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ABSTRACT 

The presence of unstable soils, i.e. soils in which suffusion can arise, is a 

potential risk to structures under which seepage occurs. It is therefore necessary to 

clearly identifY unstable soils and to estimate hydraulic gradients at which erosion 

may start. An experimental study was carried out to quantifY critical hydraulic 

gradients of unstable soils with respect to vertical upward and horizontal flow. It was 

found that critical gradients for unstable soils lie in the range of 0.2 both for vertical 

and horizontal flow, with a small dependence on the relative density. For nearly 

stable soils a strong effect of the relative density on the critical hydraulic gradients 

was found. Also, the "more stable" a soil is, the greater the difference of critical 

gradients for vertical and horizontal flow. The obtained results are compared to the 

results of other researchers. 

INTRODUCTION 

In the risk assessment of potential damage to dams or barrages the 

consideration of erosion processes in connection with under-seepage of such 

structures is of great significance. This is particularly valid if the subsoil consists of 

unstable soils. These are non-cohesive soils with a large uniformity index (non­

uniform soils with uniformity index eu >5 to 10) or irregular grain size distributions. 

In such soils erosion, i.e. transport of soil grains, starts at much lower hydraulic 

gradients than in soils with regular grain size distribution. The result of the erosion 

process is the wash-out of the frne-grained portion of the soil (suffusion). It has not 

been clear how important the effect of the soil gradation on the critical gradients in 

vertical and horizontal direction is and how it depends on the soil composition and its 

relative density. Special testing devices were therefore designed to investigate the 

erosion phenomenon dependent on the above mentioned factors. 

OVERVIEW OF THE STATE OF THE ART 

To assess whether suffusion is possible, in general the composition of the soil 

and the geometry of the pore channels have to be considered. Suffusion is only 

possible if the grains of the fine soil can pass through the pores of the coarse soil 

matrix. Since the pore channel geometry cannot be exactly measured, the assessment 

is based on the grain size distribution only. If the "geometric" criterion yields the 

result that suffusion is possible, i.e. the soil is potentially unstable, the minimum 

hydraulic gradient necessary to cause erosion and to transport the fine soil grains has 

to be assessed by a "hydraulic" criterion. 
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Geometric criteria 

Suffusion is the transport and wash-out of the fine grains of a soil through the 

grain skeleton formed by the coarse parts: it can be considered as a contact erosion 

process (i.e. the wash-out of a fine soil through the pores of an adjacent coarse soil 

layer) between the fine and coarse parts of the soil. Based on this consideration, 

Kezdi (1979) proposed splitting up the grain size distribution of a soil into two 

distributions of the fine and coarse parts, and assessing the stability by Terzaghi 's 

well-known contact erosion criterion applied to the two distributions. This criterion, 

also known as Terzaghi 's filter rule, is formulated as follows: 

(I) 

with dc.ls = grain diameter for which 15% of the grains by weight of the 

coarse soil are smaller and dr.ss = grain diameter for which 85% of the grains by 

weight of the fine soil are smaller. 

The Terzaghi criterion is valid only for poorly graded soil. To avoid this 

limitation, in the German guideline BA W (1989) the splitting method is 

recommended in combination with the CistiniZiems contact erosion criterion (see 

e.g. in Semar & Witt 2006), which is also applicable to non-uniform soils. In general, 

the grain size distribution has to be split up at several points and the resulting fine 

and coarse soils have to be assessed with the contact erosion criterion. 

Kenney and Lau (1985) proposed transforming the ordinary grain size 

distribution curve to a F-H diagram. Here F is the mass percentage of grains with 

diameters less than a particular diameter d and H is the mass percentage of grains 

with diameters between d and 4d (Fig. 1). In the first version HIF 2:: 1.3 was proposed 

as stability criterion. In a foIIowing publication (Kenney and Lau 1986), the less 

conservative requirement HIF 2:: 1.0 was recommended for use. 
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Figure 1. Geometrical suffusion criterion after Kenney and Lau (1985). 

In principle, both the Kezdi and the Kenney & Lau criteria require a 

minimum inclination of the grain size distribution curve. Chapuis (1992) stated that 

the Kezdi criterion means that "the slope of the grain-size distribution is flatter than 

15% per four times change in grain size", i.e. H ~ 0.15 for all F values. In contrast, 
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for the Kenney & Lau criterion the required minimum inclination is dependent on F. 

Both criteria are depicted in Fig. 2 and the test results of several authors regarding 

the internal stability of soils are presented. Fig. 2 shows that all soils with points 

lying above the Kenney & Lau line are stable and all soils with points lying below 

the Kezdi line are unstable. Soils with points lying in the "transition zone" (H > F < 

0.15 and 0.15 < H < F) can obviously be either stable or unstable. Li & Fannin 

(2008) proposed using the Kenney & Lau criterion for well-graded soils and the 

Kezdi criterion for a gap-graded soil. 
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Figure 2. Compilation of test results and comparison with criteria of Kezdi and 

of Kenney & Lau. 

For the application of the Kezdi criterion the grain size distribution has to be 

split up at several points and the resulting grain size distribution have to be checked 

with respect to contact erosion criteria. Usually the most unfavourable combination 

of fine and coarse soil results when the split-off point lies in the region of a small 

inclination of the grain size distribution. Thus, in a simplified application, the split 

can be done only at the point where HIF becomes a minimum ((HlF)min). The ratio of 

dc,l; and dcs; found for the curve splitting at that point is denoted in the following as 

(dc,ls/dr,S5)mod. With respect to Eq, (1) , this value has to be less than 4 to indicate 

internal stability of the soil considered, 

Hydraulic criteria 

For an upward seepage flow through a stable soil without surface load the 

critical hydraulic gradient can be derived as follows (e,g, Terzaghi and Peck 1961): 

. y, 

lv,erit = Yw (2) 

Here y' and Yw are the soil's buoyant unit weight and the unit weight of water, 

respectively. 

Istomina (1957) - cited in Busch et al. (1993) - carried out tests with various 

soils under vertical upward flow and proposed estimating the critical hydraulic 

gradient dependent on the uniformity index of the soil (Fig. 3). 
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Figure 3. Critical hydraulic gradient for upward flow with respect to suffusion 

after Istomina (Busch et al. 1993). 

Adel et al. (1988) carried out tests with stable and unstable soils (with regard 

to the Kenney & Lau criterion) under horizontal seepage flow. They detenruned 

critical hydraulic gradients of ih.crit = ca. 0.2 for three unstable soils with (HIF)min < 

0.5. For two soils with (HIF)min = 1.3 the critical gradients were between 0.6 and 0.7 

and for a definitely stable soil with (HIF)min = 1.8 the critical gradient was ca. 1.0. 

The results are depicted in Fig. 4. 

Skempton and Brogan (1994) carried out tests with upward flow to determine 

the critical hydraulic gradients for unstable soils. They found that the values can be 

only one third to one fifth of the theoretical value according to Eq. (2). They 

presented the results for both vertical upward and horizontal flow (determined by 

Adel et al. 1988, see above) dependent on the (HIF)min-value of the soil and 

suggested the connection shown in Fig. 4. Obviously, for unstable soils the diffe­

rence between the vertical and the horizontal critical hydraulic gradient is rather 

small. 
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Figure 4. Relation between critical hydraulic gradient and (H/F)min proposed by 

Skempton and Brogan (1994). 

Wan and Fell (2008) investigated 14 c1ay-silt-sand-gravel and silt-sand­

gravel mixtures and found critical gradients for unstable soils less than 0.5. They also 

found that tendentially smaller values apply to soils in a loose state than to soils in a 

dense state. 
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Moffat and Fannin (2006) investigated the effect of vertical load acting on the 

sample' s surface for unstable soils. They found that the critical gradients increased 

with an increase of the surface load. 

EXPERIMENTS 

Five different non-cohesive soils were tested in specially developed test 

devices under upward and horizontal seepage flow. The hydraulic gradient was 

increased slowly and gradually in order to identify the critical gradient at which 

erosion begins. The initial relative density of the soils was varied in the tests. 

The grain size distributions of the five soils are shown in Fig. 5 and the 

relevant soil parameters are given in Table I . The soils Al and A2 are fine to 

medium and medium to coarse sands, respectively, which are poorly graded and 

stable with respect to all geometric criteria (Kenney & Lau parameter (HIF)min = 4.4 

and 5.93, respectively). The soils EI , E2 and E3 are gap-graded soils, which were 

produced artificially . E2 and E3 are clearly unstable soils, whereas E I has an 

(HfF)min value of 1.1 and lies on the border between the stable and unstable region 

with regard to the Kenney & Lau criterion. Applying the Kezdi criterion with 

(dc.lsld f.8S)mod < 4 also leads to a close decision regarding internal stability. 
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Figure 5. Grain size distributions of the soils used in the experiments. 

Table 1. Properties of the soils used in the experiments 
Property Soil 

A l A2 EI E2 E3 

Density of grains p, rtlm31 2.65 2.65 2.65 2.65 2.65 

Minimum Q9rosity n min OAO 0.32 0.34 0.27 0.3 1 

Maximum porosity n"" 0.52 OA3 OA2 OAO OA2 

Uniformity index C" 2.1 3.0 7.0 13 .9 23A 
Index of Curvature C, LO 1.0 3.3 6.7 13.8 

(HJF)min 5.93 4A4 LlO 0.20 0.03 

(dc Is/d f RS ) mod 1.31 L50 3.30 7.20 14AO 
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Experiments with upward flow 

A photographic view and a schematic drawing of the test device for vertical 

upward flow are shown in Fig. 6. The soil sample with a diameter of 28.5cm and a 

height of 30cm was subjected to a gradually increased vertical hydraulic gradient. 

During the test, the water discharge and the water pressures along the sample 's 

height were recorded almost continuously. 

--+ 
intake of 

de-aired water 

Figure 6. Test device for vertical upward flow. 

sealing 

sample 

sealing 

The placement of the sample was carried out by pluviation under water. To 

prevent entrapped air falsifYing the test results, the water was de-aired by boiling and 

cooled down to the test temperature of 20°C. A soil mass chosen with respect to the 

desired relative density was pluviated into the test box and compaction was then 

carried out by vibrating the box until the desired sample level was reached. 

The determination of the critical hydraulic gradient was done by noting the 

water discharge and the filter velocity of the water flow, respectively. An example is 

shown in Fig. 7. For the internally stable soil (Fig. 7 left) the onset of erosion is 

connected with an immediate increase in the flow velocity and thus the permeability. 

Some grain movements on the sample surface already occur at smaller hydraulic 

gradients, but this does not lead to erosion. For the unstable soil (Fig. 7 right) the 

change in the permeability is more continuous. From a certain hydraulic gradient on, 

a strongly increased mass transport and a significant increase of the flow velocity 

was observed. At this state, the critical gradient was determined. 

Experiments with horizontal flow 

In order to grasp the directional dependence of the critical hydraulic 

gradients, tests with horizontal seepage flow were also carried out. A photographic 

view and a schematic drawing of the test device used are shown in Fig. 8. The 

sample had a cross section of lOcm x 30cm and was seeped horizontally on a sample 

length of 60cm. The placement of the material was again done by pluviation in de­

aired water with the test box standing in a 90° rotated position. The sieve fabrics 

located at both ends of the sample were so chosen that a transport of the fine soil 

parts was possible. 

The hydraulic gradients were increased slowly and gradually and the water 

discharge and the mass of eroded fines were observed almost continuously. In both 

curves a significant change was observed at a particular hydraulic gradient, i.e. a 
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significant change in the permeability and an increase in the transported soil mass. At 

this point the critical hydraulic gradient was recorded. 

TEST RESULTS 

Vertical upward flow 

The experimentally determined hydraulic gradients for upward flow are given 

in Fig. 9, dependent on the initial relative density of the soil samples. 
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For the stable soils Al and A2 the obtained critical gradients agree quite well 

with the theoretical values according to Eq. (2). In fact, slightly lower values were 

found with a maximum deviation of about 10%, which might be a result of 

unavoidable heterogeneities of the samples. 

For the clearly unstable soils E2 and E3 very small critical gradients between 

0.18 and 0.23 were measured. There is only a small dependence on the relative 

density of the sample. On the contrary, for soil EI , which is on the border between 

stable and unstable, a clear dependence of the critical hydraulic gradient on the 

relative densities was found. For a very dense state the critical hydraulic gradient is 

about double the value determined for a medium dense state. However, the value for 

very dense state is also significantly smaller than the theoretical critical hydraulic 

gradient from Eq. (2). Thus, soil E I has to be classified as potentially unstable. 

"5 
12~ ----------------------------, 

.:::" 1.0 
c: 
Ql 

'g 08 
0, 

'" 0.6 u 

~ 0.4 

~ 0.2 

8 O+- ------,------.-------r----~ 
o 0.25 0.50 0.75 1.00 

Relative density 0 

Figure 9. Critical gradients determined for vertical upward flow. 

Fig. 10 shows the critical hydraulic gradients determined for the unstable 

soils dependent once on (HIF)min and once on (dc.ls/df.8S)mod. The values obtained by 

Skempton and Brogan (1994) for dense sand are also depicted. The dependence on 

(HIF)min suggested by Skempton and Brogan is confirmed, with the exception of the 

nearly stable soil EI, where the critical gradient is very much dependent on the initial 

relative density. There is also a connection of the critical hydraulic gradients with the 

parameter (dc. ls/df.85 )mod, but the scatter here is slightly larger. The trend lines in Fig. 

II right are suggested curves regarding the effect of relative density. Evidently, the 

"more stable" a soil is , the more important the relative density. 
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Figure 10. Critical gradients dependent on instability parameters. 
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Horizontal flow 

In Fig. 11 the experimentally determined critical hydraulic gradients with 

regard to horizontal flow are presented dependent on the parameter (dc.ls/dr.8s)mod. 

The critical gradients for vertical flow are also given. 

Tendentially, the critical gradient for horizontal flow is slightly smaller than 

the one for upward flow. However, the "more unstable" a soil is, the smaller the 

difference, and thus the smaller the critical vertical gradient. For the unstable soils E2 

and E3 even slightly higher horizontal than vertical critical gradients were obtained 

for dense and very dense initial states. In that respect it has to be considered that in 

the case of vertical flow the sample surface was free and thus a certain loosening of 

the sample was possible due to the seepage forces acting, which of course favours 

internal erosion. This might also be the reason for the stronger dependence of 

horizontal critical gradients on the sample's relative density. 

The results of Adel et al. (1988) with critical horizontal gradients of around 

0.2 for unstable soils are confirmed by the tests. Unfortunately, Adel et al. did not 

document the relative density of the soil in their tests. 
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Figure 11. Comparison of critical gradients for vertical upward and horizontal 

flow. 

CONCLUSIONS 

The tests reported here show that for clearly unstable sands, i.e. with 

(HIF)min-values significantly smaller than 1.0, the critical hydraulic gradients for 

upward flow lie at around 0.2 with only a slight dependence on the initial relative 

density. Also, the critical gradients for horizontal flow are nearly the same as those 
for vertical flow. 

For clearly stable soils, e.g. poorly graded sands, the critical gradients for 

horizontal flow are significantly smaller than the critical gradients for vertical flow. 

Sands which lie on the border between stable and unstable soils behave in a 

special way. For such a soil a distinct dependence of critical hydraulic gradients on 

the relative density was found. It can be concluded that the decision whether such a 

soil is stable or potentially unstable requires consideration of the compaction state. 
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