model derived by [22]. The 
modifications of [10] were applied because of their 
advantage in simulating flow with a boundary layer and 
adverse pressure gradients. 

The Reynolds equations are solved on a mesh of 
prismatic elements, which are obtained by duplicating a 
two-dimensional base mesh of triangles in the vertical 
direction. The mesh is refined in the vicinity of the 
cylinder and near the bottom, so that element edges have 
a minimum length of 1mm. Diffusion terms are solved 
implicitly and advection is done by the streamline upwind 
Petrov-Galerkin method [6].                              

 

B. Sediment Transport 

The sediment transport is calculated as bed-load 
transport, which takes place at the bottom surface. In 

order to calculate a new bottom geometry, the bottom 
evolution equation (1) is being solved. The data for the 
necessary transport rate in (1) is determined by solving 
(2), which was found by [19]. 
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*D  is a dimensionless particle parameter in which ν  

is the kinematic viscosity and 50d  the medium grain 

diameter. In (2) fU  is the effective bed-shear velocity. 

Sediment transport takes place, when the actual shear 
stress exceeds a critical value which can be expressed by 
the Shields mobility parameter crθ  [15]. This is 

calculated by a parametrization of the Shields curve (4) 
done by [19]. Shear stress and mobility parameter are 
related by 50S gd)( ρ−ρθ=τ . 

Steep slopes will occur as the scour developes, whereas 
most transport rate equations were derived for nearly 
horizontal beds. Experimental data shows that the 
transport rate [16] and threshold conditions change on a 
sloping bed. The differing values are caused by the 
influence of gravity on the sediment particles (Fig. 1). 
Therefore a correction of sediment transport rate and 
mobility parameter has to be done in order to take the 
slope effect into account. 

 

 
Figure 1. Sediment Particles on a Slope 



The result for the Shields parameter on a horizontal 
bed is adjusted by (6) and (7) for longitudinal and 
transversal slopes based on the direction of the bed-shear 
velocity. Equation (6) was derived from the equilibrium 
of forces on a single particle on a sloping bed and was 
first presented by [13]. Comparison with experimental 
data shows good agreements [21]. The adjustment of the 
critical Shields parameter for transversal slopes (7) was 
first presented by [8] and was also derived by [7] and [3]. 
In (6) and (7) ϕ  is the angle of repose and β  is the actual 

slope angle.  
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The sediment transport rate is treated in a smiliar way 

as the mobility parameter. Increasing the transport rate on 
a downward slope is taken into account by different 
equations for a longitudinal and a transversal slope. 
Equation (8) was found by [19] based on the equation of 
[16]. It predicts the amplification of the transport rate for 
a slope with decreasing elevation. In (8) C is the Chézy 
coefficient. 
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For slopes with increasing elevation no correction of 

the sediment transport rate is done. From experiments [1] 
found that the bed-load on an upward slope is adequately 
described by taking into account the modification of the 
critical Shields parameter. 

The bed-load transport in the transverse direction was 
studied by [2], [4], [5] and [14]. The approach of  [4] was 
chosen and implemented in the sediment transport model. 
The transport rate in cross direction is described by: 
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in which bu  is the near-bed velocity. 

 
Figure 2. Resulting Bottom Geometry 

 
When the scour develops in a sandy bed and the slope 

angle reaches the angle of repose, the slope will 
destabilize and sediment slides down in direction of the 
highest gradient. This effect must be taken into account in 
order to obtain a reasonable bottom geometry. The effect 
was implemented in a numerical model by initiating a 
sediment transport in direction of the gradient if the slope 
angle exceeds the angle of repose [11][12]. Hence the 
bottom evolution equation needs to be solved when a 
sandslide is executed. Sediment transport stops when the 
slope angle falls below the angle of repose. A slightly 
different way to model a sandslide is to shift the sediment 
in a mass conservative way from the higher meshpoints to 
the lower [20]. The criterion for initiating and stopping a 
sandslide is again the angle of repose. The resulting 
bottom geometry is therefore limited to the choice of this 
soil parameter (Fig. 2). 

 

C. Bottom 

Modeling the bottom with a finite element model 
provides the oppurtunity to examine its response to a 
changing geometry and to the shear stresses affecting the 
surface layer. The developing scour leads to steep slopes 
which become unstable when the angle of repose is 
reached. With the finite element model the mentioned 
behaviour can be simulated. Location and depth of 
instabilities can be analyzed. 

The  finite element model includes a linear-elastic as 
well as a visco-plastic (initial strain) method [23] with the 
failure criterions of Mohr-Coulomb and von Mises. In 
both cases the equations for equilibrium (10), strain-
displacement relation (12) and the constitutive soil model 
are solved (11). 
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In (10)-(12) σ  and τ  are the stress components, ε  

and γ  are the strains and (u,v,w) are the displacements. 

The soil paramters E and ν denote Young’s modulus and 
Poisson’s ratio. Solving (10)-(12) on a finite element 
mesh leads to a linear system of equations. 

The case of a collapsing slope or sand slide is not an 
elastic problem. Irrecoverable strains occur when a 
failure of  soil material takes place. In order to separate 
stresses causing elastic from those causing plastic 
deformations, a yield surface (failure criterion) is defined. 
For frictional materials, such as sand, the Mohr-Coulomb 
criterion  can be applied. It has the form of an irregular 
hexagonal cone, as shown in Fig. 3.  

 
Figure 3. Mohr-Coulomb Yield Surface 

 
The failure criterion is then given by 
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The friction angle is denoted with ϕ  and c is the 

cohesion. The three invariants mσ , σ  and θ  represent 

the mean stress, the deviator stress and the Lode angle. 
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The invariants (14)-(16) are related to the principal 

stress space through: 
 

( )π−θσ+σ=σ 3/2sin3/2m1   

( )π+θσ+σ=σ 3/2sin3/2m2  (17) 

θσ+σ=σ sin3/23 m   
 
The non-linearity of the process is taken into account 

by iteratively modifying the load vector and keeping the 
stiffness matrix constant. Each iteration is a linear-elastic 
analysis as described above. The plastic parts of the result 
are self-equilibrating loads which are applied to the load 
vector to redistribute the stress within the system [17]. 

The bottom surface geometry exists as a mesh of 
triangles. In order to obtain a three-dimensional mesh, a 
horizontal layer of triangles with the same element 
coordinates as the surface layer is created (Fig. 4). It is 
located 20% underneath the height of the lowest surface 
mesh point. The Space in between those layers is filled 
with a constant number of prismatic elements in the 
vertical direction. 

The bottom finite element model has different degrees 
of freedom at the boundaries. No displacements are 
allowed at the bottom layer, whereas the surrounding 
boundary faces and the nodes at the cylinder are allowed 
to move in vertical direction. 

 
Figure 4. Bottom Mesh Structure [9] 

 
 
 
 
 
 
 



 
Figure 5. Scour Experiment [11] 

 

III. MODELING RESULTS 

A. Flow and Scour 

The experimental results of [11] were used for 
verification of the flow and sediment transport model. 
The experiments were carried out in a flume with a width 
of 3.6m and a length of 9.90m (Fig. 5). A cylinder with a 
diameter of 10cm was placed within the sand pit. The 
sediment particles had a medium diameter of 0.26mm and 
the undisturbed flow velocity was 0.46cm/s at a water 
depth of 0.4m. The angle of repose for the given material 
wa defined as 32 degrees. 

The flow around a vertical pile leads to vortex 
shedding (Fig. 6), known as the von Karman vortex 
street,  and the horseshoe vortex (Fig. 7). The latter is 
caused by the difference in the vertical pressure, which 
occurs when a flow with a logarithmic velocity profile 
approaches the cylinder. Both flow effects are reproduced 
by the numerical model. The influence of the horseshoe 
vortex on the direction of the near-bed flow velocities can 
be seen in Fig. 8. In the upstream part of the cylinder the 
near-bed velocity points against the direction of the 
approaching flow. The contraction of the flow leads to 
increased velocities at the cylinder sides and therefore to 
an increased shear stress. In the numerical simulations the 
maximum value reaches eight times of that in the 
undisturbed areas as can be seen in Fig. 9.   

 

 
Figure 6. von Karman Vortex Street 

 
 

 
Figure 7. Horseshoe vortex 

 

 
Figure 8. Near-bed Flow Velocities 

 
 

 
Figure 9. Amplification of Shear Stress 

 
The high shear stresses around the cylinder lead to an 

intensive sediment transport and therefore the scour 
develops. Taking into account the transversal sediment 
transport at a slope leads to a resulting transport vector 
which no longer points in the direction of shear stress. In 
Fig. 10 the white arrows denote the direction of shear 
stress while the grey point in the direction of sediment 
transport. It can be seen that the latter is less radial after 
the correction. 



After two hours of simulation the scour reaches a depth 
of approximately 14cm. The temporal evolution (Fig. 11) 
and the resulting shape of the scour (Fig. 12) are in a 
good agreement with the experimental results. The scour 
depth after two hours of simulation is not exactly met.  

 

 
Figure 10. Sediment Transport Rates at a Slope 

 
 

 
Figure 11. Temporal Evolution of Scour 

 

 
Figure 12. Scour after 2 Hours 

B. Bottom 

Simulations with the bottom finite element model were 
carried out in order to analyse the slope stability. At the 
present state of development the shear stress and dynamic 
flow pressure have not been taken into account (this will 
be included in the final version of the paper).  

The scour geometry was held constant whereas the 
friction angle was altered. Other parameters used were 

Young’s modulus 4101E −

⋅= kN/m² and Poisson’s ratio 
3.0=ν . The unit weight of the material was given as 

3m/kN10=γ . It is assumed that the upper layer is loose 

sand and therefore cohesion is not effective. After ten 
minutes of sediment transport the scour has reached a 
depth of  7cm. For this point in time the finite element 
simulations were carried out.  

The plastic strains xzγ  are shown in Fig. 13 and Fig. 

14. As a result from experiments in [11] sandslides were 
initiated when the slope angle was two degrees higher 
than the friction angle. Fig. 13 shows that with the 
difference of two degrees between slope and friction 
angle, strong plastic strains occur on the upstream as well 
as on the downstream slope. These can be expected to be 
the areas where most of the sandsliding takes place.  

 

 
Figure 13. Plastic Strains at °−ϕ 2  

 

 
Figure 14. Plastic Strains at ϕ  

 
 
 
 
 



IV. SUMMARY 

The numerical model described is capable of 
calculating flow and sediment transport around structures 
as well as analyzing the bottom stability during scouring 
with a finite element model. High shear stress in the 
vicinity of the structure leads to an intensive sediment 
transport. Steep slopes occur as the scour develops. The 
change of threshold conditions and sediment transport 
rates at steep slopes are taken into account by modifying 
the values for a horizontal bed. Furthermore it is necessary 
to consider bottom movements which are a result of 
instabilities and which are independent from shear stress 
affecting the bottom. The sand slide algorithm is capable 
of simulating these movements, taken into account the 
friction angle as the only soil parameter. 

The results of the scour simulation met the measured 
scour depth and the temporal evolution. Using the 
calculated bottom geometry for an analysis with the finite 
element model for the bottom leads to information where 
failure of stability occurs.  
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