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1 INTRODUCTION 

Analysing and extrapolating extreme values of marine variables comprises a contemporary field of 
research and constitutes one of the basic components in estimating coastal flooding and erosion risks, in 
forming a modern framework for designing and upgrading coastal and marine structures and in 
understanding the basic physical processes in coastal areas. The former combined with the existing strong 
evidence for a possible change of the global climate associated with extreme events of higher intensity 
and frequency, intensify the interest in the field of extreme events analysis.  

Most marine variables, like the majority of environmental signals, are characterised by phenomena of 
non-stationarity. The existence of a seasonal cycle in the studied variables, as well as the possible 
existence of long-term trends are some evident causes of the above mentioned non-stationarities. These 
phenomena should be incorporated in the extreme value models, for the process of extrapolation to be 
more reliable and unbiased. Morton et al. (1997) present a model framework for incorporating seasonality 
in the analysis of extreme significant wave height, based on the POT (Peaks Over Threshold) model. 
Separate POT models characterised by the use of seasonal thresholds are applied for each season of the 
year and finally return levels are extracted by an aggregation procedure. Caires et al. (2006) introduce a 
non-stationary and non-homogeneous Poisson process to model significant wave height extremes with 
parameters dependent on sea level pressure covariates.  Méndez et al. (2006) develop non-stationary POT 
models to simulate significant wave height extremes, taking account of climate covariates, such as the 
NAO index, harmonic functions for periodic variations and long-term trend components. Méndez et al. 
(2008) present respective models, focusing on the harmonic functions of interannual variability for wave 
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height extremes, but also on the duration of wave storm events. Brown et al. (2008) analyse changes in 
observed daily temperature anomalies since 1950 by utilizing an extreme value distribution function with 
time-varying parameters, considering time trends and the influence of the NAO. Menéndez et al. (2009) 
study monthly wave height extremes, considering a non-stationary GEV (Generalized Extreme Value) 
model with parameters described by means of harmonic functions. Frías et al. (2012) utilize the above 
mentioned model to analyse extreme values of atmospheric temperature resulting from a regional climate 
model (RCM).  

In the present work, extreme value analysis of significant wave heights in selected areas of the Greek 
Seas is performed for the present and the future climate. In Section 2, bias correction methods utilized for 
the wave data in the selected areas are presented. Section 3 presents the basic characteristics of the non-
stationary GEV distribution function, fitted to the monthly maxima of wave height data, according to the 
methodology presented in Menéndez et al. (2009). Section 4 of the present work introduces shortly the 
data utilized in the present work and presents some indicative results. Finally, extreme values of the 
studied variables for present and future climatic conditions are intercompared and basic conclusions are 
extracted regarding the effects of climate change on the wave climate of the Greek Seas.  

2 BIAS CORRECTION METHODS 

Significant wave height simulations resulting from the use of wave prediction systems forced by RCMs 
are often subject to phenomena of bias, possibly due to the limited process understanding, the incomplete 
conceptual representation of the atmospheric processes leading to the generation of climate data, the 
incomplete discretisation, the spatial averaging in each cell of the model grid and other parameters. Bias 
represents the error component of the model that is independent of time (Haerter et al. 2011) and imposes 
the processing of the data before using it to estimate the effects of climate change in any domain of study. 
Particularly, when referring to extreme events, it has been pointed out that if the output of RCMs is not 
corrected for bias, they lead to unrealistic exceedance probabilities, rendering the analysis of extreme 
events unreliable (Durman et al. 2001). However, it should be noticed that incorrect representation of the 
different processes involved in a physical system cannot be rectified by means of bias correction. Within 
the framework of bias correction methods, the error of the climatic model is considered stationary and the 
correction techniques and parameterisation for the present climate are also considered valid for the future 
climate. Therefore, for future projections the bias component is assumed unchangeable (Berg et al. 2012). 

Among the bias correction techniques, recent studies mainly using precipitation and temperature data, 
indicate the quantile mapping methods as the most efficient, even for the most extreme part of the 
distribution of the studied variables (Themeßl et al. 2011). The above mentioned techniques include the 
development of transfer functions between the cumulative distribution functions of the data that need to 
be corrected for bias (modelled data) and of the “control” or the observed dataset.  Quantile mapping 
(also referred to as quantile-quantile transformation) results in a new distribution function for the 
modelled variable almost equal to the one of the observed variable. The main limitations of the quantile - 
quantile transformation focus on the preservation of the temporal autocorrelation properties of the data, 
the independent correction of different variables with biases that might not be independent and the 
inability to correct the spatial autocorrelation of different variables (Boé et al. 2007). 

The methods used in the present work include the development of parametric, as well as non-
parametric quantile - quantile transformations. The former transformations include linear, polynomial and 
scale functions. All parametric transformations are fitted by minimizing the residual sums of squares. 
Within the non-parametric framework, the empirical distribution functions of the “control” or observed 
data and of the data resulting utilizing the forcing of the RCMs, are represented by means of tables of 
empirical percentiles, while the values between them are assessed by means of a monotonic tricubic 
spline function (Gudmundsson et al. 2012). In this case, if the model values of the future projections are 
larger than the training values, the correction found for the highest quantile of the training period is 
utilized.  

3 ANALYSIS OF EXTREME WAVE EVENTS 

The univariate Extreme Value Theory (EVT) includes models for block maxima and exceedances over 

high thresholds (POT models). The first correspond to the family of GEV distributions (Generalized 

Extreme Value) including the Gumbel (Type Ι), the Fréchet (Type ΙΙ) and the Weibull (Type ΙΙΙ) 
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distributions (Jenkinson, 1955). The cumulative distribution function of the GEV for ξ≠0 is given by the 
following formula (Coles, 2001): 
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where μ, σ>0 and ξ = the location, scale and shape parameters, respectively. The special case with ξ=0 
corresponds to the Gumbel distribution function. To simulate non-stationary phenomena, the parameters 
of the GEV distribution function can be modelled as functions of time. To incorporate the seasonal 
component in the model, the parameters of the GEV can be represented as harmonic functions of time of 
the following form (Menéndez et al. 2009): 
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where pμ, pσ, pξ  = the number of harmonics in the parameters μ, σ and ξ of the GEV, respectively, ω=2π/Τ 
and Τ = the number of data within a year used for the fitting of the GEV distribution function. The 
parameters of the GEV distribution function can be estimated by means of the Maximum Likelihood 
Estimation procedure (MLE). The optimum number of harmonics used in each of the three parameters of 
the model is assessed by minimizing the Akaike criterion with correction for small sample sizes (ΑΙCc) 
(Hurvich and Tsai, 1989), as well as by the deviance statistic function, D (Coles, 2001). In the present 
work, the maximum number of harmonics within each parameter is set to two. After selecting the best 
model, probability-probability and quantile-quantile plots applied to a standardized version of the data, 
conditional on the fitted parameter values, are utilized for model diagnostic. 

Within a non-stationary context, the return level xp corresponding to a return period of 1/p, is assessed 
as a function of time and it represents the quantile of the distribution function of the studied variable in a 
given year: 

- ( )( )
( ) ( ) - [1-{- log(1- )} ]

( )

ξ t
p

σ t
x t μ t p

ξ t
=                                                                                                                       (3)                                                                                                                

The variance of the quantile estimates is calculated using the delta method. When applying the non-
stationary GEV distribution function to monthly maxima, annual return levels corresponding to a certain 
exceedance probability, p, can be assessed by iteratively solving the following equation (Menéndez et al. 
2009): 
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The 95% confidence interval of the annual return level can be approximated by means of simulating a 
number of parameters of the selected non-stationary GEV model. The three GEV parameters are assumed 
to follow a multivariate Normal distribution function. In the present work, for each dataset analysed, 1000 
samples of parameters are generated from the fitted non-stationary GEV distribution functions, 
constituting a sample from the approximate sampling distribution of the maximum likelihood estimator 
(Coles, 2001).  

4 WAVE DATA AND RESULTS 

The marine data used in the present work are predictions of significant wave height in selected locations 
(Figure 1) of the Greek Seas. The datasets used cover selected areas of the Aegean Sea, such as the 
Thracian Sea (area 1), the marine areas of Katerini (area 2), Lesvos (area 3), Chania (area 4), Heraklio 
(area 5), as well as selected areas in the Ionian Sea, near the coasts of Parga (area 6) and Katakolo (area 
7). The wave data result from a wave prediction system formulated for the Greek Seas, based on the wave 
model SWAN (Ris et al. 1999, Booij et al. 1999) and cover a period of 150 years (1950-2099). The 
atmospheric forcing of the model consists of wind (wind velocity and direction) fields of the RCM model 

775











µ location parameter of the GEV distribution function 
σ scale parameter of the GEV distribution function 
ξ shape parameter of the GEV distribution function 
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