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STRICT COMPARISON FOR C∗-ALGEBRAS ARISING FROM ALMOST
FINITE GROUPOIDS

PERE ARA, CHRISTIAN BÖNICKE, JOAN BOSA, AND KANG LI

Abstract. In this paper we show that for an almost finite minimal ample groupoid G, its
reduced C∗-algebra C∗

r (G) has real rank zero and strict comparison even though C∗
r (G) may

not be nuclear in general. Moreover, if we further assume G being also second countable and
non-elementary, then its Cuntz semigroup Cu(C∗

r (G)) is almost divisible and Cu(C∗
r (G)) and

Cu(C∗
r (G)⊗Z) are canonically order-isomorphic, where Z denotes the Jiang-Su algebra.

Almost finiteness for an ample groupoid was introduced by Matui in [20]. He studied their
topological full groups as well as the applications of almost finiteness to the homology of étale
groupoids (see [21] for a survey of results in this direction). In [12], David Kerr specialised
to almost finite group actions and treated them as a topological analogue of probability
measure preserving hyperfinite equivalence relations, with the ultimate goal of transferring
ideas from the classification of equivalence relations and von Neumann algebras to the world
of (amenable) topological dynamics and C∗-algebras.

Recently, the classification program for C∗-algebras has culminated in the outstanding the-
orem that all separable, simple, unital, nuclear, Z-stable C∗-algebras satisfying the universal
coefficient theorem (UCT) are classified by their Elliott-invariant (see [30, Corollary D] and
[8, Corollary D]). Recall that a C∗-algebra is Z-stable if A ⊗ Z ∼= A, where Z denotes the
so-called Jiang-Su algebra. By the Toms-Winter conjecture Z-stability is conjecturally equiv-
alent to strict comparison (or equivalently, almost unperforation of the Cuntz semigroup) for
separable, simple, nuclear, non-elementary C∗-algebras. It is known that Z-stability implies
strict comparison in general and the converse is indeed the last remaining open step in the
Toms-Winter conjecture (see [33] for an overview and [7] for the state of the art for the
conjecture).

Going back to topological dynamics, David Kerr’s approach in [12] has seen dramatic suc-
cess. He was able to show that a crossed product C(X)oΓ associated to a free and minimal
action of an (amenable) infinite group Γ is Z-stable provided that the action is almost finite
(see [12, Theorem 12.4]). Combining this with the recent result in [13, Theorem 8.1], which
states that every free action of a countably infinite (amenable) group with subexponential
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growth on a compact metrizable space with finite covering dimension is almost finite, we get
a huge supply of classifiable C∗-algebras arising from topological dynamics (see [13, Theo-
rem 8.2]). On the other hand, important results by Kumjian [16] and Reanult [25] show that
(twisted) étale groupoids play a role in C∗-algebras similar to the role of probability measure
preserving equivalence relations play in the theory of von Neumann algebras. Moreover, Xin
Li proved in [18] that every separable, simple, unital, nuclear, Z-stable C∗-algebra satisfying
the UCT has a twisted étale groupoid model. Consequently, we are led to study Z-stability
and strict comparison of groupoid C∗-algebras.

In this article we take a step in this direction by considering the case of étale groupoids
with a zero-dimensional compact unit space. Indeed, we take a slightly different route than
Kerr and verify the last condition in the Toms-Winter conjecture for C∗-algebras arising from
almost finite groupoids:
Theorem A. Let G be an almost finite minimal ample groupoid with compact unit space.
Then its reduced groupoid C∗-algebra C∗r (G) has strict comparison and real rank zero. In
particular, the Cuntz semigroup Cu(C∗r (G)) is almost unperforated.

If we furthermore assume that G is second-countable and non-elementary1, then Cu(C∗r (G))
is almost divisible and Cu(C∗r (G)) ∼= Cu(C∗r (G) ⊗ Z) order-isomorphic via the first factor
embedding.

The class of groupoids (and their C*-algebras) under study in Theorem A may have bizarre
properties. Indeed, part of the novelty of this result is that it holds even for non-separable
and non-nuclear C*-algebras. For instance, Gabor Elek constructed in [9, Theorem 6] a non-
amenable minimal almost finite ample groupoid G so that C∗r (G) is not nuclear. In addition,
we show in Remark 2.10 that the C∗-algebra C∗r (G) of an almost finite ample groupoid may
not even be exact.

In [28] Suzuki develops a new strategy which in essence is a local version of Phillips’ large
subgroupoid technique ([22]). Using this method, he is able to verify that almost finite
minimal groupoid C*-algebras have stable rank 1. Moreover, in [28, Remark 4.3] he claims
that a suitably adapted strategy indeed also yields real rank zero and strict comparison for
such groupoid C∗-algebras. In this note we carry out all the necessary intermediate steps
(some of which might be of independent interest) in detail, as we believe concrete proofs of
these facts would be a useful contribution to the literature.

As mentioned before, Toms-Winter conjecture predicts that C∗r (G) in the above theorem
should be Z-stable, provided that G is also assumed to be amenable. Combining Theorem A
and Proposition 2.2 with the main theorems in [15, 31, 27, 6], we obtain the following:
Corollary B. Let G be an amenable minimal second-countable non-elementary almost finite
ample groupoid with compact unit space. Let M(G) be the compact convex set of invariant
positive regular Borel probability measures on G(0).

If the extremal boundary of M(G) is compact and finite-dimensional in the weak∗-topology,
then C∗r (G) is a separable simple unital nuclear Z-stable C∗-algebra.
Remark 0.1. In a very recent article Castillejos, Evington, Tikuisis and White proved
that the Toms-Winter conjecture holds among separable simple nuclear, non-elementary
C∗-algebras which have uniform property Γ (see [7, Definition 2.1 and Theorem A]). This

1That is to say G � Rn for any n ∈ N, where Rn is the discrete full equivalence relation on {1, . . . , n}.
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provides an alternative way of obtaining Corollary B since, whenever G is an amenable, mini-
mal, second-countable, non-elementary, étale groupoid with compact unit space such that the
extremal boundary of M(G) is compact and finite-dimensional in the weak∗-topology, then
the reduced groupoid C∗-algebra C∗r (G) has uniform property Γ if G is either principal by [7,
Proposition 5.7] and [19, Lemma 4.3] or almost finite by Proposition 2.2.

Throughout the paper, all groupoids are assumed to be locally compact, Haus-
dorff, and their unit spaces are assumed to be compact and totally disconnected.

1. Preliminaries

In this first section, we will recall some background about both C∗-algebras and groupoids.
We encourage the reader to look at [2] for further details about these topics.

1.1. The Cuntz semigroup and Murray-von Neumann semigroup. Let A be a C∗-
algebra and let K denote the algebra of compact operators on a separable infinite-dimensional
Hilbert space. Let (A⊗K)+ denote the set of positive elements inA⊗K. Given a, b ∈ (A⊗K)+,
we say that a is Cuntz subequivalent to b (in symbols a - b), if there is a sequence (vn) in
A ⊗ K such that a = limn vnbv

∗
n. We say that a and b are Cuntz equivalent (in symbols

a ∼ b), if both a - b and b - a. The relation - is clearly transitive and reflexive and ∼ is an
equivalence relation on (A⊗K)+.

We define the Cuntz semigroup of a C∗-algebra A to be Cu(A) = (A ⊗ K)+/ ∼, and the
equivalence class of a ∈ (A ⊗ K)+ in Cu(A) is denoted by 〈a〉. In particular, Cu(A) is a
partially ordered abelian semigroup equipped with order and addition as:

〈a〉 ≤ 〈b〉 ⇔ a - b, 〈a〉+ 〈b〉 = 〈a⊕ b〉,
using a suitable isomorphism between M2(K) and K.

Similarly, the Murray-von Neumann semigroup V (A) of a C∗-algebra A is defined as the
set of Murray-von Neumann equivalence classes of projections in (A ⊗ K). Recall that for
p and q projections in (A ⊗ K), we say that p and q are Murray-von Neumann equivalent if
there exists v ∈ (A ⊗ K) with p = vv∗ and q = v∗v. The class of a projection p ∈ (A ⊗ K)
in V (A) is denoted by [p]. We also say that p is Murray-von Neumann subequivalent to q if
p is Murray-von Neumann equivalent to a subprojection of q. It is worth mentioning that
when A is a stably finite C∗-algebra, the natural map V (A) → Cu(A) given by [p] 7→ 〈p〉
is an injective order-embedding. In this article we are only concerned with stably finite C∗-
algebras. Hence, we will use this order-embedding without further mention. We encourage
the readers to look at [3] for further details.

1.2. Strict comparison. Let T (A) be the tracial state space of a C∗-algebra A. Given
τ ∈ T (A), there is a canonical extension of τ to a trace τ∞ : (A ⊗ K)+ → [0,∞]. Abusing
notation, we usually denote τ∞ by τ . The induced lower semicontinuous dimension function
dτ : (A⊗K)+ → [0,∞] is given by

dτ (a) := lim
n
τ(a 1

n ),

for a ∈ (A⊗K)+.
If a, b ∈ (A ⊗ K)+ satisfy a - b, then dτ (a) ≤ dτ (b). Therefore, dτ induces a well-defined,

order-preserving map Cu(A)→ [0,∞], which we also denote by dτ .
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Definition 1.1. Let A be a unital simple C∗-algebra. We say that A has strict comparison
(with respect to tracial states) if for all a, b ∈ (A⊗K)+ we have a - b whenever dτ (a) < dτ (b)
for all τ ∈ T (A).

If a unital simple C∗-algebra A has strict comparison (with respect to tracial states), then
its Cuntz semigroup Cu(A) is almost unperforated in the sense that whenever 〈a〉, 〈b〉 ∈ Cu(A)
satisfy (k+1)〈a〉 ≤ k〈b〉 for some k ∈ N, it follows that 〈a〉 ≤ 〈b〉. If A is an exact C∗-algebra,
then every finite-valued 2-quasitrace on A is a trace (see [11]). Hence, the converse implication
holds for all unital simple exact C∗-algebras (see [29, Remark 9.2. (3)]).

1.3. Groupoids. Given a groupoid G we usually denote its unit space by G(0) and write
r, s : G→ G(0) for the range and source maps, respectively. In this paper, we will only consider
groupoids equipped with a locally compact, Hausdorff topology making all the structure maps
continuous. A groupoid G is called étale if the range map, regarded as a map r : G→ G, is
a local homeomorphism, and it is called ample if additionally, the unit space G(0) is totally
disconnected. Moreover, a subset V ⊆ G is called bisection if the restrictions of the source
and range maps to V are homeomorphisms onto their respective images. Recall that every
ample groupoid G admits a basis for its topology consisting of compact and open bisections.

The product of two subsets A,B ⊆ G in G is given by
AB = {ab ∈ G | a ∈ A, b ∈ B, s(a) = r(b)}.

Whenever B = {x} for a single element x ∈ G(0), we will omit the braces and just write Ax.
For a subset D ⊆ G(0), we say that the set D is G-invariant if for every g ∈ G we have

r(g) ∈ D ⇔ s(g) ∈ D, and we say that D is G-full if it satisfies that r(GD) = G(0). Related to
that, we say that a groupoid G is minimal if there are no proper non-trivial closed G-invariant
subsets of G(0). Moreover, a Borel measure µ on G(0) is called invariant if µ(s(V )) = µ(r(V ))
for every open bisection V ⊆ G; we will denote byM(G) the compact (in the weak∗-topology)
convex set of invariant positive regular Borel probability measures on G(0).

The isotropy groupoid of G is the subgroupoid Iso(G) = {g ∈ G | s(g) = r(g)}, and we
say that G is principal if Iso(G) = G(0). We say that G is topologically principal if the set of
points of G(0) with trivial isotropy group is dense in G(0).

Let us finish this subsection by recalling that the reduced C∗-algebra associated to an étale
groupoid G, denoted by C∗r (G), is the completion of Cc(G) by the norm coming from a single
canonical regular representation of Cc(G) on a Hilbert module over C0(G(0)) (see [24] for
further details).

1.4. Almost finiteness. In this subsection, we recall the definition of almost finiteness and
state some known properties for almost finite groupoids.

Definition 1.2. [20, Definition 6.2] Let G be an ample groupoid with compact unit space.
(1) We say that K ⊆ G is an elementary subgroupoid if it is a compact open principal

subgroupoid of G such that K(0) = G(0).
(2) Given a compact subset C ⊆ G and ε > 0, a compact subgroupoid K ⊆ G with

K(0) = G(0) is called (C, ε)-invariant, if for all x ∈ G(0) we have
|CKx \Kx|
|Kx|

< ε.
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(3) We say that G is almost finite if for every compact set C ⊆ G and every ε > 0, there
exists a (C, ε)-invariant elementary subgroupoid K ⊆ G.

Throughout the paper, whenever we say that a groupoid G is almost finite, we
also assume that G is an ample groupoid with compact unit space.

Definition 1.3. [28, Definition 3.2] Let K be a compact groupoid. A clopen castle for K is
a partition

K(0) =
n⊔
i=1

Ni⊔
j=1

F
(i)
j

into non-empty clopen subsets such that the following conditions hold:
(1) For each 1 ≤ i ≤ n and 1 ≤ j, k ≤ Ni there exists a unique compact open bisection

V
(i)
j,k of K such that s(V (i)

j,k ) = F
(i)
k and r(V (i)

j,k ) = F
(i)
j .

(2)

K =
n⊔
i=1

⊔
1≤j,k≤Ni

V
(i)
j,k .

The pair (F (i)
1 , {V (i)

j,k | 1 ≤ j, k ≤ Ni}) is called the i-th tower of the castle and the sets F (i)
j

are called the levels of the i-th tower.

Remark 1.4. Note that the uniqueness of the bisections in (2) above has an important
consequence: If θ(i)

j,k : F (i)
k → F

(i)
j denotes the partial homeomorphism corresponding to the

bisection V
(i)
j,k , i.e. θ

(i)
j,k = r ◦ (s|V (i)

j,k

)−1, then we have (θ(i)
j,k)−1 = θ

(i)
k,j, θ

(i)
j,k ◦ θ

(i)
k,l = θ

(i)
j,l , and

θ
(i)
j,j = id

F
(i)
j
.

As already mentioned in [28], every compact ample principal groupoid always admits a
clopen castle by [20, Lemma 4.7]. It follows that Definition 1.2 is equivalent to the definition
of almost finiteness given in [28, Definition 3.6] by Suzuki. Due to this fact, we will be using
both equivalent notions of almost finiteness without further notice.

Finally, let us list some facts about almost finite groupoids that will be used in the sequel:
(1) If G is an almost finite groupoid, it follows that M(G) 6= ∅ by [28, Lemma 3.9]. In

particular, its extreme boundary ∂eM(G) is non-empty as well.
(2) If G is almost finite and minimal, then G is topologically principal by [28, Lemma

3.10].
(3) Let G be an almost finite groupoid and A,B be compact open subsets of G(0). If

µ(A) < µ(B) for all µ ∈ M(G), then A - B by [2, Lemma 3.7], where A - B means
A is dynamically subequivalent to B in the sense that there exist finitely many compact
open bisections V1, . . . , Vn of G such that A = ∪ni=1s(Vi) and the sets {r(Vi)}ni=1 are
pairwise disjoint subsets of B. In particular, 1A is Murray-von Neumann subequivalent
to 1B in C∗r (G), where 1A denotes the characteristic function with support A.

2. C∗-algebras of almost finite groupoids

This section is the main part of the paper. Here we verify two important facts mentioned
without proof in [28, Remark 4.3] by Suzuki: C∗-algebras of minimal almost finite groupoids
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have real rank zero and strict comparison. These are build upon local versions of results in
[22], but there are some subtle differences which we expose below.

Let us begin by identifying the tracial states on C∗r (G), which might be of independent in-
terest. It is well-known that for a principal étale groupoid G, then the tracial states on C∗r (G)
are in a one-to-one correspondence with the invariant probability measures on G(0). Since
an almost finite groupoid G is in some sense locally approximated by principal groupoids,
it might not come as a surprise that the one-to-one correspondence persists in this more
generenal setting.

Lemma 2.1. Let G be an almost finite groupoid and τ be a tracial state on C∗r (G). Then
τ = τ|C(G(0)) ◦ E,

where E : C∗r (G)→ C(G(0)) is the canonical conditional expectation.

Proof. For convenience let τ ′ := τ|C(G(0)) ◦ E. It is enough to show that for every fixed
f ∈ Cc(G), we have |τ(f ∗f) − τ ′(f ∗f)| < ε for any ε > 0, since the linear span of elements
of the form f ∗f is dense in C∗r (G). We may assume that ‖f‖ ≤ 1 as well. As supp(f ∗f) is
compact we can find compact open bisections V1, . . . , VN in G such that supp(f ∗f) ⊆ ⋃Ni=1 Vi.
Let V be the (compact and open) union of the Vi. Applying almost finiteness of G now,
we can find a (V ∪ V −1, ε

2N )-invariant elementary subgroupoid K of G. Clearly, K is also
(Vi ∪ V −1

i , ε
2N ) invariant for every 1 ≤ i ≤ N . The restrictions of τ and τ ′ to the subalgebra

C(G(0)) define the same G-invariant probability measure µ ∈ M(G). Since K is compact
open in G with K(0) = G(0), we can also view µ as an element in M(K). By [28, Lemma 3.8]
we have |µ(r(Vi \K))| < ε

2N for every 1 ≤ i ≤ N . Hence, we get

|µ(r(V \K))| ≤
N∑
i=1
|µ(r(Vi \K))| < ε

2 .

In other words, if p := χr(V \K) denotes the characteristic function of r(V \K), then

τ(p) = τ ′(p) < ε

2 .

We can now follow the arguments in [22, Lemma 2.10] to get the result. For the convenience
of the reader we reproduce the argument here: First, note that from ((1 − p)f ∗f)(g) =
(1− p)(r(g))f ∗f(g) and the definition of p, it follows that (1− p)f ∗f ∈ C(K). By taking the
adjoint, we also get f ∗f(1− p) ∈ C(K). Since p ∈ C(K), it follows that

f ∗f − pf ∗fp = (1− p)f ∗f + pf ∗f(1− p) ∈ C(K).
Since K is a principal groupoid, τ and τ ′ coincide on the C∗-subalgebra C∗r (K) ⊆ C∗r (G) (see
for example [19, Lemma 4.3]). In particular, we get

τ(f ∗f − pf ∗fp) = τ ′(f ∗f − pf ∗fp).
On the other hand, it follows from pf ∗fp ≤ ‖f‖2p ≤ p, that we have 0 ≤ τ(pf ∗fp) ≤ τ(p) < ε

2
and similarly 0 ≤ τ ′(pf ∗fp) ≤ τ ′(p) < ε

2 . Combining these facts we arrive at

|τ(f ∗f)− τ ′(f ∗f)| = |τ(pf ∗fp)− τ ′(pf ∗fp)| < ε,

as desired. �



STRICT COMPARISON FOR C∗-ALGEBRAS ARISING FROM ALMOST FINITE GROUPOIDS 7

Recall that M(G) denotes the compact (in the weak∗-topology) convex set of invariant
positive regular Borel probability measures on G(0), and T (C∗r (G)) denotes the tracial state
space of C∗r (G).

Proposition 2.2. Let G be an almost finite groupoid. Then the canonical map T (C∗r (G))→
M(G) is an affine homeomorphism. In particular, we can also identify their extreme bound-
aries ∂eT (C∗r (G)) = ∂eM(G), which are non-empty.

Proof. It is well-known that this map is affine, continuous, and surjective. Injectivity now
follows from Lemma 2.1. By the affineness we also have that ∂eT (C∗r (G)) = ∂eM(G), which
are non-empty as M(G) 6= ∅. �

Let us now focus on the proofs of real rank zero and strict comparison. For many of the
intermediate steps in the proof, we only need the hypothesis that G(0) admits an invariant
measure with full support (i.e., µ ∈M(G) such that supp(µ) = G(0)). Clearly, every measure
in M(G) 6= ∅ has full support for a minimal almost finite groupoid G (see [20, Lemma 6.8]).

Lemma 2.3. Let G be an almost finite groupoid such that G(0) admits a full-supported invari-
ant measure. For every finite subset F ⊆ Cc(G) and every ε > 0, there exists an elementary
subgroupoid K ⊆ G and a compact open subset W ⊆ G(0) such that if p := χW is the
characteristic function on W , then the following are satisfied:

(1) r(supp(f) ∩ (G \K)) ∪ s(supp(f) ∩ (G \K)) ⊆ W for all f ∈ F ,
(2) ‖(1− p)f(1− p)‖ > ‖f‖ − ε for all f ∈ F , and
(3) τ(p) < ε for all τ ∈ T (C∗r (G)).

Proof. By [14, Corollary 2.4], the condition about the existence of a full-supported invariant
measure ν guarantees that the associated regular representation π : C∗r (G)→ B(L2(G, ν)) is
injective.

Using that, write F = {f1, . . . , fk}, and choose functions ξ1, . . . , ξk, η1, . . . , ηk ∈ Cc(G) such
that ‖ξi‖ = ‖ηi‖ = 1 and |〈π(fi)ξi, ηi〉| > ‖fi‖− ε for all 1 ≤ i ≤ k. Consider the compact set

C :=
k⋃
i=1

supp(fi) ∪ supp(f ∗i ) ∪ supp(ξi) ∪ supp(ηi).

Since G is ample, we can cover C by finitely many compact open bisections V1, . . . , Vl and we
let V := V1 ∪ · · · ∪ Vl. Let 0 < δ < ε to be determined. As G is almost finite, we can find a
(V ∪V −1, δ2l)-invariant elementary subgroupoid K ⊆ G. LetW := r(V \K)∪s(V \K) (which
depends on the choice of δ). Then (1) is clearly satisfied by W . Moreover, if τ ∈ T (C∗r (G)),
then there exists a µ ∈ M(G) such that τ(χA) = µ(A) for every compact open subset
A ⊆ G(0). By [28, Lemma 3.8] we have µ(r(Vi \ K)) < δ

2l and µ(s(Vi \ K)) < δ
2l for all

1 ≤ i ≤ l, and hence

τ(p) = µ(W ) ≤
l∑

i=1
µ(r(Vi \K)) + µ(s(Vi \K)) < δ < ε.
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It remains to check (2): Let R := max1≤i≤l supx∈G(0)
∑
g∈Gx|ξi(g)|2. Then we have

‖π(1− p)ξi − ξi‖2 = ‖π(p)ξi‖2

= 〈π(p)ξi, ξi〉

=
∫
G(0)

∑
g∈Gx

p(r(g))ξi(g)ξi(g)dν(x)

=
∫
W

∑
g∈Gx

|ξi(g)|2dν(x) ≤ ν(W )R < Rδ.

Similarly, ‖π(1− p)ηi− ηi‖ < R′δ with R′ chosen as R, but with the ξi replaced by ηi. Using
this and that |〈π(fi)ξi, ηi〉| > ‖fi‖ − ε, we can choose δ (and hence W and p) so small, such
that

|〈π(fi)π(1− p)ξi, π(1− p)ηi〉| > ‖fi‖ − ε
for 1 ≤ i ≤ k. Hence, we get

‖(1− p)fi(1− p)‖ = ‖π((1− p)fi(1− p))‖
≥ |〈π(fi)π(1− p)ξi, π(1− p)ηi〉|
> ‖fi‖ − ε,

as desired. �

The following lemma is a local version of [22, Lemma 3.3] for finite sets of projections.
The proof follows almost verbatim to [22, Lemma 3.3], just using Lemma 2.3 instead of [22,
Lemma 3.1]. We include the proof for completeness.

Lemma 2.4. Let G be an almost finite groupoid such that G(0) admits a full-supported invari-
ant measure. Then for every finite set of projections E = {e1, . . . , en} ⊆ C∗r (G) and ε > 0,
there exists an elementary subgroupoid K ⊆ G and projections q1, . . . , qn ∈ C∗r (K) such that
qi - ei and τ(ei)− τ(qi) < ε for all τ ∈ T (C∗r (G)).

Proof. Without loss of generality we may assume that ε < 6. Choose δ0 > 0 such that
whenever A is a C∗-algebra and p1, p2 ∈ A are projections with ‖p1p2 − p2‖ < δ0, then
p2 - p1. Let f : [0,∞) → [0, 1] be the continuous function given by f(t) = 6t

ε
for 0 ≤ t ≤ ε

6
and 1 otherwise. Now choose δ > 0 such that whenever A is a C∗-algebra and a1, a2 ∈ A are
positive elements with ‖a1‖, ‖a2‖ ≤ 1 and ‖a1 − a2‖ < δ, then ‖f(a1)− f(a2)‖ < δ0

2 .
Since Cc(G) is dense in C∗r (G), there exist selfadjoint elements d1, . . . , dn ∈ Cc(G) with
‖di‖ ≤ 1 and

‖ei − di‖ < min(δ2 ,
ε

6), 1 ≤ i ≤ n.

Now apply Lemma 2.3 to F = {d1, . . . , dn} and ε > 0 to obtain a projection p = χW ∈
C(G(0)) ⊆ C∗r (G) and an elementary subgroupoid K ⊆ G, such that r(supp(di) ∩ (G \K)) ∪
s(supp(di) ∩ (G \K)) ⊆ W for i = 1, . . . , n, and τ(p) < ε/6 for all τ ∈ T (C∗r (G)). Then, we
have

((1− p)di)(g) =
∑

h∈Gr(g)

(1− p)(h)di(h−1g) = (1− p)(r(g))di(g),
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which can only be nonzero if g ∈ K. Hence, we have (1 − p)di ∈ C∗r (K) and di(1 − p) =
((1− p)di)∗ ∈ C∗r (K). For every τ ∈ T (C∗r (G)), we have that τ(pei(1− p)) = 0. Hence,

τ((1− p)ei(1− p)) = τ(ei)− τ(eip) ≥ τ(ei)− τ(p) > τ(ei)−
ε

6 .

Moreover, using that ‖d2
i − e2

i ‖ ≤ ‖d2
i − diei‖+ ‖diei − e2

i ‖ ≤ ε
3 we obtain that

τ(di(1− p)di) = τ((1− p)d2
i (1− p)) > τ(ei)−

ε

2 .

Also, each di(1− p)di is a positive element in C∗r (K). Let g, h : [0,∞)→ [0, 1] be given by

g(t) =


0 0 ≤ t ≤ ε

6
6ε−1t− 1 ε

6 ≤ t ≤ ε
3

1 ε
3 ≤ t

and h(t) =
{
t 0 ≤ t ≤ ε

6
ε
6

ε
6 ≤ t

Then put ai := f(di(1− p)di), bi := g(di(1− p)di), and ci := h(di(1− p)di). It follows that
ai, bi, ci ∈ C∗r (K) are positive elements for all 1 ≤ i ≤ n. Moreover, we have the following
relations: aibi = bi, bi + ci ≥ di(1 − p)di, ‖ai‖ ≤ 1, ‖bi‖ ≤ 1 and ‖ci‖ ≤ ε

6 . In particular we
have τ(ci) ≤ ε

6 for every τ ∈ T (C∗r (G)), whence

τ(bi) = τ(bi + ci)− τ(ci) ≥ τ(di(1− p)di)−
ε

6 > τ(ei)−
2ε
3 .

Now use the fact that C∗r (K) is an AF-algebra to apply [22, Lemma 3.2], which gives us
projections qi ∈ biC∗r (K)bi such that aiqi = qi and ‖qibi− bi‖ < ε

6 . Then ‖qibiqi− bi‖ <
ε
3 . So

for every τ ∈ T (C∗r (G)) we have

τ(qi) ≥ τ(qibiqi) > τ(bi)−
ε

3 > τ(ei)− ε,

which is equivalent to τ(ei)− τ(qi) < ε. It remains to show, that qi - ei: Since ‖di‖ ≤ 1, we
have
‖di(1− p)di − ei(1− p)ei‖ < ‖di(1− p)di − ei(1− p)di‖+ ‖ei(1− p)di − ei(1− p)ei‖

≤ 2‖di − ei‖
< δ.

The choice of δ then yields ‖ai − f(ei(1− p)ei)‖ < δ0
2 . Using the equality eif(ei(1− p)ei) =

f(ei(1 − p)ei), we obtain ‖eiai − ai‖ < δ0. Since aiqi = qi, we also have ‖eiqi − qi‖ =
‖eiaiqi − aiqi‖ ≤ ‖eiai − ai‖‖qi‖ < δ0. From the choice of δ0 we conclude that qi - ei as
desired. �

The following Lemma is the special tool needed to show Theorem 2.6.

Lemma 2.5. Let K be an elementary groupoid. Then for each projection p ∈ C∗r (K) there
exists a projection q ∈ C(K(0)) such that p ∼ q.

Proof. We know that C∗r (K) ∼=
⊕m
i=1 Mni

(C(Ai)) for some ni ∈ N and pairwise disjoint clopen
subsets A1, . . . , Am ⊆ K(0). Hence, it is enough to prove the claim for an algebra of the form
Mn(C(X)) for a compact and totally disconnected Hausdorff space X. So let p ∈Mn(C(X))
be a projection. We may assume that p 6= 0, otherwise there is nothing to prove. Then
x 7→ Tr(p(x)) is an integer valued continuous function on X. Using continuity and the fact
that X is compact and totally disconnected, we can find r ∈ N, a partition X = X1t . . .tXr
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of X by clopen subsets, and 0 < n1 < . . . < nr ∈ N such that Tr(p(x)) = ni for all x ∈ Xi.
Note, that we must have nr ≤ n. For each 1 ≤ i ≤ r, let χi ∈ C(X) denote the characteristic
function on Xi. Set n0 := 0 and nr+1 := n to make the following definition consistent: for
each 1 ≤ i ≤ r let qi ∈Mni−ni−1(C(X)) be the diagonal matrix

qi :=


∑r
j=i χj 0

. . .
0 ∑r

j=i χj

 .
Each qi is a projection, since the characteristic functions χj are pairwise orthogonal. Define
q := diag(q1, . . . , qr, 0) ∈ Mn(C(X)). Then q is a projection and Tr(q(x)) = Tr(p(x)) for all
x ∈ X. Since X is totally disconnected, the result follows from [26, Excercise 3.4]. �

Theorem 2.6. Let G be an almost finite groupoid such that G(0) admits a full-supported
invariant measure. If x ∈ K0(C∗r (G)) satisfies τ∗(x) > 0 for all τ ∈ T (C∗r (G)), then there
exists a projection e ∈M∞(C∗r (G)) such that x = [e].

Proof. Write x = [q]− [p] for two projections p, q ∈Mn(C∗r (G)) for some large enough n ∈ N.
Replacing G by G × {1, . . . , n}2 and using that C∗r (G × {1, . . . , n}2) ∼= Mn(C∗r (G)), we may
assume that p, q ∈ C∗r (G). Since T (C∗r (G)) is weak-* compact, there exists ε > 0 such that
τ(q)− τ(p) = τ∗(x) > ε for all τ ∈ T (C∗r (G)). Now we apply Lemma 2.4 to E = {q, 1− p} to
obtain an elementary subgroupoid K ⊆ G and projections q0, f0 ∈ C∗r (K) such that q0 - q
and f0 - 1 − p and τ(q) − τ(q0) < ε

3 and τ(1 − p) − τ(f0) < ε
3 . Combining these three

inequalities we get
τ(q0)− τ(1− f0) > ε

3 > 0 ∀τ ∈ T (C∗r (G)).

Now since K is an elementary subgroupoid of G, we can invoke Lemma 2.5 to find projections
q1, f1 ∈ C(G(0)) such that q1 ∼ q0 - q and f1 ∼ f0 - 1− p. Hence,

τ(q1)− τ(1− f1) > 0 ∀τ ∈ T (C∗r (G)).

By Proposition 2.2 every trace corresponds to a G-invariant measure and vice versa. Since
q1, f1 must be the characteristic functions of some clopen subsets of G(0), it follows from [2,
Lemma 3.7] that 1 − f1 is Murray-von Neumann subequivalent to q1. Let q2 ∈ C∗r (G) be a
projection such that 1− f1 ∼ q2 ≤ q1. Since q1 - q, there exists a projection q′ ∈ C∗r (G) such
that q1 ∼ q′ ≤ q and since f1 - 1−p there exists f ′ ∈ C∗r (G) such that f1 ∼ f ′ ≤ 1−p. Then

x = [q]− [p] = ([q]− [q1]) + ([q1]− [q2]) + ([q2]− [p])
= [q − q′] + [q1 − q2] + [1− p− f ′] > 0,

which concludes the proof. �

As an easy application of Theorem 2.6 and the main theorem in [28], we deduce the
following corollary. Recall that a C*-algebra A has comparison of projections if, for projections
p, q ∈M∞(A), we have p - q whenever τ(p) < τ(q) for all τ ∈ T (A).

Corollary 2.7. If G is a minimal almost finite groupoid, then C∗r (G) has comparison of
projections.
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Proof. If τ(p) < τ(q) for all τ ∈ T (C∗r (G)), then by Theorem 2.6 we have [q] − [p] = [e] in
K0(C∗r (G)) for some projection e. In other words, [q] = [p⊕ e]. Since C∗r (G) has stable rank
one by [28, Main Theorem], we have that q is Murray-von Neumann equivalent to p⊕ e ≥ p,
which concludes the proof. �

Let us now turn our attention to the real rank of C∗r (G). We need the following technical
result inspired by [22, Lemma 4.1].

Lemma 2.8. Let G be an almost finite groupoid. For every finite subset F ⊆ Cc(G) and
n ∈ N, there exist an elementary subgroupoid K ⊆ G and a clopen subset W ⊆ G(0), such
that for p := χW ∈ C(G(0)) we have:

(1) f(1− p) and (1− p)f are in Cc(K) for all f ∈ F , and
(2) There exist n mutually orthogonal projections p1, . . . , pn ∈ C(G(0)), such that pi ∼ p

in C∗r (G) for all 1 ≤ i ≤ n.

Proof. Let F ⊆ Cc(G) be a finite subset and n ∈ N. Consider the compact set C :=⋃
f∈F supp(f)∪supp(f ∗). Find compact open bisections V1, . . . , Vl such that C ⊆ ⋃li=1 Vi =: V .

Then we can use almost finiteness of G to find a (V ∪ V −1, 1
2(n+1)l)-invariant elementary

subgroupoid K ⊆ G. Let W := r(V \K) ∪ s(V \K) and p := χW ∈ C∗r (G). Then p satisfies
(1), since for all f ∈ F we can compute

((1− p)f)(g) =
∑

h∈Gr(g)

(1− p)(h)f(h−1g) = (1− p)(r(g))f(g),

and the latter quantity can only be non-zero if g ∈ K by the definition of p. Similar reasoning
yields f(1− p) ∈ Cc(K).

We now aim to show that p also satisfies (2). To this end we first show the following inter-
mediate claim, which basically says that in any given tower of a castle for K that intersects
W , we have enough levels to allow for at least n pairwise disjoint copies of W all equivalent
in the dynamical sense to W .

Before that, recall that by the same arguments as in the proof of Lemma 2.3 we have

µ(W ) < 1
n+ 1 for all µ ∈M(G). (2.1)

Claim. There exists 0 < ε < 1
n+1 , a compact subset L ⊆ G and a (L, ε)-invariant elementary

subgroupoid K ′ ⊆ G admitting a clopen castle

G(0) =
N⊔
i=1

Ni⊔
j=1

F
(i)
j , K ′ =

N⊔
i=1

Ni⊔
l,k=1

V
(i)
k,l ,

such that for all 1 ≤ i ≤ N we have
Ni > (n+ 1) ·

∣∣∣{j | F (i)
j ∩W 6= ∅}

∣∣∣. (2.2)

Proof of Claim. Suppose the claim is not true. Using almost finiteness, for every 0 < ε <
1

n+1 and compact subset L ⊆ G, there exists a m := (L, ε)-invariant elementary subgroupoid
Km ⊆ G admitting a clopen castle. By refining the tower-decomposition according to [2,
Lemma 3.4], we may as well assume that every level of every tower of the castle is either
contained in or disjoint from W . Since we assumed that the claim is not true, in each such
clopen castle there must be at least one tower for which the inequality 2.2 does not hold.
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Denoting the mentioned tower (and levels) by Fm := (F (im)
j , θ

(im)
j,k )1≤j,k≤Nm , let xm ∈ F

(im)
1

and define the associated probability measure on B ⊆ G(0) by

µm(B) = 1
Nm

Nm∑
j=1

δxm(θ(im)
1,j (B ∩ F (im)

j )).

Then, using that inequality 2.2 does not hold, for all m we have that

µm(W ) ≥
Nm∑
j=1

µm(F (im)
j ∩W ) =

∣∣∣{j | F (im)
j ∩W 6= ∅}

∣∣∣
Nm

≥ 1
n+ 1 .

Then, it can be verified that any weak-∗-cluster point of the net (µm)m is a G-invariant
probability measure on G(0) (see the proof of [2, Lemma 3.7] for more details). If µ ∈M(G)
is one of those, it also satisfies µ(W ) ≥ 1

n+1 ; thus, it contradicts the inequality 2.1. �
Now suppose we are given a clopen castle as in the claim with associated partial homeomor-

phisms θ(i)
k,l implemented by the bisections V (i)

k,l . For ease of notation, let li :=
∣∣∣{j | F (i)

j ∩W 6=
∅}
∣∣∣. We can relabel the levels if necessary to assume that W sits at the bottom of each tower,

i.e. F (i)
j ∩W = ∅ if and only if j > li for all 1 ≤ i ≤ N . Then, for each 1 ≤ k ≤ n let

Wk :=
N⋃
i=1

li⋃
j=1

θ
(i)
kli+j,j(F

(i)
j ∩W ).

Let pk := χWk
be the associated characteristic function. Then the pk are obviously all pairwise

orthogonal and by construction pk ∼G p0 = p for all k ∈ {0, . . . , n}. In particular, the pk are
all Murray-von Neumann equivalent. �

We can now follow the proof of [22, Theorem 4.6] by using Lemma 2.8 and Theorem 2.6
to get the following:

Theorem 2.9. If G is a minimal almost finite groupoid, then C∗r (G) has real rank zero.

Proof. Let a ∈ C∗r (G) be a selfadjoint element with ‖a‖ ≤ 1. We want to approximate a by
an invertible selfadjoint element. Invoking a short density argument, we may assume that
a ∈ Cc(G). Moreover, we assume 0 ∈ sp(a) since for an invertible element a, there is nothing
to prove. Let ε > 0 be given. Choose continuous functions f, g : [−1, 1] → [0, 1] such that
g(0) = 1, fg = g, and supp(f) ⊆ (−1

9ε,
1
9ε). Let

α := inf
τ∈T (C∗

r (G))
τ(g(a)).

Since G is minimal and almost finite, C∗r (G) is simple. Hence all traces on C∗r (G) are faithful.
Combining this with the facts that g(a) is a nonzero positive element, and T (C∗r (G)) is weak*
compact, we obtain α > 0. Find 0 < δ < 1

9ε from [22, Lemma 4.4] applied to r = 1, g, and
1
4α. Now let m ∈ N with m > 2/δ. By Lemma 2.8 we can find an elementary subgroupoid
K ⊆ G and a projection p0 ∈ C(G(0)), such that a(1− p0), (1− p0)a ∈ Cc(K) and such that
p0 is Murray-von Neumann equivalent in C∗r (G) to more than 8mα−1 mutually orthogonal
projections in C(G(0)). In particular τ(p0) < 1

8αm
−1 for all τ ∈ T (C∗r (G)).

Define b = a − p0ap0. Then b is a selfadjoint element of Cc(K) with ‖b‖ ≤ 2. By our
choice of δ, and the fact that C∗r (K) is an AF algebra, we can apply [22, Lemma 4.3] to b, p0
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and 1
2δ to obtain a projection p ∈ C∗r (K) such that ‖pb − bp‖ < δ, p0 ≤ p and [p] ≤ 2m[p0]

in K0(C∗r (G)). Now p commutes with a − b = p0ap0, so also ‖pa − ap‖ < δ. Furthermore,
because p ∈ C∗r (K) and p ≥ p0, we get (1− p)a, a(1− p) ∈ C∗r (K).

Define a0 := (1− p)a(1− p). For every τ ∈ T (C∗r (G)), we have

τ(p) ≤ 2mτ(p0) < 1
4α.

By the choice of δ and using [22, Lemma 4.4], we get

τ(g(a0)) > τ(g(a))− τ(p)− 1
4α ≥ α− 1

4α−
1
4α = 1

2α ∀τ ∈ T (C∗r (G)).

Also f(a0)g(a0) = g(a0), and C∗r (K) is an AF algebra, so [22, Lemma 3.2] provides a projection
q ∈ C∗r (K) such that

q ∈ g(a0)C∗r (K)g(a0), f(a0)q = q, and ‖qg(a0)− g(a0)‖ < 1
8α.

Therefore we have the estimate ‖qg(a0)q − g(a0)‖ < α
4 . For all τ ∈ T (C∗r (G)), we have

τ(qg(a0)q) ≤ τ(q) because ‖g(a0)‖ ≤ 1. Combining this with previous estimates, it follows
that τ(q) > 1

4α. Combining this with our estimate for p, we get that

τ(p) < τ(q) for all τ ∈ T (C∗r (G)).

It follows from Theorem 2.6, that [q] − [p] = [e] for some projection e ∈ M∞(C∗r (G)). Since
C∗r (G) has stable rank one (and thus cancellation of projections) by [28, Main Theorem], we
have q ∼ p+ e, which means p - q in C∗r (G). Since a0p = pa0 = 0, we conclude that p and q
are orthogonal. By [22, Lemma 4.5] applied to a0, λ0 = 0, g, and q we have

‖qa0 − a0q‖ <
2ε
9 and ‖qa0q‖ <

ε

9 .

Consider now s := 1− p− q. Then

a− (sas+ pap) = pa(1− p) + (1− p)ap+ qa0s+ sa0q + qa0q.

Therefore, using that qs = 0, we have

‖a− (sas+ pap)‖ ≤ 2‖pa− ap‖+ 2‖qa0 − a0q‖+ ‖qa0q‖

< 2δ + 4ε
9 + ε

9 <
7ε
9 .

Now if B = (1 − s)C∗r (G)(1 − s), then pap is a selfadjoint element in pBp = pC∗r (G)p and
we have p - q = (1 − s) − p = 1B − p. Hence [10, Lemma 8] provides us with an invertible
selfadjoint element b ∈ B such that ‖b− pap‖ < ε

9 . Moreover, sas = s(1− p)as ∈ sC∗r (K)s,
which is an AF algebra, so there is an invertible selfadjoint element c ∈ sC∗r (K)s such that
‖c− sas‖ < ε

9 . It follows that b+ c is an invertible selfadjoint element in C∗r (G) such that

‖a− (b+ c)‖ ≤ ‖a− (sas+ pap)‖+ ‖b− pap‖+ ‖c− sas‖

<
7ε
9 + ε

9 + ε

9 = ε,

which completes the proof. �
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Stable rank one for C*-algebras associated to minimal almost finite groupoids ([28, Main
Theorem]) is a crucial ingredient in the proof of Theorem 2.6 and Theorem 2.9. Notice that
this strategy does not hold for general non-minimal almost finite groupoids since they usually
do not have stable rank one (see e.g. [17, 23, 4] for examples and further results in this
direction).

Finally, we are ready to provide a proof of the main theorem by combining the above
results:

Proof of Theorem A. First of all, we notice that C∗r (G) is a unital simple C∗-algebra with
stable rank one and real rank zero (see [20, Remark 6.6], [5, Corollary 3.14], [28, Main Theo-
rem] and Theorem 2.9). Therefore, its Cuntz semigroup is Cu(C∗r (G)) ∼= Λσ(V (C∗r (G))) ([1,
Theorem 6.4]), where the latter stands for the countably generated intervals in the projection
monoid. Recall that the isomorphism is described via 〈a〉 7→ I(a) := {[p] ∈ V (C∗r (G)) |
p ∈ aM∞(C∗r (G))a}, and that any interval I(a) has an increasing countable cofinal subset of
projections {[pn]} in V (C∗r (G)) such that 〈a〉 = sup([pn]) in Cu(C∗r (G)).

Let us now fix 〈a〉, 〈b〉 ∈ Cu(C∗r (G)) such that dτ (a) < dτ (b) for all τ ∈ T (C∗r (G)). Let
〈a〉 = sup([pn]) and 〈b〉 = sup([qm]), where all [pn], [qm] in V (C∗r (G)). Given τ ∈ T (C∗r (G))
and n ∈ N, it is clear by construction that τ(pn) = dτ (pn) < dτ (b). Hence, there is N(n, τ) ∈
N such that τ(pn) < τ(qN(n,τ)). Now, using that T (C∗r (G)) is compact under the weak-*
topology, we find N(n) ∈ N such that τ(pn) < τ(qN(n)) for all τ ∈ T (C∗r (G)). By Corollary
2.7, one obtains that [pn] ≤ [qN(n)]. As this can be done for all n ∈ N, C∗r (G) has strict
comparison.

For the second statement, C∗r (G) is a separable non-elementary unital simple C∗-algebra
with stable rank one. Hence, this part follows from [29, Corollary 8.12]. �

Remark 2.10. It is worth noticing that C∗r (G) in Theorem A may not be nuclear in general,
as Gabor Elek constructed non-amenable minimal almost finite ample groupoids in [9, The-
orem 6]. In [2, Corollary 4.12], we construct an almost finite ample principal non-minimal
groupoid G from coarse geometry such that G is not even a-T-menable.

Let us finish providing here an almost finite ample principal non-minimal groupoid G such
that C∗r (G) is not exact. Indeed, take X to be one of the expanders from [32, Corollary 3]
such that its uniform Roe algebra C∗u(X) is not (K)-exact. Then Y = X×N defined as in [2,
Proposition 4.10] contains X as a subspace by construction, and Y admits tilings of arbitrary
invariance. Hence, the associated coarse groupoid G(Y ) is almost finite by [2, Theorem 4.5].
On the other hand, C∗u(X) is a C∗-subalgebra of C∗r (G(Y )) = C∗u(Y ). Since exactness passes
to C∗-subalgebras, C∗r (G(Y )) cannot be exact as desired.
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