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Abstract: The building walls which form the major part of the building envelope thermally interact 
with the changing surrounding environment throughout the day influencing the indoor thermal 
comfort of the space. This paper aims at assessing in detail the different aspects (thermophysical 
properties, thickness, exposure to solar heat gain, etc.) of opaque building wall materials affecting 
the indoor thermal environment and energy efficiency of the buildings in tropical climate (in the 
summer and winter days) by conducting simplified simulation analysis using the Integrated 
Environmental Solutions Virtual Environment (IES-VE) program. Besides, the thermal efficiency of 
a number of selected wall materials with different thermal properties and wall configurations was 
analysed to determine the most optimal option for the studied climate. This study first developed 
the conditions for parametric simulation analysis and then addressed selected findings by 
comparing the thermal responses of the materials to moderate outdoor temperature and energy-
saving potential. While energy consumption estimation for a complete operational building is a 
complex method by which the performance of the wall materials cannot be properly defined, as a 
result, this simplistic simulation approach can guide the designers to preliminary analyse the 
different building wall materials in order to select the best thermal efficiency solution. 

Keywords: dynamic simulation; energy performance; thermal comfort; tropics; wall materials 
 

1. Introduction 

Indoor environment quality is one of the major health concerns in the world as people spend 
about 80–90% of their time at home or other public indoor environments [1]. Thermal comfort is a 
key variable of indoor environment quality which is influenced by the design techniques and 
materials used in building [2,3]. According to how materials respond to the climate, the human 
settlement environment on earth can be categorised into the heat preservation priority and heat 
insulation priority climate zones. In the heat preservation priority climate, building materials are 
used to prevent the external heat gain (hot zone) or internal heat loss (cold zone) since there is a wide 
disparity between the indoor and outdoor temperatures. On the other hand, heat insulation priority 
climate zone consists of the tropical and subtropical regions where high humidity, temperatures, and 
solar radiation are the major stresses. Therefore, materials in this area are mainly used for solving the 
sun shading and heat insulation [4,5]. According to the State of the Tropics survey, about 50% of the 
world's inhabitants would live in the tropical regions before 2050 and consequently the demand for 
indoor thermal comfort in this region is increasing dramatically [6]. Currently, most of the tropical 
developing countries are facing difficulties in achieving indoor thermal comfort in the absence of 
mechanical control because of inappropriate building design. Besides, limited access to energy 
resources (energy poverty) is another factor that significantly influences the building’s energy 
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consumption in these countries [7,8]. It has been reported that indoor thermal comfort conditions can 
be controlled without a mechanical system if the indoor temperature remains within the range of 
adaptive comfort levels [9] and the building envelope can play a significate role in regulating indoor 
air temperature [10,11]. Hence, the application of appropriate materials for efficient building 
envelope design would be an effective alternative to attain the standard indoor thermal comfort 
condition due to the lack of energy supply in tropical developing countries. 

Several variables such as climate condition, building envelope, occupant behaviour, etc. 
influence the energy usage of a building [12,13]. The energy required for a building to operate at its 
maximum efficiency can be estimated using statistic calculation models that cumulates energy losses 
across the building envelope [14]. While this approach has been recognised to function in the past, 
recent advancement in the building energy simulation tools enables efficient analysis of the building 
envelope thermal performances under dynamic weather conditions and allows to predict its effects 
on indoor thermal comfort and energy balance [15–17]. Building wall envelope consists of transparent 
and opaque materials and their energy-saving optimisation approaches are also distinct. This paper 
mainly focuses on the diverse features of building opaque wall materials which influence the indoor 
thermal comfort and energy efficiency of the buildings in the tropical climate. This study aims to 
present a simplified simulation analysis of a building modelled with different wall materials to assess 
their thermal performances as a prospect for energy efficiency enhancements. Besides, the thermal 
performances of a variety of wall configurations with different selected material compositions were 
evaluated. For the simulation analysis, spaces with similar characteristics were modelled where only 
building forms and wall materials were altered to determine the differences they generate in indoor 
thermal comfort. This paper first explains the basic conditions for the parametric simulation analysis. 
Accordingly, the selected results from the analysis are presented and discussed. Finally, the best and 
worst types for materials and wall constructions are defined by a comparative analysis of their 
capabilities to moderate outdoor temperatures as well as reduce energy consumption. Therefore, the 
main purpose of this study is to guide the designers to preliminary analyse the building shapes and 
wall materials in order to select the best thermal efficiency solution. 

2. Previous Investigations 

Several simulation studies have been conducted on the thermal efficiency of the building 
envelope in different climatic conditions. Chowdhury et al. [18] experimentally and numerically 
investigated the indoor thermal condition of the production spaces of the ready-made garment 
factory building in Dhaka, Bangladesh. The study considered two types of variables (material 
categories and exterior wall thickness) for the simulation studies where nineteen different exterior 
wall constructions were examined. The authors developed a correlation matrix between the air 
temperature, operative temperature, and mean radiant temperature of different zones of the 
production spaces concerning different building material construction types. Udawattha and 
Halwatura [19] analysed the field measurements and computer-based simulation studies to 
understand the thermal efficiency and structural cooling of three common wall materials (brick, 
cement block, and concrete mud block) in Sri Lanka. The field study was carried out on three selected 
buildings constructed with three different wall materials of dissimilar thickness. To create a 
comparable situation, the study then simulated one building keeping wall thickness similar for three 
materials. The research further assessed the various thickness of wall materials to determine the most 
appropriate one for the Sri Lankan climatic condition. Mohammad and Shea [11] investigated the 
steady-state and dynamic thermal properties of five modern wall constructions with different 
materials in Tehran. The study stated that steady-state analysis overlooks the dynamic behaviour of 
the building under realistic conditions. Hence, the thermal transmittance calculated from the steady-
state study is not a reliable measure for the building materials’ thermal performances since materials 
with an equal thermal transmittance value can absorb and emit heat at the different rates under 
dynamic weather conditions. The study highlighted the evaluation of the dynamic behaviour of the 
entire building to optimise the choice of envelope materials for the maximum thermal comfort and 
energy efficiency. Kalua [20] studied the optimisation of envelope thermal design for residential 
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buildings in Malawi through computer simulations in EnergyPlus and then experimentally validated 
the simulation results. The study particularly emphasised on the analysis of mean monthly 
temperatures and total annual discomfort hours of the zones. The results revealed that from all the 
envelope features examined (wall transparency ratio, wall and roof R-value, glazing insulation, 
ventilation infiltration, floor thickness, and window overhang), air infiltration had the most 
significant influence on thermal efficiency. Moreover, excessive insulation of the building envelope 
generated a negative effect on indoor thermal comfort levels. Lotfabadi and Hançer [16] compared 
the energy efficiency of the conventional and modern building construction techniques in Famagusta, 
Northern Cyprus by modelling a building with different ceiling heights, insulation locations, and 
indoor conditions. Findings showed that with the increase of ceiling heights in the modern building, 
the overall energy consumption increased which was later optimised by considering the location of 
the insulation layer. The study presented that in the summer weather exterior wall insulation works 
better while the best insulation location for the winter is in the centre of the walls. Besides, the inner 
insulation layer provides the highest efficiency for the daytime ventilated buildings (office, 
educational buildings), and for the whole day ventilated buildings (residential buildings) the middle 
insulation layer is recommended. Ascione et al. [21] proposed the residential building envelope 
optimisation for the Mediterranean climates by performing simulation analysis in EnergyPlus and 
MATLAB. The study included different variables such as the density and thickness of the masonry 
layers, insulation layer thickness, and window quality. Pathirana et al. [9] examined the different 
shapes of two-story naturally ventilated houses using DesignBuilder simulation software to 
investigate the effects of building shape, orientation, zone, and window to wall ratio on thermal 
comfort and lighting energy requirements in the tropics. The simulation results showed that, except 
for special cases, building shape had no major impact. However, it did have an impact when zone 
locations and sizes were altered. Zhu et al. [22] compared the energy impact of mass walls and 
traditional wood-framed walls in Las Vegas, Nevada using the Energy10 simulation tool. The 
research considered two equal-sized houses where only the external walls were contrasted with the 
mass walls and traditional walls. Rattanongphisat and Rordprapat [23] assessed the impact of the air 
conditioning unit on a traditional building’s cooling energy demand using energy simulation. The 
research revealed that building energy demand can be reduced up to 28% by only using low thermal 
conductivity building wall materials. Sadeghifam et al. [24] aimed at evaluating the energy efficiency 
of public buildings by examining the University Technology Malaysia library building as a case study 
in Ecotect program with 8 different wall construction styles where the simulation input information 
included temperature, operation type, user number, working period, cooling system, and running 
time. The authors also compared the simulation results with the field measurements to determine the 
most appropriate construction for the Malaysian climate. Kisilewicz [25] simulated a small office 
space (4 m × 5 m) including a south facing glazing and a high thermal load from the equipment to 
investigate the role of external walls on indoor thermal comfort in Poland. The simulation was 
performed in EnergyPlus by only modifying the two-layer wall structure consisting of ceramic blocks 
and an insulation layer. In the same climate, Strzałkowski and Garbalińska [26] investigated the 
thermal performances of a typical flat (50 m2) constructed of different loadbearing wall materials 
using WUFI Plus software. In order to accurately evaluate the parameters associated with the thermal 
accumulation, the transmittance value of the walls was kept equal by making the insulation width 
variable. 

The simulation studies in the literature aimed at minimising building energy consumption 
taking into account a range of parameters and underlined that these parameters should be carefully 
considered when assessing the actual performances of the wall materials. Therefore, the selection of 
suitable simulation methods and parameters for the building wall materials’ thermal performances 
are primary tasks in this study.  

3. Building Envelope 

The building envelope consisting of various components such as foundation, wall, fenestration, 
roof, shading device, etc. serves as a key interface between the indoor and outdoor environments 
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[27]. Building walls form the bulk of the envelope which provide thermal comfort inside the building 
by regulating variations in outdoor weather conditions and thereby, deciding the heating and cooling 
loads [28]. Udawattha and Halwatura [19] described building envelope wall as the third skin for the 
human body that supports to keep the body temperature steady even though the outside temperature 
fluctuates. Watson [29] stated that building envelope is a system that controls heat exchange between 
the indoor and outdoor environments. The basic control mechanism is the acceptance or rejection of 
heat gain from the external and internal heat sources, establishing a new microclimate for the interior. 
According to Givoni [30], the thermal behaviour of the materials has a very strong impact on 
occupants’ comfort conditions both in the presence and absence of the mechanical control system 
since thermophysical properties of the materials determine the indoor air temperature and heating 
or cooling demand.  

3.1. Heat Transfer Through the Envelope Walls 

The heat transfer process through the building wall is complex as well as dynamic (Figure 1) 
which occurs by the conduction, convection, and radiation [30]. For example, in the daytime, the solar 
radiation hits the external wall surface, a part of which is released to the outdoor environment, and 
the other part is absorbed and conducted across the material. The interior surface of the wall then 
exchanges heat with the room air and other surfaces through the convection and radiation. These 
heat transfer methods regulate the indoor air temperature and consequently influences the state of 
thermal comfort. The heat exchange rate and direction through the building envelope depend on 
several parameters including the solar gain, indoor temperature, outdoor temperature, material 
thermophysical properties, and exposed surface area. The material thermophysical properties which 
affect the heat transfer rate are the density, thermal conductivity, heat capacity, thermal resistance, 
thermal transmittance, and surface characteristics [30,31]. Besides the thermophysical properties, 
material thickness affects the heat storage capacity of the wall as well [32,33]. Also, the heat gain and 
loss through the wall can be influenced by the wall orientation and should be considered for energy-
efficient building envelope design [34,35]. 

 
Figure 1. Heat transfer process across the (a) solid wall [36]; (b) composite wall. 

3.2. Thermophysical Properties of the Building Envelope Wall Materials 

The responses of different building wall materials to the environment vary depending on their 
inherent characteristics and the most significant energy-saving aspects of building materials are heat 
absorption and transmission capability. Figure 2 shows the surface temperatures of three different 
houses constructed of mud, fired brick, and corrugated iron (CI) sheet in Chittagong, Bangladesh. 
These three houses are adjacent and images are taken at midday. It can be seen that C.I sheet house 
had the highest surface temperature (Sp4: 53.72 °C) followed by the fired brick house (Sp3: 44.94 °C) 
and mud house (Sp1: 41.44 °C, Sp2: 40.44 °C). 
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Figure 2. Thermal image of (a) mud house; (b) fired brick house; (c) C.I sheet house. 

The density, thermal conductivity, and specific heat capacity are the three basic thermophysical 
properties required for the thermal behaviour analysis of the building materials [37,38]. Other 
properties such as thermal transmittance, thermal resistance, thermal diffusivity, thermal effusivity, 
and thermal mass can be determined from the basic properties. 

Thermal transmittance or U-value is the heat transfer rate through a structure (single or 
composite), divided by the temperature differences across the structure. The U-value of a structure 
depends on the thermal resistance or R-value of each layer in the construction. The U-value is 
inversely proportional to the R-value and can be calculated by the summation of thermal resistances 
of the layers that make up the structure plus its internal and external surface resistances. The R-value 
depends on the thermal conductivity and thickness of the material. The higher the resistance of a 
material, the lower the heat it loses [39,40].  

Thermal diffusivity corresponds to the unsteady state of heat transfer. It shows how quickly the 
material temperature reaches thermal equilibrium with the surrounding temperature. A higher value 
of thermal diffusivity indicates faster heat propagation through the material [41]. On the other hand, 
thermal effusivity is the speed at which the material surface gets warm. In other terms, it is defined 
as the material’s ability to exchange thermal energy with its surroundings [42,43]. The formulas are: 

α λ ρ= pC  (1)

τ λρ= pC   (2)

where α  is the thermal diffusivity (m2/s), τ  is the thermal effusivity (Ws1/2/m2K), λ  is the thermal 
conductivity (W/mK), ρ  is the density (kg/m³) and pC  is the specific heat capacity (J/kgK). 

Thermal mass is the amount of heat energy that the object can absorb and store. In the building, 
thermal mass can significantly minimise indoor temperature fluctuation thereby reducing the heating 
and cooling demand [44,45]. Ideal materials for thermal mass require a combination of properties 
such as a high specific heat capacity (optimising the heat stored), a high density (heavier material can 
store more heat), and moderate thermal conductivity (sustaining heat flow rates with the variation 
of heating and cooling cycle) [46]. 

4. Thermal Performance Assessment of the Building 

Thermal performance assessment of the building is the method of modelling the energy transfer 
between the building and its surrounding environments [36]. This method not only depends on the 
weather conditions but also whether it is a conditioned or a non-conditioned building. In the 
conditioned building, the heating and cooling loads are estimated to select or design the proper 
HVAC system whereas for the non-conditioned building indoor temperature variations are analysed 
to estimate the comfortable periods by the thermal performance assessment [47]. Therefore, it is 
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essential to know how to measure the thermal efficiency of the building to achieve energy efficiency 
under comfortable indoor conditions. A range of factors determines the thermal performance of the 
building including design variables (orientation, wall, roof, window types, shape, etc.), material 
properties (thermal conductivity, density, specific heat capacity, etc.), weather data (temperature, 
humidity, radiation, wind speed, etc.), and building operation data (internal gain, air exchange, etc.) 
[9]. Hsieh and Wu [48] stated that the building envelope is the most important element to evaluate 
the energy efficiency of the building and improving the properties of the envelope can lead to a 
successful energy-saving design that can reduce energy loss during the operation. 

The envelope material properties govern the time lag or thermal lag (TL) and decrement factor 
(DF) which are used to determine the heat transfer rate across a wall. The time taken by the maximum 
outside surface temperature waves for the propagation into the internal surface is termed as TL. On 
the other hand, DF indicates the decrease in the rate of indoor temperature variations (Figure 3) and 
calculated by the following equation [32,49]: 

−
=

−
,max ,min

,max ,min

i i

e e

T T
f

T T
 (3)

where f  is the decrement factor, ,maxiT , ,miniT  denote the maximum and minimum inside surface 
temperatures and ,maxeT , ,mineT  represent the maximum and minimum outside surface temperatures 
of the wall respectively. TL and DF mainly depend on the thermophysical properties, wall 
configuration, and thickness of the materials since the heat waves need a longer time to pass through 
the materials with increased thickness, density, and resistivity [19,50]. Besides, TL and DF vary when 
the outside temperature rises or declines steadily from one day to the next [51,52]. When TL is longer, 
the internal temperature variations relative to the outside temperature will be delayed and low DF is 
advantageous to keep the indoor temperature stable regardless of unstable outdoor temperature. 

The shape coefficient or shape factor ( fC ) is often used to determine the effect of space volume 

in energy efficiency. It is most frequently measured as the ratio between the building wall exterior 
surface area ( eS ) and the heated volume ( V ) (Equation (4)) [53,54]: 

=f eC S V  (4)

A high shape coefficient indicates (more external building surface area for the same volume) the 
increase in the winter heat loss and summer heat gain [55,56]. 

Lylykangas [57] described another similar relation between the building shape and heat transfer 
through its envelope by calculating the shape factor as a ratio between the inside surface area of the 
building walls ( omA ) and the heated floor area ( tempA ). The author defined shape factor as: 

=f om tempC A A  (5)

Though these approaches are unable to describe the energy demand of a building in detail 
without taking into account certain variables such as the window and building orientation, however, 
the shape factor can be a criterion for assessing the thermal performance of any space without 
windows [58]. Therefore, in the early design phase of the building, shape factors can be used as a 
predictor for the energy demand of the building when evaluating design solutions [59,60]. 

Building orientation can also influence the thermal efficiency of a building by mitigating direct 
solar radiation into the building envelope [61,62]. Building orientation indicates the layout of the 
building on the direction of the sun path pointing at azimuth angles between 0° and 360°. Generally 
north, east, south and west correspond to 0°, 90°,180°, and 270° respectively. It is preferable to orient 
elongated surfaces towards the underheated period for increasing daylighting during the winter and 
shorter surfaces towards the overheated period for controlling intense insolation during the summer 
[17,63]. Wang [64] reported that the optimum configuration of the building shape, orientation, and 
envelope can significantly minimise energy consumption. 
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Figure 3. Heatwave propagation through an opaque wall and representation of TL and DF. 

5. Tropical Climate Context 

The tropics refer the regions around the equator of the earth between the Tropic of Cancer in the 
Northern Hemisphere (23°26′12.6″ N) and the Tropic of Capricorn in the Southern Hemisphere 
(23°26′12.6″ S) [65]. High temperatures, high humidity, and intense solar insolation are the typical 
features of the tropical weather. The Köppen climate classification system describes the tropical 
climate as a non-arid one, in which the mean annual temperature is approximately 18 °C [66,67]. As 
variations for different seasons are dominated by the rainfall in tropical areas, temperatures in this 
zone are fairly stable throughout the year in contrast with the subtropical areas which are 
characterised by temperature fluctuations of varying degrees and lengths of the day. In the tropical 
zone, sun rays hit nearly overhead at midday and the cool day quickly gets warm until the early 
afternoon when temperatures reach the warmest. Afterward, space starts to cool off somewhat by the 
late afternoon when less heat energy hits the surface of the earth. Nevertheless, it remains warm until 
the early evening after the sunset but begins to cool quickly before the sunrise of the next morning. 

6. Simulation Methods 

Building simulation software tools are mostly used by the building designers and engineers to 
explore various design alternatives under varying climatic conditions, internal gains, building 
envelope characteristics, building geometry, heating, ventilation and cooling (HVAC) system 
specifications, operation schedules, and control strategies, etc. This present work used the IES-VE 
(Integrated Environmental Solutions Virtual Environment) software which complies with several 
national and international standards [68]. Many researchers have proven the efficiency of this 
software by validating the numerical results against experimental data [69–73]. 

6.1. Governing Equations 

IES-VE’s ApacheSim Thermal Application is a dynamic thermal simulation program that is 
based on first-principles mathematical modelling of the heat transfer processes occurring inside and 
around a space. ApacheSim assumes that the conduction of each building element is unidirectional 
and thermophysical properties ( λ , ρ , pC ) of each layer of the element are uniform within the layer. 

Under these assumptions following equation can be formulated: 

ρ
λ

∂ ∂ = ∂ ∂2 2 pC
T x T t  (6)
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A finite-difference approach is considered in ApacheSim to solve the heat differentiation 
equation. In this approach, the element is replaced with a finite number of discrete nodes at which 
the temperature is calculated. By considering this spatial discretisation the Equation (5) can be written 
as follows: 

( )ρ λ
δ

− +− +
= − ∂ ∂1 1

2

2n n n
p

n

T T T C T t  (7)

where nT  is the temperature (°C) at a node n  and δ n  is the local node spacing (m).  
In the layers, the nodes are distributed properly to ensure accurate modelling of the heat transfer 

and storage characteristics for a selected time-step. This process is based on constraint imposed on 
the Fourier number: 

( )λ ρ δ= Δ 2
p nF C  (8)

where Δ  is the simulation time-step (s). 
The temperature-time derivative ( ∂ ∂T t ) at the present time is expressed by Equation (9): 

( )+= − Δ 1j j j
n n nT T T  (9)

where j
nT  is the temperature (°C) and  j

nT  is the time derivative of temperature (K/s) at node n  
and time-step j . 

The energy demand for heating and cooling for a space or zone is calculated according to the 
Equation (10) and Equation (11) respectively: 

( )η= − ×, , ,NH L H G H G HQ Q Q  (10)

subject to, ≥ 0NHQ , γ ≤ 2.5H  and θ θ>i e  (otherwise, = 0.0NHQ ) 

( )η= − ×, , ,NC G C L C L CQ Q Q   (11)

subject to ≥ 0NCQ , λ ≤ 2.5C  and (otherwise, = 0.0NCQ ) 

where, NHQ  and NCQ  are the building zone energy demand for heating and cooling (MJ), ,L HQ  
and ,L CQ  are the total heat transfer (losses) for the heating and cooling mode (MJ), ,G HQ  and ,G CQ  
are the total heat sources (gains) for the heating and cooling mode (MJ), η ,G H  and η ,L C  are the 
dimensionless gain utilisation factor (a function of mainly the gain-loss ratio and the thermal inertia 
of the building zone), γ H  and λC  are the dimensionless gain/loss ratio for the heating and cooling 
mode respectively. θ i  is the indoor temperature (°C) which is the heating and cooling set-points, 
θ e  is the outdoor temperature (°C) which is obtained from hourly weather data for the location. 

Total heat transfer is determined by the Equation (12) and Equation (13): 

= +L T VQ Q Q  (12)

where LQ  is the total heat transfer (MJ), TQ  is the total heat transfer by transmission (MJ) and VQ  
is the total heat transfer by ventilation (MJ). 

= +G I SQ Q Q  (13)

where GQ  is the total heat sources (MJ), IQ  is the sum of internal heat sources over the given period 
(MJ) and SQ  is the sum of solar heat sources over the given period (MJ) [74,75]. 
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6.2. Physical Model and Simulation Conditions 

In IES-VE a space of 12 m × 6 m × 6 m (length × width × height) (Figure 4) was modelled 
(elongated axis aligned east-west) to evaluate the indoor air temperature and annual energy 
consumption for different wall materials. The space was modelled without windows and when 
running the simulation all sources of internal heat gain, heating/cooling systems were excluded. 
However, 0.25 Air Changes per Hour of infiltration rate was included to indicate natural air leakage 
through the envelope of the space. On the other hand, in the case of the energy calculation, for the 
cooling and heating period, the maximum temperature was set to 23 °C and 19 °C respectively 
following the thermal comfort criteria. The study considered the weather data of capital city Dhaka, 
Bangladesh (23.8103° N, 90.4125° E) which features a sub-tropical monsoon climate [76]. Figure 5 
presents the 10-year average maximum, mean, and minimum monthly air temperatures and Figure 
6 shows the relative humidity and precipitation data of Dhaka from the Bangladesh Meteorological 
Department [77]. The hourly weather data of Dhaka, SunCast solar radiation, and MacroFlo for the 
natural infiltration were linked to the ApacheSim and the simulation period was set for the entire 
year. Though this type of building does not exist in reality, however, this approach was considered 
to provide a clear assessment of the envelope materials’ thermal performances under dynamic 
weather conditions. The most widely used building materials (fired bricks, unfired bricks, and 
cement blocks) in Bangladesh were considered for analysis. The study used the thermophysical 
properties of Common Fired Brick (CFB), Aerated Concrete Block (ACB), and Heavyweight Concrete 
Block (HCB) from the IES material library while thermophysical properties of Unfired Brick (UFB) 
were adopted from the literature [50]. The basic (thermal conductivity, density, and specific heat 
capacity) and derived (thermal transmittance, thermal resistance, diffusivity, thermal effusivity, and 
thermal mass) thermal properties for each type of material are presented in Table 1. Typical hottest 
(21 May) and coldest days (04 January) from the weather data record of the preceding year were 
considered for the analysis. 

 
Figure 4. Building geometry. 

6.3. Simulation Phases 

The parametric simulation analysis was performed under the following five phases. 

6.3.1. Phase 01: Different Wall Materials 

In this phase, the space was modelled with materials CFB, ACB, HCB, and UFB. The thickness 
of the wall materials was considered equal (222 mm) and for analysis, only the materials were altered 
keeping all other elements unchanged. Among three unfired brick types (A, B, C) [50], brick C was 
selected for the simulation since brick A and B had similar thickness (219 mm) where C had a different 
thickness of 222 mm. 
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Figure 5. 10-year (2005–2015) average of maximum, mean, and minimum monthly air temperatures 
of the capital city Dhaka, Bangladesh [77]. 

 
Figure 6. 10-year (2005–2015) average relative humidity and rainfall of the capital city Dhaka, 
Bangladesh [77]. 

6.3.2. Phase 02: Different Thicknesses of the Wall 

This simulation phase was designed to determine the effect of TL and DF with the change of 
material thickness. Hence, in this phase, the space was modelled with varying thicknesses (150 mm 
to 400 mm) of UFB to verify the simulation results against the test results of El Fgaier et al. [50].  
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Table 1. Basic and derived thermal properties for different materials and yearly energy consumptions 
of the buildings. 

Materials CFB ACB HCB UFB Cavity 
Insulation 

Insulation 
Board 

Thickness (mm) 222 222 222 125 222 300 400 50 40 
Density (kg/m3) 1922 750 2300 1788 1788 1788 1788 32 32 

Thermal conductivity 
(W/mK) 

0.73 0.24 1.63 0.90 0.90 0.90 0.90 0.08 0.04 

Specific heat capacity 
(J/kgK) 837 1000 1000 545 545 545 545 837 837 

Thermal diffusivity 
(10−7 m2/s) 

4.52 3.20 7.09 9.23 9.23 9.23 9.23   

Thermal effusivity 
(Ws1/2/m2K) 1081.45 424.26 1936.23 936.49 936.49 936.49 936.49   

U-value (W/m2K) 2.10 0.91 3.09 3.24 2.40 1.99 1.63   
R-value (m2K/W) 0.30 0.93 0.15 0.14 0.25 0.33 0.44   
DF (Summer day) 0.55 0.40 0.68 1.78 1.02 0.63 0.35   

Thermal mass 
(kJ/m2K) 160.87 75 230 60.90 97.45 97.45 97.45   

Yearly energy 
consumption (MWh) 

17.60 11.70 22.60 24.80 19.40 17.10 15.30   

6.3.3. Phase 03: Different Orientation of the Space 

The modelled space was simulated by changing the orientation at 0°, 45°, 90°, and 135° to 
examine the effect of building orientation on the energy demand (Figure 7). Building orientation at 
0° indicates that elongated sides face the north and south directions. All other orientations were 
generated by rotating the building plan clockwise with respect to the north. The most commonly 
used wall material CFB was adopted for the model and other parameters remained similar to the 
previous simulations. 

 

Figure 7. Building plan orientations for the simulation study. 

6.3.4. Phase 04: Different Wall Construction Types 

This phase includes simulation analysis of the space with different types of wall constructions 
to understand the thermal efficiency of building materials as different wall configurations. The wall 
types are categorised under the solid, clear cavity, full cavity, and partial cavity wall. The purpose of 
the simulation is to find out the effects of layers or composite wall constructions on the thermal 
performances of the building. Different wall configurations investigated are shown in Figure 8. 
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Figure 8. Different wall construction types. 

6.3.5. Phase 05: Different Shape Factors 

This phase deals with the correlation between the shape factor and energy demand. All the 
models were constructed with CFB and simulation was carried out under the following three cases 
(Figure 9). 

• Case 1 (Group a): Buildings with similar volume, height, and floor area but different external 
surface areas. 

• Case 2 (Group b): Buildings with similar volume but different heights, floor areas, and external 
surface areas. 

• Case 3 (Group c): Buildings with different heights, volumes, and floor areas but a similar surface 
area. 
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Figure 9. The three possible situations for the study of building shape factor. 

7. Results and Discussions 

7.1. Effects of Materials’ Thermophysical Properties 

Figure 10 illustrates the outdoor and indoor air temperatures of the space during the summer 
and winter days. It also demonstrates that the outdoor air temperature fluctuation is high with a 
maximum temperature of about 36.99 °C and a minimum of about 29.34 °C. Besides, the indoor air 
temperature of UFB construction responded rapidly to the outdoor temperature variations followed 
by HCB, CFB, and ACB constructions. The maximum indoor temperature for UFB was 38.90 °C and 
a minimum of 31.06 °C, therefore having a temperature swing of 7.8 °C. However, temperature swing 
was found comparatively less for CFB (4.23 °C) and HCB (5.22 °C) constructions whereas for ACB it 
was fairly stable (3.06 °C). As the wall thickness remained equal for all the materials, this variation in 
temperature swing occurred due to a higher thermal conductivity value of UFB (0.9 W/mK) than CFB 
(0.73 W/mK) and ACB (0.24 W/mK). Though HCB had a high conductivity value (1.63 W/mK), it had 
about twice specific heat capacity (1000 J/kgK) compared to UFB (545 J/kgK) which made the space 
respond slowly to the outdoor air temperature variations. The insignificant indoor temperature 
swing of ACB space was due to its low thermal conductivity and high specific heat capacity (1000 
J/kgK). The thermal diffusivity for ACB, CFB, HCB, and UCB were measured as 3.2 × 10−7 m2/s, 4.52 
× 10−7 m2/s, 7.09 × 10−7 m2/s, and 9.23 × 10−7 m2/s and DF were calculated (for the summer day) as 0.40, 
0.55, 0.68, and 1.02 respectively. This explains that materials with high thermal diffusivity and DF 
take less time to reach the thermal equilibrium with the outdoor temperature. Besides, because of the 
lowest U-value, ACB (0.91 W/m2K) had the best energy performance (11.70 MWh) followed by CFB 
(17.60 MWh) and UFB (19.40 MWh) (See Table 1). While HCB having the highest U-value (3.09 
W/m2K) displayed the worst performance (22.60 MWh). Moreover, it can be observed that after mid-
summer day the indoor air temperature of the UFB and HCB constructions became higher than the 
outdoor temperature. This may occur since the space was modelled without window and no natural 
ventilation and air conditioning systems were considered for the analysis [78]. 
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Figure 10. Outdoor and indoor temperatures for four different wall material constructions (a) summer 
day; (b) winter day. 

7.2. Effects of Wall Thickness Variations 

From Table 1, it can be observed that the thermal mass for the thickness of 125 mm wall was 
60.90 kJ/m2K whereas the thermal mass of 222 mm, 300 mm, and 400 mm walls was similar to 97.45 
kJ/m2K. It has been presented that temperature variations penetrate up to around 100 mm into the 
wall material within 24 h depending on the material type and the heat transfer rate [79,80]. In 
Apachesim the boundary of the building is calculated as the internal horizontal dimensions between 
the half-way through the thickness of the zone walls. As a result, after increasing the thickness of the 
wall above 200 mm the thermal mass value remains constant [75,81]. However, the simulation results 
of the space with different thicknesses of UCB wall revealed that with the increase of thickness the 
U-values of the walls decreased and there was an inverse relationship between the DF and wall 
thickness. This indicates that walls with a lower DF have a higher potential to dampen the heat flow 
from one surface to the other (Figure 11) which complies with the experimental results of El Fgaier et 
al. [50]. 
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Figure 11. Outdoor and indoor temperatures for wall construction of different thicknesses of UFB (a) 
summer day; (b) winter day. 

7.3. Effects of Different Orientations 

Figure 12a,b illustrate that the indoor temperature fluctuation curve is similar for all the building 
orientations, while 0° orientation (when the elongated sides face the north and south directions) 
(Figure 7) resulted in comparatively lower temperature during the summertime and higher in the 
winter. However, 90° orientation (when the elongated sides face the east and west directions) showed 
the opposite results. Besides, the energy consumption results (Figure 12c) revealed that the best 
building orientation for the tropics was 0°, followed by 135° and 45°. The worst orientation was 90° 
as it caused heat gain through the large exposed surface area in the summer. Hence, in the tropical 
climate regarding building orientation, it is recommended to design the elongated axis of the building 
along 90° to minimise the direct solar heat penetration into the building [82]. 
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Figure 12. Simulation results for different orientations of modelled space (a) indoor room 
temperatures for summer day; (b) indoor room temperatures for winter day, (c) total yearly energy 
consumptions. 
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7.4. Effects of Different Wall Constructions 

Figure 8 illustrates the different wall construction types used for the simulation and Table 2 
summarises the overall U-value and DF for all the wall configurations. Figure 13 presents the 
variation of the indoor air temperature with time for different wall types. The results demonstrate 
that increasing the layers to the wall caused a decrease in U-value and a lower U-value helped to 
maintain a stable indoor temperature. From the simulation results in Section 7.1, it was found that 
222 mm brick wall had U-value of 2.1 W/m2K (See Table 1) which reduced to 1.57 W/m2K when the 
plaster was added on both sides of the wall (W-1) and the inclusion of 40 mm insulation board on 
either exterior or interior of the wall (W-2, W-3) significantly decreased the U-value (0.64 W/m2K). 
The U-values of W-2 and W-3 indicated that the position of the insulation layer did not affect the U-
values of the walls. The clear cavity wall (W-4) (1.25 W/m2K) had a considerably lower U-value than 
the solid wall (W-1) as it contained trapped air in its cavity which served as a strong heat insulator. 
Addition of the insulation layer on the inner (W-5) or outer side (W-6) of the cavity wall was more 
effective compared to the filled-up cavity wall (W-7). The U-value decreased to 0.88 W/m2K and 0.78 
W/m2K when the cavity was partially (W-8) and entirely filled (W-7) with cavity insulation 
respectively. 

Table 2. Thermal performance parameter of different wall configurations and energy consumption 
for each wall type. 

Wall ID 
Description of Walls (From Outer to 

Inner Side) 
U-value 
(W/m2K) 

R-value 
(m2K/W) 

DF 
(Summer 

Day) 

Thermal 
Mass 

(kJ/m2k) 

Yearly Energy 
Consumption 

(MWh) 

W-1 
13 mm plaster, 222 mm common fired 

brick, 13 mm plaster 1.57 0.47 0.34 147.76 15 

W-2 
13 mm plaster, 222 mm common fired 
brick, 40 mm insulation board, 13 mm 

plaster  
0.64 1.40 0.16 7.80 10.20 

W-3 
13 mm plaster, 40 mm insulation 

board, 222 mm common fired brick, 
13 mm plaster 

0.64 1.40 0.08 147.76 10.20 

W-4 
13 mm plaster, 105 mm common fired 

brick, 50 mm clear cavity, 105 mm 
common fired brick, 13 mm plaster 

1.25 0.63 0.24 147.76 13.40 

W-5 

13 mm plaster, 105 mm common fired 
brick, 50 mm clear cavity, 105 mm 

common fired brick, 40 mm insulation 
board, 13 mm plaster 

0.58 1.56 0.11 7.80 9.90 

W-6 

13 mm plaster, 40 mm insulation 
board, 105 mm common fired brick, 

50 mm clear cavity, 105 mm common 
fired brick, 13 mm plaster 

0.58 1.56 0.05 147.76 9.80 

W-7 

13 mm plaster, 105 mm common fired 
brick, 50 mm cavity insulation, 105 

mm common fired brick, 13 mm 
plaster 

0.78 1.11 0.11 147.76 11 

W-8 

13 mm plaster, 105 mm common fired 
brick, 25 mm clear cavity, 25 mm 

cavity insulation, 105 mm common 
fired brick, 13 mm plaster 

0.88 0.96 0.14 147.76 11.50 

W-9 (a) 
13 mm plaster, 105 mm common fired 

brick, 50 mm clear cavity, 100 mm 
aerated concrete block, 13 mm plaster 

0.93 0.90 0.30 73.05 11.80 

W-9 (b) 

13 mm plaster, 105 mm common fired 
brick, 50 mm clear cavity, 100 mm 

heavyweight concrete block, 13 mm 
plaster 

1.39 0.55 0.22 207.90 14.10 
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W-10 (a) 

13 mm plaster, 105 mm common fired 
brick, 50 mm clear cavity, 100 mm 

aerated concrete block, 40 mm 
insulation board, 13 mm plaster 

0.50 1.83 0.15 7.80 9.50 

W-10 (b) 

13 mm plaster, 105 mm common fired 
brick, 50 mm clear cavity, 100 mm 

heavyweight concrete block, 40 mm 
insulation board, 13 mm plaster 

0.61 1.48 0.10 7.80 10 

W-11 (a) 

13 mm plaster, 40 mm insulation 
board, 105 mm common fired brick, 
50 mm clear cavity, 100 mm aerated 

concrete block, 13 mm plaster 

0.50 1.83 0.07 73.05 9.40 

W-11 (b) 

13 mm plaster, 40 mm insulation 
board, 105 mm common fired brick, 

50 mm clear cavity, 100 mm 
heavyweight concrete block, 13 mm 

plaster 

0.61 1.48 0.05 207.90 10 

W-12 (a) 

13 mm plaster, 105 mm common fired 
brick, 50 mm cavity insulation, 100 
mm aerated concrete block, 13 mm 

plaster 

0.64 1.38 0.17 73.05 10.30 

W-12 (b) 

13 mm plaster, 105 mm common fired 
brick, 50 mm cavity insulation, 100 
mm heavyweight concrete block, 13 

mm plaster 

0.84 1.03 0.09 207.90 11.30 

W-13 (a) 

13 mm plaster, 105 mm common fired 
brick, 25 mm clear cavity, 25 mm 
cavity insulation, 100 mm aerated 

concrete block, 13 mm plaster 

0.71 1.23 0.20 73.05 10.60 

W-13 (b) 

13 mm plaster, 105 mm common fired 
brick, 25 mm clear cavity, 25 mm 

cavity insulation, 100 mm 
heavyweight concrete block, 13 mm 

plaster 

0.95 0.88 0.12 207.90 11.90 
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Figure 13. Indoor room temperatures for different wall constructions (a) summer day; (b) winter day. 

The DF of the solid brick wall was measured as 0.55 which decreased to 0.34 when the plaster 
was added on both sides. But when a 40 mm thermal insulation board was placed on the outside wall 
DF significantly decreased to 0.08. But the DF was found to be higher (0.16) when a similar insulation 
board was placed on the inside surface of the wall. Moreover, the clear cavity wall had a higher DF 
(0.24) compared to the filled (0.11) or partially filled (0.14) cavity wall. However, with the lowest DF 
(0.05) cavity wall with outside insulation (W-6) had the greatest thermal performance. Similar 
conclusions were observed by the experimental results of Vijayalakshmi et al. [83] and theoretical 
models of Ozel [84]. The results can be demonstrated from the heat storage method of the building 
material. The heat flow rate from the outside to the inside of the building is reduced when the 
insulation layer is placed on the external surface of the wall. As a result, it takes a longer duration to 
reach the full thermal storage capacity of the material which ultimately decreases the TL. However, 
inside insulation placement has less effect on this heat storage process, thus material can reach its full 
thermal capacity within a short period of time. Hence, it is suggested that the best placement of the 
insulation layer should be near the heat entrance point. Consequently, in the hot climate exterior 
insulation performs the best whereas in the cold climate middle insulation layer can be more efficient 
[16,83]. 

The performances of different wall types varied according to the hot and cold weather. This 
variation can be described through comparison of W-2, W-3, or W-5, W-6. From Figure 14, it can be 
seen that W-2 and W-3 with an equal U-value (0.64 W/m2K) but different thermal mass of 7.80 kJ/m2K 
(W-4) and 147.76 kJ/m2K (W-5) exhibited similar response in the winter days. While in the summer 
the two walls showed very different characteristics. The indoor temperature in the winter is often 
higher than the outside temperature resulting in a one-way heat transfer that is from the inside to the 
outside. But during the summer heat flow occurs in both directions. As a result, during the summer 
days, indoor temperatures of the spaces began to overlap one another. Though several authors 
explained it as the effectiveness of the thermal mass of these materials with the environment [11,85].  
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Figure 14. Indoor room temperatures of Wall-2 and Wall-3 (a) summer day; (b) winter day. 

This study further investigated the thermal performances of composite walls consisting of 
combinations of CFB and concrete block (ACB and HCB). The yearly energy consumption results 
showed that because of the good thermophysical properties of ACB described in section A, the 
combinations of CFB and ACB walls performed better (W-9(a), W-10(a), W-11(a), W-12(a), W-13(a)) 
than other combinations of the walls such as only CFB layers (W-4, W-5, W-6, W-7, W-8) or CFB and 
HCB layers (W-9(b), W-10(b), W-11(b), W-12(b), W-13(b)). However, walls constructed with CFB and 
HCB presented a better performance in dampening outdoor temperature fluctuations compared to 
the walls with CFB and ACB (Figure 13). It could be attributed to the significantly higher thermal 
mass of CFB and HCB combination walls compared to the CFB and ACB combination walls. 

7.5. Effects of Different Shape Factors 

Simulation results of the following three cases where the surface-to-volume ratio ( eS V ), surface-
to-heated floor area ratio ( e tempS A ), and heated floor area to volume ratio ( tempA V ) were calculated 

are presented in Table 3. 

• Case 1 (Group a): For the first case, buildings with an equal volume (432 m3), heated floor area 
(72 m2), and height (6 m) but different surface areas were simulated. The simulation results 
presented that with the increase of eS V  and e tempS A  ratio the energy demand increased. It is 

due to the increased exposed surface areas which caused additional heat gain and heat loss 
during the summer and winter respectively. 
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• Case 2 (Group b): In the second case, the volumes (432 m3) of the three modelled buildings were 
considered the same, however, heights, external surface areas, and net floor areas were different. 
It was found that, with the increase of height, the external surface area increased and the net 
floor area decreased. This indicates that eS V  and e tempS A  ratios are higher in the tall 

buildings. Besides, in the case of low height buildings, the ratios gradually reduced and lower 
ratios showed lesser energy consumption and heat gain [58]. 

• Case 3 (Group c): For this group of buildings, the surface areas of the buildings were equal (216 
m2) but building heights were increased gradually. The results showed that with the increase of 
height, the volume and net floor area decreased. Also, both the eS V  and e tempS A  ratios 

increased and it caused the energy demand to decrease. In this case, another factor which is 
tempA V  can be considered. It can be seen that for the equal surface area of the spaces with the 

decrease of heated floor area the tempA V  ratio also decreased which caused a reduction in the 

energy demand. But the result was converse for group b, however, in that group increased 
surface area explains the heat gain and loss. 

Table 3. Yearly energy consumptions for the different shapes of the studied buildings. 

Building 
Form. 

Height 
(m) 

 𝑽 
(m3) 

 𝑺𝒆 
(m2) 

 𝑨𝒕𝒆𝒎𝒑 
(m2)  𝑺𝒆𝑽    𝑺𝒆𝑨𝒕𝒆𝒎𝒑   𝑨𝒕𝒆𝒎𝒑𝑽   Yearly Energy 

Consumption 
(MWh) 

Case no. 01 
A 6 432 216 72 0.50 3.00 0.17 17.60 
B 6 432 264 72 0.61 3.70 0.17 19.80 
C 6 432 324 72 0.75 4.50 0.17 22.50 

Case no. 02 
D 12 432 312 36 0.72 9.00 0.08 19.00 
E 18 432 360 24 0.83 15.00 0.06 20.20 
F 24 432 432 18 1.00 24.00 0.04 22.90 

Case no. 03 
A 6 432 216 72 0.50 3.00 0.17 17.60 
G 9 288 216 32 0.75 6.80 0.11 13.70 
H 12 216 216 18 1.00 12.00 0.08 12.30 

8. Conclusions 

This paper presents the fundamental computer-based simulation experiments of different 
opaque wall materials and wall configurations in the tropical climate conditions to understand in 
detail the dynamic thermal and energy performances of the wall materials. Although the models 
represented situations that were not under the real building operation conditions, however, this 
approach was considered to accurately assess the thermal responses of the envelope wall materials. 
Although certain improvements in the parametric analysis are required to evaluate the 
understanding of the living comfort condition. 

The main conclusions can be drawn from the simulation studies as follows: 

• The heat transfer rate into the building highly depends on the thermophysical properties of the 
wall materials. It can be seen that the material’s capability to dampen the indoor temperature 
fluctuation is inversely proportional to the U-value and thermal diffusivity. Besides, materials 
having high heat storage capacity decreased the DF, while high thermal diffusivity contributed 
to the reverse effects. The ACB performed the best of the four types of materials analysed 
because of its lowest U-value and thermal diffusivity while UFB with the highest U-value and 
thermal diffusivity performed the worst. 
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• The analysis was extended by altering the thickness of the material and the results showed that 
the thermal mass improved with an increased thickness which also resulted in better thermal 
efficiency as it induced a decrease in DF.  

• The exterior walls of a building can be built as a single layer or multilayers to provide sufficient 
thermal storage capacity to achieve proper DF and TL. The simulation results revealed that the 
inclusion of layers and insulation to the wall contributed to decreasing the DF. Besides, the 
location of the insulation layers had no impact on the overall U-value of the walls but 
significantly affected the DF. When different walls were constructed only with common fired 
brick, the best performance was achieved by the cavity wall W-6. However, among all other 
configurations examined with the combination of fired brick and concrete blocks, the cavity wall 
W-11(a) performed the best. In both cases, insulation was located outside the wall (near the heat 
entrance point). 

• Moreover, the energy consumption of the spaces significantly varied depending on the shape 
factor of the spaces. The results indicated that the energy consumption increased with the 
increase of surface area and volume of the building. However, it decreased as the heated floor 
area decreased.  

• Also, the spatial orientations influenced the thermal performances of the external walls as the 
maximum surface area exposed to the solar radiation caused high heat gain. The best 
performance for the tropical climate conditions was obtained for the building having the 
elongated surfaces oriented to the north-south. 

Therefore, during the preliminary design process, this simplified simulation approach may 
guide the designers to assess the effects of various building shapes, wall materials, thicknesses, and 
wall compositions on indoor thermal comfort and energy efficiency of the tropical buildings. It may 
also help to select the best solution for a building to match its functional requirements. For example, 
a wall having high heat storage capacity but low thermal diffusivity would be ideal for the spaces 
that are used for a long period whereas a wall with low heat storage capacity would be preferred for 
the spaces that are used for a limited time in a day [16]. 
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