
Conference Paper, Published Version

Cutts, R. E.; Burns, Susan E.; Griffith, J. D.; Ehrman, B. R.
Comparison of the Rate of Evaporation from Six Rolled
Erosion Control Products

Verfügbar unter/Available at: https://hdl.handle.net/20.500.11970/100240

Vorgeschlagene Zitierweise/Suggested citation:
Cutts, R. E.; Burns, Susan E.; Griffith, J. D.; Ehrman, B. R. (2010): Comparison of the Rate
of Evaporation from Six Rolled Erosion Control Products. In: Burns, Susan E.; Bhatia,
Shobha K.; Avila, Catherine M. C.; Hunt, Beatrice E. (Hg.): Proceedings 5th International
Conference on Scour and Erosion (ICSE-5), November 7-10, 2010, San Francisco, USA.
Reston, Va.: American Society of Civil Engineers. S. 222-230.

Standardnutzungsbedingungen/Terms of Use:

Die Dokumente in HENRY stehen unter der Creative Commons Lizenz CC BY 4.0, sofern keine abweichenden
Nutzungsbedingungen getroffen wurden. Damit ist sowohl die kommerzielle Nutzung als auch das Teilen, die
Weiterbearbeitung und Speicherung erlaubt. Das Verwenden und das Bearbeiten stehen unter der Bedingung der
Namensnennung. Im Einzelfall kann eine restriktivere Lizenz gelten; dann gelten abweichend von den obigen
Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Documents in HENRY are made available under the Creative Commons License CC BY 4.0, if no other license is
applicable. Under CC BY 4.0 commercial use and sharing, remixing, transforming, and building upon the material
of the work is permitted. In some cases a different, more restrictive license may apply; if applicable the terms of
the restrictive license will be binding.



Comparison of the Rate of Evaporation from Six Rolled Erosion Control 

Products 

R.E. Cutts I , A.M. ASCE, S.E. Burns
2
, M. ASCE, P.E., J.D. Griffith3, P.G., P.E., and 

B.R. Ehnnan
4

, P.E. 

I pSI, Inc ., 2930 Eskridge Road, Fairfax VA 22031 ; PH I (703) 698-9300; email: 

ross.cutts(a'gmail.coll1 

2School of Civil and Environmental Engineering, Georgia Institute of Technology, 

Atlanta, GA 30332-0355; PH I (404) 894-2285; email: sbunls(a:'gatech .edu 

3Georgia Department of Transportation, 600 West Peachtree NW Atlanta, GA 30308; 

PH 1(404) 631-1547; email: jogriffith(ii;dot.ga.gov 

4Georgia Department of Transportation, 600 West Peachtree NW Atlanta, GA 30308; 

PH 1(404) 631-1669; email: behnmm(ii1dot.g,u!OV 

ABSTRACT 

Rolled Erosion Control Products (RECPs) are temporary degradable or long

tenn non-degradable materials designed to reduce soil erosion and assist in the 

growth, establishment, and protection of vegetation. Although the diversity of 

products within the RECP category is beneficial from a cost competitive standpoint, 

it is often difficult for a designer to distinguish between the function of the materials 

due to the sheer number of products available. Six RECPs were tested in this 

experimental study to quantify the level of evaporation protection conferred to the 

underlying soil by the presence of an RECP. Moist soil was placed in polyethylene 

test containers to ensure one-dimensional vertical flow of the soil moisture during 

evaporation. Each RECP was tested in two conditions: full sun and buried in topsoil 

in shade. Additionally, a control test was perfonned on the soil, with no RECP 

covering. The mass of the soil container was monitored as a function of time and 

temperature throughout the day. Soil temperature remained fairly constant throughout 

the test, at approximately 32°C (89°F), while air temperature ranged from 30-37°C 

(86- 99°F) . In all cases, the presence of the TRM dramatically reduced the rate of 

evaporation, both when shaded and when exposed to full sun. 

INTRODUCTION 

RECPs playa significant role in engineering projects where erosion control is 

of importance. RECPs are designed to reduce erosion in channels and slopes and to 

encourage rapid revegetation to further reduce a soil' s susceptibility to erosive forces. 

Available products are manufactured to exist in a diverse range of environmental 

conditions, so they have a large variation in their characteristic properties. RECPs 

designed for long-tenn, non-degradable applications are typically known as turf 

reinforcement mats (TRMs), and temporary degradable RECPs made for short-tenn 

applications are known as erosion control blankets (ECBs). Depending on their 

function, the products are manufactured with a variety of materials, ranging from 

ultraviolet-stable or photodegradable polyethylene to natural fibers that are readily 

biodegradable. 
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In addition to shielding soil from the erosive forces of rain, RECPs also 

function to reduce the rate of evaporation from soils. Evaporation is a complex 

function of system properties including temperature, humidity, air velocity, and the 

characteristics of the porous media (Shokri et aI. , 2008). The parameter of interest is 

typically the rate of evaporation, which is characterized by two primary stages: a high 

water content stage where the rate of evaporation is relatively constant and similar to 

that of free, bulk water, and a low water content stage where the rate of evaporation is 

controlled by the rate at which water can move through the pore space; that is, the 

rate of diffusive mass transfer of water (Shokri et aI. , 2009). This study focused on 

evaporation from low water content soils, in which the water in the soil is held in a 

meniscus in the pendular state. When a soil is in the pendular state, water occurs as a 

coating at the contacts of soil particles, and the pore space of the soil is occupied 

primarily by air (Cho and Santamarina, 2001). In the case of two contacting soil 

spheres, the meniscus is typically approximated according to the toroidal 

approximation (Figure I). 

Meniscus Diameter 

(D) 

Surface Radius (r) Meniscus Width (w) 

Figure 1. Evaporating water from the menicus between two contacting soil 

spheres. 

Mathematically, the toroidal approximation can be described as follows: 

R(u , v) = [Cw o r + cos(u) · r)· cos(v), (w· r + cos(u)· r)· sin(v), r · sin(u)] 

T = cross(R ,R ), and Norm = abs(~(T 2 + T 2 + T_ 2)) 
II V X Y _ 

IT +O.5B 2" 

SA = f f Norm I du dv 
Jr-O.5.9 0 
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Where w = width of meniscus, I' = surface radius, e = angle of curvature, and u and v 

vary between 0 and 211:. 

Subsequently, the fluid volume within the meniscus can be determined as the 

difference between the volume of liquid in the toroidal approximation and the volume 

of solid spheres within the meniscus: 

O.5

S
"· D , ,------, , 

Vo/umeUqu;d =;r (I' + 2")- - (v I' - x- )-dx 
- 0.511' 

Volume. =2 · (;r.(- )- ·r.)-(-- -- ) 
[ 

w , ;r(Yi)3 ] 
solids 2 " 3 

Where: 1', = radius of contacting solid sphere, D= liquid meniscus diameter. An in

depth study of the rate of evaporation between two contacting silica spheres revealed 

the controlling parameters that govern the evaporation of water from two contacting 

silica spheres were the temperature, relative humidity, and the shape of the meniscus 

(Cutts and Bums, 2009). Soil particle shape will also influence the rate significantly. 

In contrast, the rate of evaporation of water from a free surface is not 

governed by the change in the shape of the meniscus at soil particles, and can be 

determined relatively simply according to the following equation (Adamson and 

Gast, 1997): 

( 

I )0.5 
Z = (P - P.) 2;rMRT 

Where Z = condensation rate (assumed to be equal to the evaporation rate at 

equilibrium), P = saturated vapor pressure, P.. = ambient partial pressure, M = 

molecular weight, R = gas constant, and T = temperature. Evaporation of water 

from a free surface at a temperature of 35 °C and relative humidity of 56%, yields a 

rate of 1.60x10-3 g 
mm

2 sec 

MA TERIALS AND METHODS 

Six RECPs, all supplied by North American Green (Poseyville, Indiana, 

USA), were chosen for study: Vmax
3 

P550, Vmax
3

, SC150, C125BN, S75, and 

DS 150. These six were chosen because they represented a wide range of]ongevity of 

projected performance. The tested products were intended for applications that 

ranged from permanent to short term (60 days), and ranged from construction with 

relatively stable polymers to bio- or photodegradable polymers and natural fibers 
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(Table 1 and Figure 2). The products intended for permanent application (Vmax
3 

P550 and Vmax
3
) were constructed with polypropylene nets designed for stability in 

the presence of ultraviolet light, while products intended for shorter term applications 

of two years or less (SC 150, OS 150, S75) were designed with one or more 

photodegradable nets. One tested product, CI25BN, was designed with both a 

biodegradable net and matrix. 

Table 1. Characteristics of RECPs Tested 

Manufacturer Product Material Application 

North American Green Vmax" P550 Polypropylene nets Permanent 

and matrix 

North American Green Vmax" Polypropylene Permanent 

nets, coconut fiber 

matrix 

North American Green SCI50 Polypropylene 24 months 

nets, straw/coconut 

fiber matrix 

North American Green CI25BN Jute net, coconut 24 months 

fiber matrix 

North American Green S75 Polypropylene net, 12 months 

straw matrix 

North American Green OSI50 Polypropylene 60 days 

nets, straw matrix 

A medium plasticity silt (MH) with a liquid limit (LL) = 63.9% and plasticity 

index (PI) = 17.1 % was used in the evaporation experiments. The soil is known 

locally as Piedmont saprolitic soil (Fulton County, Georgia, USA), and has a reddish 

hue due to the presence of extensive iron oxide coatings on the soil grains; the grain 

size distribution shows approximately 70% fines content (Figure 3). After thoroughly 

mixing the soil with City of Atlanta tap water to ensure uniform distribution of 

moisture, the soil was compacted into waterproof containers at a moisture content of 

10.4%. The containers had dimensions of 13.3 cm by 9.5 cm by 6.4 cm and were 

impermeable on all sides except the top to force a one-dimensional vertical 

evaporative flux . The mass of the containers was measured as a function of time, and 

the measured mass difference was attributed to evaporative losses from the test soil. 

Both air and soil temperatures were measured throughout the duration of the test as 

well. 
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Figure 2. Rolled erosion control products tested in the evaporation study. 
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Figure 3. Grain size distribution for the Piedmont soil used in the experiments. 
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RESULTS 

The recorded air and soil temperatures demonstrated that the soil temperature 

remained relatively stable throughout the duration of the testing program in spite of 

the significant increase recorded in the prevailing air temperature (Figure 4). 
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Figure 4. Soil and air temperature throughout the test duration. 

5 

For the RECPs that were tested in full shade, the rate of evaporation observed 

for the samples with RECP covering was less than half the rate that was observed in 

the control case with no covering (Figure 5). Similar results were seen in the case 

where the soil containers were placed in full sun (Figure 6). 
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Figure 5. Rate of mass evaporation in fuU shade throughout the test duration. 
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Figure 6. Comparison of the rate of evaporation in full sun, with and without 

TRM covering. 
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Examination of the data normalized in terms of flux demonstrated that the 

differences between the flux from the six different RECPs were relatively small, with 

Ymax3 demonstrating the lowest flux at apprximately 25% of the flux from the 

uncovered control case (Figure 7) . In general, the evaporative flux was 60-70% lower 

than the flux recorded in the case where the soil was left uncovered. Interestingly, 

little correlation was observed between the RECP matrix material and the evaporative 

flux. The two RECP samples that used straw as the matrix (S75 and DS150) 

demosntrated similarly high values of flux as were observed in the polypropylene 

sample (Ymax
3 

P550) and the straw/coconut sample (SCI 50). The lowest observed 

evaporative flux was from the Ymax3 RECP, which occurred in the case of the 

coconut fiber matrix. Despite the significantly different materials and structure within 

the RECP matrices, the relative differences in evaporative flux were small, and 

effectively minor when compared on a product to product basis. 

Comparing the rate of evaporation from the soil samples to that previously 

calculated for evaporation from the free surface of water demonstrated that 

evaporative losses were much lower in soil systems. As was anticipated, the presence 

of the soil particles led to formation of menisci, which created tensile forces in the 

water at the particle surface and greatly decreased the rate of mass transfer away from 

the particles. Mass transfer was also limited within the tortuous pore space of the soil, 

further reducing the rate of water movement. The rate of evaporation from a free 

water surface under the conditions described above is approximately five orders of 

magnitude greater than that observed in the tested soils, with or without REep 

covering. 
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Figure 7. Comparison of water flux from 6 RECPs in shaded conditions. 
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CONCLUSIONS 

Ultimately, the reduction in evaporative flux due to the presence of the RECP 

had two effects: (1) it allowed the soil to retain additional moisture, thereby 

increasing the amount of water that will be bio-available; and (2) it increased the 

amount of time the soil remained in the unsaturated state, which increases the tensile 

forces between the soil particles and reduces the soil's erodibility. The presence of 

the RECP is believed to have resulted in a reduced local temperature at the soil and 

air interface and limited the mass transfer of water from the soil surface, both of 

which resulted in the reduction of the net evaporative flux from the soil that was 

covered with an RECP. 
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