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Prior to hydraulic engineering work, it is essential to know the geohydraulic properties of river bed 

sediments as precisely as possible in order to predict and minimize potential effects on adjacent 

aquifers. Many different methods are available, but all have limitations. Some destroy the natural 

sediment structure, others lack a small-scale resolution, and all fail to determine anisotropy. In this 

study, we present a new measuring approach to determine hydraulic conductivity (K) and anisot-

ropy at a detailed scale. Frozen, undisturbed sediment samples taken with the freeze-core tech-

nique form the basis of our approach. Orientated core cutter samples are taken from the freeze-

cores at different depths and examined by means of falling-head lab permeameter tests, in order to 

obtain detailed profiles of vertical and horizontal K values and anisotropy. The approach was tested 

with natural sediment samples from the bed of a channel near Potsdam, Germany, and with sam-

ples from an experimental container. For comparison and evaluation, hydraulic conductivities were 

also determined by means of in situ permeameter tests and empirically, on the basis of grain-size 

distribution (GSD). The results show a large discrepancy between the empirically determined hy-

draulic conductivities and the directly measured hydraulic conductivity with lab and in situ perme-

ameter tests. We conclude that empirical methods based on GSD are not suitable for determining in 

situ conductivity of river bed sediments. Our new approach enables an improved geohydraulic 

characterization of river bed sediments including the determination of anisotropy. 
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1 Introduction 

The hydraulic interaction of surface water and groundwater is of great importance regarding the 

resource management of water works using river bank filtration. Furthermore, detailed knowledge 

of the interaction process is necessary to assess the effects of hydraulic engineering on adjoining 

aquifers. Therefore, the structure and the geohydraulic properties of the river bed must be known 

as precisely as possible with regard to its role as a filter medium and its effect on water quality. 

River bed sediments often act as a filter which retains fine particles of the infiltrate. This causes 

shrinkage of pore volume and subsequently a consolidation of the filter layer alongside a reduction 

of hydraulic conductivity and possibly a development of a pronounced anisotropy (Schälchli, 1993). 

In this context, the hydraulic conductivity and the anisotropy of river bed sediments affect the 

hyporheic exchange (Salehin et al., 2004) and can be viewed as key variables of this process. There 

are a variety of methods to estimate the hydraulic properties of river bed sediments on different 

scales (cf. Kalbus et al., 2006; Rosenberry and LaBaugh, 2008). Hazen (1893) formulated an empiric 

way to estimate the hydraulic conductivity Kg of sediments based on their grain-size distribution. 

For geotechnical and hydrogeological questions, this has become a standard method and can also 

be applied to river bed sediments. His approach has since been further developed by numerous 

authors to expand the applicability to different sediment compositions (e.g. Beyer, 1964; Köhler, 

1965; Wittmann, 1981), but all methods have restricted application domains. With regard to K val-

ue determination, Tavenas and Ladd (1973) conducted a comparative testing program with 41 soil 

laboratories and came to the conclusion that the gradation test results show a large variability and 

low reproducibility between individual laboratories. They detected a difference of 20% for estimat-

ing d10 
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using identical sample material. Matthes et al. (2012) also observed considerable discrepancies in a 

cooperative program. The determined values for d10 of samples consisting mainly of sand varied by 

112% amongst the individual testers. The difference was even more significant for silty, clayey 

specimens, the d50 difference being 203%. Especially precise grain-size distributions measured 

with sieve analysis of samples with a high percentage of fine fractions are more prone to error, as 

demonstrated by Matthes et al. (2012). The application boundaries of many methods, however, do 

not exclude such sediment compositions (cf. Hazen, 1893; Beyer, 1964). Uncertainties, which arise 

by determining the grain-size distribution also influence empirical methods applied to determine 

the hydraulic conductivity of sediment. This error propagation results in major inaccuracies. Fur-

thermore, Matthes et al. (2012) found that the measurement uncertainty of gradation analysis in-

creased the deviation error of calculated Kg values by several orders of magnitude. In addition, the 

original sediment structure is destroyed by sieving along with any disrupting mechanisms respon-
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sible for an increased hydraulic resistance. Cheng et al. (2013) investigated the influence of (orient-

ed) stratification on the hydraulic properties of sediments. They noted that cross-bedding or other 

sediment compositions resulted in a significant difference in hydraulic conductivity for varying 

orientations even if the sediment was well-sorted. Biofilms can lead to a reduction of the hydraulic 

conductivity of river bed sediments, too (Nevo and Mitchell, 1967; Rinck-Pfeiffer, 2000). Due to the 

methodological approach by determining the grain-size distribution, the natural structure of the 

sediment and its natural bulk density is changed. Thus, no information of its initial conductivity in 

the original structure or the anisotropy can be obtained (Song et al., 2009). In situ permeameter 

tests, in contrast, enable the determination of the vertical conductivity Kv of river bed sediment in 

its original sediment structure (Landon et al., 2001). Song et al. (2009) drew a comparison between 

in situ permeameter tests and empirically calculated conductivities based on grain-size distribu-

tion. Their study showed a systematic variance between the different approaches. The calculated 

hydraulic conductivities based on empirical methods are considerably higher compared to the val-

ues of Kv determined from in situ permeameter tests. Landon et al. (2001) outline other in situ 

methods to determine the conductivity on a small and medium scale. The horizontal conductivity Kh 

of river beds can be estimated, for example, with slug and bail tests (Springer et al., 1999). The in 

situ vertical conductivity Kv can be ascertained if the exchange flow measured with a seepage meter 

is combined with the determined hydraulic potential distribution in the river bed (Fleckenstein et 

al., 2006). Only few methods allow the determination of the hydraulic anisotropy of river bed sedi-

ments. Systematic errors caused by scale-effects occur if different methods to quantify the vertical 

and horizontal hydraulic conductivity are combined regardless of their scale dependent application 

limits. Chen (2000) used in situ permeameter tests to detect the anisotropy of the river bed by add-

ing bent infiltration pipes accompanying the usual infiltration pipes, to measure the horizontal con-

ductivity Kh of the river bed. However, due to the experimental set-up, Chen’s (2000) method to 

determine Kh is restricted to only one specific depth per measuring point. Also, a simultaneous 

measurement of Kv and Kh is only possible within a range of minor spatial displacement. Yet, in 

most cases the hydraulic properties of river beds are subject to pronounced spatial heterogeneity 

(Chapuis, 2012), which would cause further uncertainties, if the method were applied. In another 

measuring campaign he used the direct-push technology to gain additional depth-oriented infor-

mation (Chen et al., 2008). This, however, also does not determine the anisotropy directly. Our 

study shows a possible way to determine the in situ conductivity and anisotropy of river bed sedi-

ments on a small scale, which counteracts and minimizes the negative influence of observational 

errors and scale effects. The presented approach offers the possibility to determine the hydraulic 

conductivity of river bed sediments in vertically and horizontally orientated high-resolution. It is 

built on a series of consecutive experimental steps (Fig. 1) which conclude in a comprehensive un-

derstanding of the river bed and its geohydraulic properties. The introduced procedure starts with 

freeze-core sampling of the river bed (I). The freeze-core sampling technique allows undisturbed 

sampling of cohesionless sediments by freezing the sediment whilst preserving its original sedi-

ment structure. Undisturbed sediment samples can be taken up to a soil depth of 1.5 m. Freeze-core 

sampling of the river bed can be performed from a boat up to a water depth of 10 m. The next step 

is taking directionally orientated core cutter samples of different depths from the sediment samples 

(II). Both types, horizontal and vertical samples, were taken in close proximity to one another. On 

these samples, falling head permeameter tests under laboratory conditions were performed (III) 
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and thereby the hydraulic conductivities were determined (IV). Based on the determined vertical 

and horizontal hydraulic conductivities the hydraulic anisotropy can be calculated (V). To evaluate 

the performance of our new measuring approach, we compared the results with these of two estab-

lished methods to determine the hydraulic conductivity of sediments, in situ permeameter tests 

and empirical methods based on grain-size distribution. Therefore, natural river bed sediment 

samples and samples taken out of an experimental container were used. 

2 The new measurement approach 

2.1 Freeze-core sampling 

Conventional sampling techniques to extract water-saturated sands as well as unconsolidated silts 

and clays fail, if the cohesion of the sediment is very low. Whilst inserting and taking out the extrac-

tion device, the sample liquefies or is lost (Schreiner and 

 

Fig. 1: Flow chart of our new approach to characterize the geohydraulic properties of river bed 

sediments presented in this study. 
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Fig. 2: Schematic illustration of the freeze-core sampler with its various elements (not in 

scale). 

 

 

Fig. 3: The inner parts of a freeze-core. In this area, the sediment’s natural structure is 

changed by probing. 

 

Kreysing, 2013). Usually, this is accompanied by the destruction of the original sediment structure. 

The freeze-core technique allows the removal of undisturbed sediment samples, even if they have a 

low cohesion (e.g. Lisle, 1989). For this purpose, a hollow lance is inserted into the sediment. Liquid 

nitrogen flows through it for approximately 30–40 min, thereby freezing the surrounding sediment 

and forming a solid core (Fig. 2). The freeze-core diameter varies from 0.2 up to 0.5 m. The size 

depends on the grain-size distribution of the surrounding sediments. Furthermore, the expected 

diameter of the freeze-core is also linked to the freezing duration and the natural temperature of 

ground- and surface-water. The consumption of liquid nitrogen was about 40 L per core. For this 

study freezing lances between 0.8 and 1.5 m length were used to get sample material. Minor pro-

cess-related disturbances of sediment happen with freeze-core sampling, too. Niederreiter and 

Steiner (1999) discovered that even the probing with a lance into the ground can cause a whirl up 

of fine-grained particles which are in immediate contact with the body of water. To reduce this ef-

fect, modified flow protection plates were used in our study or the sampling was conducted com-

pletely without protection plate. Thus, the hydraulic impulse induced by probing through the flow 

protection plate was weakened. Henceforth, no resuspension of fine-grained particles was ob-

served. Furthermore, a contamination of the upper river bed’s pore space by fine-grained particles 

is possible while using unmodified flow protection plates. With the described reduction of the hy-

draulic impulse and the combined elimination of the whirl-up this effect can possibly be counter-

acted as well. Depending on the grain-size distribution of the river bed, the driving of the lance can 

cause a disturbance of the sediment (Niederreiter and Steiner, 1999). The sediments next to the 

lance are pressed down during probing (Fig. 3). In this case, undisturbed samples can only be ob-
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tained from parts of the frozen core with sufficient distance to the freezing lance. Depending on the 

sediment composition, the disturbance-radius by the lance can be up to 3–6 cm. Freeze-cores with 

small diameters are often completely disturbed and consequently have to be excluded entirely. The 

effects caused by freezing sediment were investigated by Singh et al. (1982). They note that freez-

ing and thawing has no significant impact on the volume or strength of water-saturated sand sam-

ples, if the displaced pore-water can flow out freely and the confining pressure remains constant 

throughout this process. Sego et al. (1994) described this effect of the freezing process of the sur-

rounding sediment, too. They were able to show that the grain structure and pore space of sands 

and gravels withstood the freezing process, despite an approximately 9% volume expansion of ice. 

2.2 Sample preparation 

The frozen sediment was prepared for further tests after the removal of the freeze-core from the 

river bed. For this purpose, the obtained cores were dissected according to the field classification of 

the sediment and transported in a fridge to the laboratory. Here, the samples were wrapped in film 

and embedded in sand in frozen condition to ensure a constant confining pressure during thawing. 

This prevents drainage and thus settling. After defrosting, special horizontally and vertically orient-

ed samples were taken with core cutters from the sediment body (Fig. 4). Samples from different 

depths allow for a depth-orientated core cutter sampling. Sampling was performed using stainless 

steel cylinders with a length of 50 mm and a diameter of 47 mm. A maximum wall thickness of 0.5 

mm was used to minimize the disturbance of the sediment by the sampling process. Additionally, 

each end of the core cutters was given a clean edge to further mitigate disturbances. However, 

these are not entirely preventable. The conductivity is one of the most sensitive parameters con-

cerning disturbances (Schreiner and Kreysing, 2013). So, a meticulous way of working is essential. 

The cylinder must be placed in a right angle in the sediment to avoid sidewall leakage in later hy-

draulic tests. Coarse grains, such as gravel and shells, hinder the taking of undisturbed core cutter 

samples and thereby limit the discussed method. The necessary sample amount relates to the max-

imum grain size encountered. The ratio between the maximum grain size and sample diameter or 

the sample height of sediments should be at least 1:10 for uniform or 1:5 for non-uniform sedi-

ments respectively (DIN 18130-1, 1998). 

2.3 Lab permeameter tests to determine the hydraulic conductivity and anisotropy 

In the laboratory, the hydraulic conductivity of the obtained sediment core cutter samples was de-

termined by permeameter tests with falling head. In this study, this was executed in accordance 

with DIN 18130-1 (1998). The experimental set-up used is shown in Fig. 5. The conductivity is de-

termined based on Darcy’s law (1856): 
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Fig. 4: Illustration of horizontal and vertical cores cut from the freeze-core (not to scale). 

 

 

Fig. 5: Schematic experimental setup of a lab permeameter test with falling head according to 

DIN 18130-1 (1998). 

 

  (1) 

with piezometer cross-section area a, sample height l0, sample cross-section area Ap, measurement 

time Δt, tailwater level h1 before and h2 after the experiment. Because the dynamic viscosity of most 

fluids depends on temperature, an additional correction factor a was applied to the test results in 

order to refer the results to a water temperature of 10 °C. According to Langguth and Voigt (2004), 

this can be done for water as follows: 

  (2) 

The measured water temperature during the test is used for T. This conversion was performed in 

order to compare the results with those of the empirical methods, since they are calibrated to 10 °C. 
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3 Evaluation and application of the approach 

3.1 Overview 

In order to evaluate the results obtained with our measuring approach, two other methods to de-

termine the hydraulic conductivity of sediments were carried out in the course of our study. One of 

these methods uses the grain-size distribution of the sample to empirically evaluate its conductivi-

ty. The second is the determination of the conductivity with in situ permeameter tests to verify the 

data. These in situ permeameter tests were conducted close to the freeze-core samples. Further-

more, other comparative tests were done in an experimental container under laboratory condi-

tions. This was filled with sediment, which had an equivalent grain-size distribution to the natural 

river bed samples to compare the result of the field test with the comparative laboratory experi-

ment. The effect of freezing and thawing was assessed by taking further freeze-core samples out of 

the experimental container and performing in situ permeameter tests in the same container. 

3.2 Methods used for evaluation 

3.2.1 Kg value calculated from grain-size distribution 

To calculate the hydraulic conductivity Kg from grain-size distribution, sediment samples were 

dried at 100 °C for at least 24 h. Sieving separated the grains into 10 classes (<0.063 mm, 0.063–0.1 

mm, 0.1–0.125 mm, 0.125–0.2 mm, 0.2–0.25 mm, 0.25–0.35 mm, 0.35–0.5 mm, 0.5–0.63 mm, 0.63–

1.0 mm) (DIN 18123, 2011). The fractions start from a grain diameter of <0.063 mm, up to the 

coarse grains having a minimum diameter of 1 mm. Kg was estimated empirically based on the 

grain-size distribution. Multiple authors use parameters derived from this distribution (Bear, 1972; 

Zieschang, 1964; Köhler, 1965; Wittmann, 1981) The effective grain diameter dx can be determined 

by the pelite content (P), a percentile of the cumulative grain-size distribution curve (for example, 

d10 is the diameter representing mass 10% passage through the sieve), or from the harmonic mean 

of the individual grain fractions (Matthes et al., 2012). In the scope of this work, several empirical 

approaches to calculate Kg were applied (Table 1). The methods according to Zieschang (1964), 

Köhler (1965) and Wittmann (1981) were selected additionally to the well-established and in the 

geotechnical field widely used techniques by Hazen (1893) and Beyer (1964). Köhler’s and 
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Author Formula   Effec

tive 

grain

-

dia-

me-

ter 

Application domain 

Hazen 

(1893) 
 ( ) :c u  Empiric uniformi-

ty coefficient tak-

en from Beyer’s 

table 

d10 
U < 5 

0.1 mm  < d10 < 3 mm 

Beyer (1964)  c1, c2: Empiric coeffi-

cient. In the given 

conditions: c1 = 

0.0139 and c2 = 1 

d10 
U < 20 

0.06 mm < d10 < 0.6 mm 

2.0 ⋅ 10−5𝑚𝑚/𝑠𝑠 
< Kg< 4.0 ⋅ 10−3𝑚𝑚/s 

Zieschang 

(1964) 
 

τ Kinematic viscosi-

ty ratio of water at 

10 °C and water of 

differing tempera-

ture (if tempera-

tures < 20 °C, then   τ = 1) 

d10 
U < 25 

0.06 mm < d10 < 0.6 mm 

2.0 ⋅ 10−5𝑚𝑚/𝑠𝑠<  

Kg< 4.0 ⋅ 10−3𝑚𝑚/s 

Köhler 

(1965) 

 

:r  

 

Roughness coeffi-

cient 
dW  

e : Void ratio 

:i  Index of the indi-

vidual grain frac-

tion within freely 

selectable bound-

aries do and du 
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Δ
iG : Weight per-

centage of the 

individual 

grain fraction i 

  

1

wd

 

  

Reciprocal 

harmonic mean 

of the upper 

and lower 

boundary of 

the respective 

grain class i 

  

Wittmann 

(1981) 
 

:n  Porosity dW Kg ≥ 1 ⋅ 10−8𝑚𝑚/s 

:i  Index of the 

individual 

grain fraction 

within freely 

selectable 

boundaries do 

and du 

 

 

:ip∆  Mass percent-

age of the indi-

vidual grain 

fraction 

  

:id   Harmonic 

mean grain 

diameter of the 

respective 

grain fraction 

  

 

Table 1: Overview of different empirical methods to determine the hydraulic conductivity of 

sediments based on their grain-size distribution. 
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Fig. 6: Freeze-core taken from the river bed of the Sacrow-Paretz channel; sediment stratifica-

tion visible. 

 

Wittmann’s method additionally take the porosity or the void ratio, into account. The porosity of 

the sediment sample (in natural sedimentation condition) was determined empirically by the sam-

ple volume in the core cutter, the sample’s saturated mass, its dry mass and the density of the fluid 

(water) in the pore space. 

3.2.2 In situ permeameter tests 

Permeameter tests were performed to determine the vertical conductivity Kv of the upper part of 

the river bed. Additionally, in situ permeameter tests in the upper part of the river bed were per-

formed to determine their vertical conductivity Kv. Hvorslev (1951) described the basic experi-

mental setup of in situ permeameter tests. Since then, the method has been further developed by 

many authors, for example by Cheng and Chen (2007), Kennedy et al. (2008), Song et al. (2009) and 

Lu et al. (2012) to determine the hydraulic conductivity of river bed sediment. Chen (2000) devel-

oped a way to calculate the hydraulic anisotropy of river bed sediment with in situ permeameter 

tests. In our study, we used stainless steel tubes with a wall thickness of 1 mm and a diameter be-

tween 53 mm and 55 mm for infiltration experiments. Due to the small wall thickness, and the per-

pendicular insertion of the infiltration pipe into the river bed, the disturbance of the natural 

sediment structure can be assumed as negligible. If the infiltration pipe’s penetration depth is sev-

eral times larger than its diameter (Chen, 2000), the test can be analyzed using Darcy’s (1856) ap-
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proach. This criterion was met in all in situ permeameter tests. The penetration depth averaged 180 

mm. Assuming a constant surface water level, the hydraulic conductivity of the sediment in the in-

filtration pipe can be calculated based on Darcy’s law (1856) compliant with equation 1. 

3.3 Field scale application–heterogeneous conditions 

The undisturbed sediment samples used in this study were taken from the river bed of the Sacrow-

Paretz channel (SPK), about 5 km north-west of the city of Potsdam (Brandenburg, Germany) (Fig. 

6). The SPK is located in the Brandenburg Havel (Fig. 7) valley with its numerous lakes and is sur-

rounded by the hills of terminal moraines from the Warthe and Weichsel glaciation (Wagenbreth 

and Steiner, 1990). They were formed by the retreat of the Weichselian glaciers in the Pleistocene 

as Zungenbecken (tongue-basins), proglacial lakes as well as tunnel valleys filled with glaciofluvial 

sediment (Hydrogeologie GmbH, 1993). The sectional anthropogenic SPK is located in a former 

glacial valley. The river bed consists of medium- to fine-grained Holocene valley sands. Sapropel, 

glacial till or landfill was also encountered depending on the location. In some parts, the upper layer 

of the river bed consists of several decimeter thick shell banks. During 3 sampling campaigns a total 

of 30 freeze-cores were removed from the river bed and 28 in situ permeameter tests were carried 

out in close proximity to the sampling points. Due to the local composition of the river bed (e.g. 

shell banks and armor stones) not all cores could be used for further tests. One vertically and one 

horizontally orientated core cutter sample was taken from the upper part i.e. the upper layer of the 

river bed of 17 cores. The horizontally orientated core cutter samples were taken close to the 
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Fig. 7: The Sacrow-Paretz channel (SPK) is located about 5 km north-west of the city of Pots-

dam (Brandenburg, Germany). 
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vertically orientated ones. Lab permeameter tests with falling head were performed on these. 

3.4 Laboratory scale application in a sediment filled container– homogeneous con-

ditions 

To assess the test results of the sediment samples extracted from the SPK, comparative experi-

ments were conducted under 

 

 

Fig. 8: Composition of the performed comparative tests (not to scale). In situ permeameter 

tests were executed; core cutter and freeze-core samples were taken in a sand filled 

test container. 
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laboratory conditions to accompany the field investigations. Up to 0.8 m of a 1 m high, cylindrical 

test container was filled with uniformly graded fine sand (Fig. 8). The grain-size distribution of the 

fine sand was similar to the sediment encountered at SPK to allow for a later correlation of the re-

sults. A thin coarse-grained drainage layer was installed previously at the bottom of the container. 

The fine sand was carefully saturated from the bottom up until the water level reached the top edge 

of the container. All experiments were carried out in the container, including extraction of a freeze-

core as previously described. Furthermore, core cutter samples from non-frozen, but saturated 

zones of the test sand in the container were taken (Fig. 8). The removal of the core cutters was car-

ried out from both the frozen and the non-frozen portion in vertical and horizontal orientation. 

4 Results and discussion 

4.1 Field scale application 

Lab permeameter tests with falling head were performed on 17 vertically orientated core cutter 

samples. The results of these and of the in situ permeameter tests are shown in Fig. 9. The values 

determined with the two methods are consistent. However, compared to laboratory permeameter 

tests with falling head, the results of in situ permeameter tests display a higher variance. Kg values 

based on the grain-size distribution of the core cutter samples from freeze-cores were calculated by 

applying empirical formulas of different authors on the samples grain-size distribution. The tech-

niques were carried out within their respective application domain (Fig. 9). In general, the empiri-

cal methods based on them yield higher conductivity values than the lab permeameter and the in 

situ permeameter test. Depending on which method was used, the values differ by a factor (Kg/Kv) 

between 29.4 (Hazen) and 9.8 (Wittmann) of those determined by lab permeameter tests with var-

iable head. The highest (Hazen) and the lowest (Wittmann) empirically estimated Kg value differ by 

a factor of 3.0. To verify the applicability of our approach with regard to determine the anisotropy 

of natural sediments, 17 horizontally orientated core cutter samples were taken out close to the 

vertical ones. The hydraulic anisotropy (Kh/Kv) ranged between 0.8 and 15.9 depending on the po-

sition with a mean of 4.1. 
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Fig. 9: Field scale application (natural sediment deposition) – box plots of K values deter-

mined by in situ permeameter tests, lab permeameter tests and of Kg values deter-

mined by empiric approaches of different authors based on the grain-size distribution 

of freeze-core samples. 

 

4.2 Laboratory scale application 

The results of the field application were compared with tests carried out in a sediment filled con-

tainer. There is only a minor variance of the lab permeameter results between the differently taken 

core cutter samples. The comparative tests revealed no difference between samples from previous-

ly frozen sediment and those which had not been frozen (Fig. 10). The results of the 
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Fig. 10: Laboratory scale application (experimental container) – box plots of Kv determined by 

comparative experiments (in situ/lab permeameter tests of sediment and of previously 

frozen sediment). 

 

in situ permeameter tests in the container correlate with those from lab permeameter tests, too. 

The median hydraulic conductivity determined with lab permeameter tests and in situ perme-

ameter tests is 41.3 10 /m s−⋅ . The empirically calculated values of Kg based on the grain-size distri-

bution vary by a factor of 1.7 (Fig. 11). The method by Hazen (1893) yields the highest values 

(median: 46.4 10 /m s−⋅ ), the method by Wittmann (1981) the lowest (median: 57.7 10 /m s−⋅ ). Ver-

tical and horizontal core cutter samples were cut out of the freeze-core from the test container. The 

values determined for Kv and Kh show no significant differences and diverge only by a factor (Kh/Kv) 

= 0.98. 

4.3 Evaluation of the results and assessment of our new measuring approach 

Several methods to determine the hydraulic conductivity of sediments were applied to verify the 

quality of our results. The hydraulic conductivities Kg calculated by empirical methods using grain-

size distribution are considerably higher compared to the values of K determined by lab perme-

ameter and in situ permeameter tests. This discrepancy does not depend on the empirical calcula-

tion or whether the samples were obtained from field tests or comparative experiments. Song et al. 

(2009) observed this discrepancy as well. During their investigations they detected deviations 

ranging from a factor (Kg/Kv) 1.2 to 6.6 depending on the empirical approach. Our field test results 

show an even more pronounced divergence amongst them, by a ratio of 9.8 (Wittmann), 13.5 

(Kozeny-Koehler), 18.2 (Beyer), 24.6 (Zieschang) and up to 29.4 (Hazen). The comparative lab ex-

periments on uniformly graded sand yielded ratios between 0.6 with the method of Wittmann and 

5.0 using Hazen’s formula. This is in accordance with the findings of Song et al. (2009). This dis-
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crepancy cannot be attributed to a non-compliance with the application boundaries of empirical 

methods, since all executed test were conducted within them. Due to the methodological approach 

of determining the grain-size distribution, the natural structure of the sediment and its natural bulk 

density is changed. For this reason potential hydraulic resistances caused by biofilms (cf. Rinck-

Pfeiffer, 2000), bedding orientation of particles (cf. Cheng et al., 2013) or grain 

 

 

Fig. 11: Laboratory scale application (experimental container) – box plots of empiric values of 

Kg from comparative experiments. 
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shape for example, are destroyed and not taken into account. Matthes et al. (2012) also observed 

discrepancies between the different methods. They noted that samples with a high percentage of 

fine fractions are more prone to error. Typical errors of sieve analysis are sieve loss and coagula-

tion of the grains due to high moisture content in the sample. These uncertainties can also influence 

empirical methods applied to determine the hydraulic conductivity of sediment. This error propa-

gation results in major inaccuracies. When strictly performing the laboratory work according to 

DIN 18123 (2011), most of the practical errors can be minimized. The mentioned aspects clearly 

show that in practice calculating Kg based on the grain-size distribution is not suitable, if the aim is 

to determine the natural hydraulic conductivity of river bed sediment in spatial high-resolution. 

The results of lab permeameter tests and in situ permeameter tests from this study differ only mar-
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ginally. The field tests differ only by a factor of 0.69, the comparative lab experiment by 0.89. These 

small deviations are within the range of systematic errors of the process methodology. Neither 

technique significantly destroys the original sediment structure. Thus, it can be assumed that both 

methods allow the determination of the natural hydraulic conductivity of river bed sediment. In 

situ permeameter tests, however, can establish the vertical hydraulic conductivity of the upper lay-

er of the river bed. The higher variance of the results of our in situ permeameter tests compared to 

these of our lab permeameter tests shows a higher uncertainty of this method. However this meth-

od is quick and easy to execute and provides initial data concerning the vertical hydraulic conduc-

tivity and their spatial variability. A measuring method developed by Chen (2000) enables the 

estimation of the horizontal conductivity. The horizontal conductivity analysis is restricted to se-

lected accessible orientations and positions, i.e. banks, slopes and steps, due to the experimental set 

up. Moreover, it is not possible to determine the hydraulic conductivity in multiple depths from the 

same position. Vertical and horizontal conductivities, furthermore, can only be measured in moder-

ate proximity. Chen’s approach does not facilitate a vertically and horizontally highly–resolved hy-

draulic characterization of sediment. Our method presented in this paper avoids this barrier. The 

river bed’s hydraulic conductivity can be determined in vertically and horizontally oriented high-

resolution, if freeze-cores from the river bed along with core cutter samples from the freeze-cores 

are taken. This also enables a small-scale detection of the anisotropy of the sediment conductivity 

in the tested region. Similarly, a targeted determination of potential hydraulic resistances, for ex-

ample of thin clay layers, is possible. No natural sedimentary structures are disturbed when apply-

ing the presented method, apart from the sediment close (a few cm) to the lance (cf. Fig. 3). Bulk 

density and porosity are not changed. Hydraulic resistances which remain undetected by grain 

analysis are revealed. In the course of our study, we conducted preliminary tests in the test area 

and in a test container to check if the anisotropy is measurable with the approach. The container 

experiment yielded a significantly lower mean anisotropy of 0.98 as well as a low mean variation 

compared to the test area, which had a factor of 4.1. Naturally deposited sediment is prone to layer-

ing and other previously mentioned effects causing hydraulic resistance resulting in anisotropic 

conditions. For these reasons discrepancies between the test-environments are plausible. So, the 

method’s fitness to determine the anisotropic hydraulic conductivity of river bed sediments both 

quantitatively and qualitatively was demonstrated in this comprehensive study. The comparative 

tests showed that freezing and thawing had no negative effect on the results. Core cutter samples 

from previously frozen sediment showed no difference to those of tests on accompanying samples 

which had not been frozen. Methodological errors can be minimized by taking specimens in a me-

ticulous manner. 
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5 Conclusions 

A detailed knowledge of the geohydraulic properties of river bed sediments is vital concerning the 

assessment of the effect of hydraulic engineering on adjoining aquifers. Many different methods are 

devoted to the geohydraulic characterization of sediments. However, all of these have unique ad-

vantages and disadvantages relating to the geohydraulic characterization of river bed sediments. 

Some destroy the natural sediment structure, others lack a small scale resolution and all fail to de-

termine the immediate anisotropy. Our presented approach starts at this boundary. In this paper 

we introduced our new measuring approach for an improved hydraulic characterization of river 

bed sediments based on freeze-core samples. Falling head lab permeameter tests were performed 

on vertical and horizontal core cutter samples which were taken from the freeze cores to determine 

the hydraulic conductivity and the anisotropy on a small-scale. The approach was tested on natural 

sediments from the Sacrow-Paretz channel (SPK) and from samples taken from an experimental 

container. Two well established methods, empirical determination based on grain-size distribution 

and in situ permeameter tests were additionally applied to evaluate our results reached with our 

approach. In the course of this study, our conclusions can be summarized as follows: 

• Empirical methods based on grain size distribution are not suitable for determining the in situ 

conductivity of river bed sediments because the empirically calculated hydraulic conductivities 

are considerably higher compared to the values of Kv determined by lab permeameter and in 

situ permeameter tests. 

• The results of the performed in situ permeameter tests and these of the lab permeameter tests 

done on core cutter samples are consistent. Both methods are able to determine the hydraulic 

conductivity in the sediments natural deposition structure. 

• Our new measuring approach enables an improved geohydraulic characterization of river bed 

sediments including the determination of the anisotropy. None of the other methods can re-

solve the hydraulic conductivity on a small-scale in vertical and horizontal orientation. 

Further research will be devoted to the application of our presented approach in order to verify its 

ability to characterize the river bed on a large scale and validate the method under different hy-

draulic boundary conditions. In a first step, the approach will be comprehensively applied to the 

sediment research at Sacrow-Paretz channel. In doing so, its ability to work on a large scale will be 

checked, due to the high effort related to the method, in the laboratory but also in the field. In a fur-

ther step, the method shall be applied in locations with differing ground and hydraulic boundary 

conditions as well with coarse sediments. Understanding river–aquifer exchange fluxes is vital 

when assessing local and regional water balances. Our on-going freeze core sampling in accordance 

with other investigations have demonstrated that river–aquifer exchange fluxes tend to be strongly 

spatially variable. Some authors have addressed this still open-ended research question and tried 

to estimate to which degree river bed heterogeneity has to be represented in a model in order to 

achieve reliable estimates of river–aquifer exchange fluxes (Kurtz et al., 2013). Until now, this ques-

tion has been addressed based on synthetic simulation experiments, which mimic the river bed’s 

hydraulic characteristics. The herein presented freeze-core 
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technique was designed to deliver field estimates of the small scale vertical variability. Numerous 

sampling at different locations is expected to deliver further needed geostatical information (mean, 

variance, correlation length, etc.) to develop effective parameters for the representation of the riv-

er–aquifer exchange fluxes at the river–groundwater management scale. 
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