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GAP LOCALIZATION OF MULTIPLE TE-MODES BY

ARBITRARILY WEAK DEFECTS

B.M.BROWN, V.HOANG, M. PLUM, M. RADOSZ AND I.WOOD

Abstract. This paper considers the propagation of TE-modes in photonic

crystal waveguides. The waveguide is created by introducing a linear defect
into a periodic background medium. Both the periodic background problem

and the perturbed problem are modeled by a divergence type equation. A

feature of our analysis is that we allow discontinuities in the coefficients of
the operator, which is required to model many photonic crystals. Using the

Floquet-Bloch theory in negative order Sobolev spaces, we characterize the

precise number of eigenvalues created by the line defect in terms of the band
functions of the original periodic background medium for arbitrarily weak de-

fects.

1. Introduction

Electromagnetic waves in periodically structured media, such as photonic crys-
tals and metamaterials, are a subject of ongoing interest. Typically, the propagation
of waves in such media exhibits band-gaps; see e.g. [11, 14]. These are intervals
on the frequency or energy axis where propagation is forbidden. Mathematically,
these correspond to gaps in the spectrum of the operator describing a problem with
periodic background medium. The existence of these gaps for certain choices of
material coefficients was proved in [6, 7, 10] and in [8] for the full Maxwell case.

In a previous paper [2], we studied the propagation of TE-polarized waves in
two-dimensional photonic crystals that contain line defects and gave rigorous suf-
ficient conditions which imply spectral localization in band gaps. Our results were
restricted to the case where only one band function (see (14)) contributes to the
edge of the band gap. In this paper, we deal with the general situation where mul-
tiple bands contribute to the edge of the gap. We also develop a new approach to
characterize the precise number of eigenvalues created by the line defect in terms
of the band functions of the original periodic structure.

Our results are applicable to non-smooth coefficients. This is motivated by phys-
ical applications, where, to produce the typical band-gap spectrum, the coefficient
of the background medium is usually piecewise constant. See, for instance, [6, 7, 8].
In order to overcome the arising difficulties, we use Floquet-Bloch theory in nega-
tive function spaces [5]. Additionally, all our results do not depend on the precise
geometry of the perturbation, e.g. the shape of the inclusions defined by the region
within the periodicity cell where the perturbed material coefficients differ from the
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unperturbed ones. For a more detailed discussion of relevant background material,
we refer to [2] and references therein.

The structure of our paper is as follows: In section 2 we give a brief description
of the periodic problem and its perturbation by a line defect and formulate the
operator-theoretic background. The following section 3 introduces the Floquet-
Bloch theory in negative spaces with the technical proof provided in Appendix A.
Section 4 contains some key preparatory lemmas and estimates. An upper estimate
on the number of eigenvalues created in the band gap is given in section 5 while
section 6 provides a lower bound and combines all results to our main statement
(Theorem 6.4) on the precise number of eigenvalues. Compared to the results in
our previous paper [2], the assumptions we make on the band functions of the fully
periodic operator are more general. The results of [2] are strengthened in the sense
that we allow for multiple bands coming together at the edge of a spectral band
and the analysis is refined by providing upper and lower bounds on the number of
eigenvalues created by the perturbation. In the case of exactly one band function
touching the band edge, we get the existence of gap spectrum, as in [2], but now
with the additional information that there is exactly one additional eigenvalue in
the gap (of the reduced problem for fixed x̂-quasimomentum).

We note that a variational method similar to the one here is used in [17] to prove
generation of spectrum, though not the precise number of eigenvalues, in the band
gaps of periodic Schrödinger operators under a slightly weaker sign condition on
the perturbation than we require here.

2. The operator theoretic formulation

We consider the propagation of electromagnetic waves in a non-magnetic, in-
homogeneous medium described by a varying dielectric function ε(X) with X =
(x, y, z). Assuming that the magnetic field H has the form H = H(x, y)ẑ, where ẑ
denotes the unit vector in the z-direction, we look for time-harmonic solutions to
Maxwell’s equations. This leads to the equation

−∇ · 1

ε(x)
∇H = λH(1)

for the z-component H of the magnetic field. Note that in the context of polarized
waves, we assume that all fields and constitutive functions depend only on x =
(x, y).

The periodic background medium is characterised by ε0(x), where for simplicity
we assume that the unit square [0, 1]2 is a cell of periodicity.

Let x̂ = (1, 0) and ŷ = (0, 1). We now introduce a line defect, which we assume
to be aligned along the x̂-axis and preserving the periodicity in the x̂-direction. In
addition, the defect is assumed to be localised in the ŷ-direction. The new (and
perturbed) system is described by a dielectric function ε1(x), periodic in x̂-direction
(see Figure 1), i.e.

ε1(x +mx̂) = ε1(x) (m ∈ Z).(2)

Before we go into the technical details of the definitions of the operators involved,
we make brief comments on the physical picture. We will show that by introducing
the line defect, the spectrum of the operator−∇·ε−1∇ is enlarged, i.e. the spectrum
of −∇·ε−1

1 ∇ is a superset of that of −∇·ε−1∇. The additional spectrum is generally
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Figure 1. Illustration of the line defect and the strip Ω = (0, 1)× R.

expected to be absolutely continuous. No rigorous proof of this for the divergence-
type operator considered here is, however, available in the literature. The additional
spectrum can be described by the Floquet-Bloch decomposition performed below:
we introduce an unbounded period cell Ω = (0, 1) × R and corresponding cell
operators depending on the quasimomentum kx in x̂-direction. The additional
spectrum due to the perturbation consists of eigenvalues of the cell problem that
depend on kx. The spectrum of the operator on the whole space R2 is synthesized
by taking the union of the spectra of the cell problems. The additional eigenvalues
created by the perturbation will in general vary with kx and create the additional
continuous spectrum, which can be physically interpreted as the spectrum of guided
modes propagating along the waveguide direction.

Assumption 1. We make the following general assumptions on the material coef-
ficients, valid throughout the paper:

(i) ε0, ε1 ∈ L∞(R2).
(ii) εi ≥ c0 > 0 for some constant c0 and i = 0, 1.
(iii) The perturbation is nonnegative, i.e.

ε1(x)− ε0(x) ≥ 0.(3)

(iv) There exists a nonempty ball D ⊂ [0, 1]2 such that ε1 − ε0 > 0 on D.

Since both the perturbed and unperturbed systems are periodic in the x̂-direction,
we can apply Bloch’s theorem [16, 13] to reduce both problems to families of prob-
lems on the strip Ω := (0, 1)×R, parametrized by the quasi-momentum kx ∈ [−π, π].
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For fixed kx we introduce the space of quasi-periodic H1-functions on Ω

H1
qp(Ω) := {u ∈ H1

loc(R2) : u|Ω ∈ H1(Ω) and u(x+(m, 0)) = eikxmu(x),m ∈ Z,x ∈ R2}.

For u, v ∈ H1
qp(Ω) consider the sesquilinear form

(4) B0[u, v] =

∫
Ω

(
1

ε0(x)
∇u∇v + uv

)
dx.

As ε0 is bounded and bounded away from zero, we can introduce a new inner
product on H1

qp(Ω) given by

〈u, v〉H1
qp(Ω) := B0[u, v]

which is equivalent to the standard inner product in H1(Ω). When there is no
danger of confusion, we denote the associated norm ‖·‖H1 .

Definition 1. Let H−1
qp (Ω) denote the dual space of H1

qp(Ω). Let φ : H1
qp(Ω) →

H−1
qp (Ω) be defined by

(5) (φu)[ϕ] = B0[u, ϕ] for all u, ϕ ∈ H1
qp(Ω),

where the w[ϕ]-notation indicates the dual pairing, i.e. it is the action of the linear
functional w on the function ϕ.

φ is an isometric isomorphism, and hence the inner product on H−1
qp (Ω) given by

〈u, v〉H−1
qp (Ω) :=

〈
φ−1u, φ−1v

〉
H1
qp(Ω)

induces a norm which coincides with the usual operator sup-norm on H−1
qp (Ω).

After this preparation, we now introduce the realisations of the operators in
H−1
qp (Ω) and define the operator L0 : D(L0) → H−1

qp (Ω) by D(L0) := H1
qp(Ω) ⊂

H−1
qp (Ω) with

L0u := φu− u.
Then L0 + 1 is bijective and both L0 and G0 := (L0 + 1)−1 are self-adjoint, see [2,
Proposition 4.1]. L0 corresponds to the fully periodic problem (1) with ε = ε0.

The useful identity

(6) 〈u, v〉H−1 =
〈
φ−1u, φ−1v

〉
H1 =

〈
u, φ−1v

〉
L2 for u ∈ L2(Ω), v ∈ H−1

qp (Ω)

follows from the definitions of φ and L0.
Let (Λ0,Λ1) be a spectral gap for L0 and µ ∈ ((Λ1 + 1)−1, (Λ0 + 1)−1). Then

1/µ ∈ ρ(L0 + 1), so

(7)
1

µ

[
1

µ
− (L0 + 1)

]−1

= ((I − µ(L0 + 1))−1 = (I − µG0
−1)−1

is well-defined and maps H−1
qp (Ω) bijectively onto H1

qp(Ω). The operator (I −
µG0

−1)−1 is the solution operator to the problem

〈u, ϕ〉L2 − µ
∫

Ω

(
1
ε0
∇u∇ϕ+ uϕ

)
dx = f [ϕ], for all ϕ ∈ H1

qp(Ω)

for a given f ∈ H−1
qp (Ω).
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We now examine the perturbed problem. Let the bilinear form B1 and the
operator L1 : H1

qp(Ω)→ H−1
qp (Ω) be defined by

B1[u, ϕ] :=

∫
Ω

[
1

ε1
∇u∇ϕ+ uϕ

]
dx and ((L1 + 1)u)[ϕ] = B1(u, ϕ) for u, ϕ ∈ H1

qp(Ω).

(8)

Moreover, we define G1 = (L1 + 1)−1. Then G1 : H−1
qp (Ω)→ H1

qp(Ω) is a bounded
non-negative operator (see [2, Lemma 4.3 & 4.4].)

Remark 1. We note that just as in [5, Section 5], the spectra of the H−1-realizations
L0 and L1 and the corresponding realizations of the operators in L2(Ω) coincide.

We will give conditions which ensure that localized modes, i.e. eigenvalues of
the perturbed operator L1, appear in the band gap (Λ0,Λ1) of the unperturbed
operator L0 under arbitrarily weak perturbations and use a Birman-Schwinger-
type reformulation to find the eigenvalues λ of the operator L1 in the band gap.
For proofs of the results in this section and more details on the reformulation, see
[2, Section 5].

Consider the operator

K := (G0
−1G1 − I) : H−1

qp (Ω)→ H−1
qp (Ω),

set K = ranK ⊆ H−1
qp (Ω) and let P : H−1

qp (Ω) → K be the orthogonal projection
on K. On K, we introduce a new inner product given by

〈f, g〉K := 〈Kf, g〉H−1 .(9)

The symmetry and definiteness of this inner product is shown in [2, Appendix A].
The following lemma gives useful estimates for K in terms of the size of the per-

turbation. In particular it shows that for small perturbations, the only dependence

of the bound for ‖K‖ on the perturbation ε1 is through the term
∥∥∥ 1
ε0
− 1

ε1

∥∥∥
∞

.

Lemma 2.1. The following estimates hold:

(i)

‖K‖ ≤ ‖G1‖H−1→H1

∥∥∥∥ 1

ε0
− 1

ε1

∥∥∥∥
∞

(ii)

‖Ku‖2H−1 ≤ ‖K‖ ‖u‖2K (u ∈ K)

(iii) Moreover, if η :=
∥∥∥ 1
ε0
− 1

ε1

∥∥∥
∞
< 1/ ‖G0‖H−1→H1 , then

‖G1‖H−1→H1 ≤
‖G0‖H−1→H1

1− η ‖G0‖H−1→H1

.

Proof. See [2, Lemma 5.2]. �

Next for µ = (λ+ 1)−1 ∈ ((Λ1 + 1)−1, (Λ0 + 1)−1) define

Aµ := P (I − µG0
−1)−1K : K → K.(10)

Lemma 2.2. The equation (L1 − λ)u = 0 with λ ∈ (Λ0,Λ1) has a non-trivial
solution u iff −1 is an eigenvalue of Aµ, where µ = (λ+ 1)−1.

Proof. See [2, Lemma 5.3]. �
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To be able to use the variational characterisation of eigenvalues we need the
following property of the operator Aµ.

Proposition 2.3. Aµ : K → K is a compact, symmetric operator on K.

Proof. See [2, Proposition 5.7]. �

3. Floquet-Bloch theory in H−1

For our results we will make use of Floquet-Bloch theory in H−1
qp (Ω). We intro-

duce the notation and state the results needed here. A fuller account with proofs
of some properties of the Floquet-Bloch theory in H−1

qp can be found in [5]. The
Brillouin zone in our setting is the interval [−π, π]. This corresponds to our periodic
cell in ŷ-direction which is the interval [0, 1].

Definition 2. For all k in the Brioullin zone [−π, π], we introduce an extension
operator Ek : L2((0, 1)2)→ L2

loc(Ω) with

(Eku)(x, y + p) := eikpu(x, y)

for all (x, y) ∈ (0, 1)2, p ∈ Z.
The partial Floquet transform

U : L2(Ω)→ L2((0, 1)2 × [−π, π])

is defined on functions with compact support by

(Uu)(x, y, k) :=
1

(2π)1/2

∑
n∈Z

eiknu(x, y − n) for (x, y) ∈ (0, 1)2, k ∈ [−π, π]

and extended to L2(Ω) by continuity.

U is an isometric isomorphism and

(11) (U−1v)(x, y) =
1

(2π)1/2

∫ π

−π
(Ekv(·, ·, k))(x, y)dk

(see [13]).

Definition 3. Let H1
qp((0, 1)2) denote the set of restrictions of functions u ∈

H1
qp(Ω) to (0, 1)2 endowed with the H1-inner product. For all k ∈ [−π, π], let

Hk := {u ∈ H1
qp((0, 1)2) : Eku ∈ H1

loc(Ω)}.

Note that being an element of Hk requires a weak form of semi-periodic boundary
conditions on the boundary of (0, 1)2. We denote by Nk the mapping

Nk : H0 → Hk, (Nku)(x, y) := eikyu(x, y)

and extend it to a mapping H′0 → H′k between the dual spaces by

Nku[ϕ] := u[N−1
k ϕ] for all u ∈ H′0, ϕ ∈ Hk.

Let

H =
{
u ∈ L2((0, 1)2 × [−π, π]) : ∀′k ∈ [−π, π] u(·, ·, k) ∈ Hk,

the mapping

{
[−π, π]→ C
k 7→ 〈N−1

k u(·, ·, k), ϕ〉H1((0,1)2)

}
is measurable for all ϕ ∈ H0,

and ‖u‖H <∞}
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where, as usual, ∀′k means for almost all k and the norm ‖·‖H is induced by the
inner product

〈u, v〉H =

∫ π

−π
〈u(·, ·, k), v(·, ·, k)〉H1((0,1)2)dk.

H can be viewed as the space of all functions u(x, y, k) = (Nkv(k))(x, y) with v ∈
L2([−π, π],H0).

Remark 2. H can also be defined as the direct integral of the Hk, which are then
regarded as fibers over k ∈ [−π, π] (see e.g. [18]).

By φk : Hk → H′k and φH : H → H′ we denote the canonical isometric isomor-
phisms (defined analogously to (5)).

Analogously to (6), we get

(12) 〈u, v〉H′k =
〈
φ−1
k u, φ−1

k v
〉
Hk

=
〈
u, φ−1

k v
〉
L2 for u ∈ L2((0, 1)2), v ∈ H′k.

Let V be given by V := U |H1
qp(Ω). For u, v ∈ H1

qp(Ω) we have V u, V v ∈ H, and∫ π

−π
b0[V u(·, ·, k), V v(·, ·, k)]dk = B0[u, v],

where b0 is defined as B0 in (4) with the range of integration Ω replaced by
[0, 1]2 (see [5, Theorem 3.7]). The form b0 induces the inner product on the space
H1
qp((0, 1)2) as well as on Hk giving

〈V u, V v〉H = 〈u, v〉H1(Ω).(13)

Moreover, V : H1
qp(Ω) → H is an isometric isomorphism (see [5, Theorem 3.8]),

whence also its adjoint V ∗ : H′ → H−1
qp (Ω) is. In particular, H is a Hilbert space.

The map

V̂ := (V ∗)−1 : H−1
qp (Ω)→ H′

is an isometric isomorphism and V̂ |L2(Ω)= U (see [5, Lemma 3.9]). For k ∈ [−π, π],
let Hk be the domain of the operator Lk defined in H′k by

Lk : Hk ⊆ H′k → H′k, Lku = φku− u.

This means that (cf. (5))

〈(Lk + 1)u, ϕ〉 = b0[u, ϕ] for u, ϕ ∈ Hk.

Note that Hk is dense in H′k since Hk is dense in L2((0, 1)2) and thus, by duality
L2((0, 1)2) is dense in H′k. Analogously to the case of L0, the operator Lk is
self-adjoint. (Lk + 1)−1 is compact since it is bounded from H′k to Hk, which is
compactly embedded in H′k.

It is possible to transform the spectral problem for the operators Lk which have
k-dependent domains to a spectral problem for an operator family where the k-
dependence is transferred to the differential expression (see, e.g. [4], for the trans-
formation in a similar situation). This family is analytic of type (A) in the sense
of Kato and using [12, Theorem VII.3.9 and Remark VII.3.10], we can obtain
sequences of real-valued functions {λs(k)}s∈N and eigenfunctions {ϕs(k)}s∈N, nor-
malized in H′k. The functions λs(k) and ϕs(k) are all real-analytic functions in the
variable k on [−π, π] and are such that

(Lk + 1)ϕs(k) = λs(k)ϕs(k).(14)



8 B.M.BROWN, V.HOANG, M. PLUM, M. RADOSZ AND I.WOOD

We note that the eigenvalues are not necessarily ordered by magnitude. We call
the functions λs(k) the band functions and ϕs(k) the Bloch functions.

Throughout, we will need to make the following non-degeneracy assumption on
the band functions:

Assumption 2. The band functions λs are not constant as functions of k ∈ [−π, π].

For notational convenience, we also introduce

ψs(·, k) :=
1√

λs(k) + 1
ϕs(·, k).

The set {ψs(·, k)} forms an orthonormal set in L2((0, 1)2), which is also complete as
the set of eigenfunctions of the self-adjoint realisation of the operators in L2((0, 1)2).
As a general rule, we will always extend the ψs(k), ϕs(k) to the whole of Ω in a
k-quasiperiodic manner, i.e.

ψs(·+mŷ, k) = eikmψs(·, k).

In what follows, for f ∈ H−1
qp (Ω) we denote by (V̂ f)k the element of H′k, defined by

(15) [(V̂ f)k][ϕ] := 〈(φ−1
H V̂ f)(·, k), ϕ〉Hk for ϕ ∈ Hk.

Lemma 3.1. For almost all k ∈ [−π, π] and f ∈ H−1
qp (Ω)

(16) φ−1
k (V̂ f)k = (φ−1

H V̂ f)(·, k).

Proof. Let w ∈ Hk. Then

〈φ−1
k (V̂ f)k, w〉Hk = (V̂ f)k[w] = 〈(φ−1

H V̂ f)(·, k), w〉Hk ,

which proves the identity. �

Having introduced the required notation, we are now able to state the results
on expansions of functions in terms of the Bloch waves needed for this paper. The
proofs can be found in Appendix A.

Proposition 3.2. (1) σ(L0) = ∪kσ(Lk).
(2) For f ∈ H−1

qp (Ω) and λ 6∈ σ(L0),

(17) (V (L0 − λ)−1f)(x, k) = (Lk − λ)−1[(V̂ f)k](x).

holds.
(3) For g ∈ H−1

qp (Ω) and λ 6∈ σ(L0) the equality

(L0 − λ)−1g =
1√
2π

∞∑
s=1

∫ π

−π

1

λs(k)− λ
(V̂ g)k[ψs(·, k)]ψs(:, k)dk

holds, where the series converges in L2(Ω).
(4) For µ ∈ ((Λ1 + 1)−1, (Λ0 + 1)−1) and u ∈ H−1

qp (Ω),〈
− 1

µ

(
L0 + 1− 1

µ

)−1

(Ku),Ku

〉
H−1

=

∫ π

−π

∞∑
s=1

1

1− µ(λs(k) + 1)

1

λs(k) + 1

∣∣∣∣〈ψs(k), φ−1
k (V̂ Ku)k

〉
H1(0,1)2

∣∣∣∣2 dk.
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(5) For f ∈ H−1
qp (Ω),

(18) ‖f‖2H−1 =
1√
2π

∞∑
s=1

∫ π

−π

1

λs(k) + 1

∣∣∣∣〈φ−1
k (V̂ f)k, ψs(k)

〉
H1((0,1)2)

∣∣∣∣2 dk.

We refer to Figure 2 for an overview of the spaces and mappings discussed here.

Figure 2. Spaces, isomorphisms and key mappings. The symbol∫⊕
[−π,π] dk indicates the forming of a direct integral of the Hk.

4. Preparatory results

Our strategy consists in following κm(µ), the m-th lowest negative eigenvalue (if
it exists) of the operator Aµ, introduced in (10), as µ varies. The following standard
variational characterisations (see, for example, [9]) hold:

(19) κm(µ) = max
codimL=m−1

inf
φ∈L

〈φ,Aµφ〉K
〈φ, φ〉K

= min
dimL=m

max
φ∈L

〈φ,Aµφ〉K
〈φ, φ〉K

where the first max and the min are taken over subspaces L of K.
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Lemma 4.1. For µ in the spectral gap
(
(Λ1 + 1)−1, (Λ0 + 1)−1

)
, the mapping µ 7→

κm(µ) is continuous and increasing.

The proof is virtually identical to that of Lemma 6.1 in [2] and will be omitted
here. We remind the reader that Λ1 is the lowest point of a spectral band and lies
at the top edge of a gap. The solutions of the equation λs(k) = Λ1 will play an
important role in our analysis. We first introduce the following sets:

Σ = {(s, k) ∈ N× [−π, π] : λs(k) = Λ1},
Sk = {s ∈ N : (s, k) ∈ Σ},

S = {s ∈ N : there is a k with (s, k) ∈ Σ} =
⋃
k Sk.

We will next see that the set Σ is finite. In the following we denote the elements of
Σ by (sj , kj), j = 1, ..., n and set ψj = ψsj (kj) and ϕj = ϕsj (kj).

Lemma 4.2. The set Σ is a non-empty finite set. Moreover, λs(k)→∞ as s→∞,
uniformly in k ∈ [−π, π].

Proof. We first note the coincidence of the spectra of the L2 and H−1 realisations
(see [5, Section 5]), so it is enough to consider the L2-realisation of the operator.
The result then follows from [4, Proposition 3.2 and its proof]. �

Corollary 4.3. When the band functions are re-ordered by magnitude there is an
s0 ∈ N such that for all s ≥ s0 and for all k ∈ [−π, π] we have λs(k) ≥ Λ1, while
for all s < s0 and for all k ∈ [−π, π], λs(k) ≤ Λ0 holds.

Proof. The assertion follows from continuity of the band functions, existence of the
spectral gap and Lemma 4.2. �

Lemma 4.4. The set Σ is isolated in the sense that there is η > 0 such that for
all s 6∈ S, |λs(k)− Λ1| ≥ η for all k ∈ [−π, π].

Proof. The proof is the same as that of [3, Lemma 3.7], noting that analyticity and
non-constancy of the band function in the one-dimensional variable k are sufficient
to avoid Assumption 3.3 in [3] in the proof. �

Noting that ε0−ε1 is compactly supported in Ω, for ψ ∈ H1
loc(Ω), let (L0−L1)ψ

be the element of H−1
qp (Ω) defined by

(20) [(L0 − L1)ψ][ϕ] :=

∫
Ω

(
1

ε0
− 1

ε1

)
∇ψ∇ϕ for all ϕ ∈ H1

qp(Ω).

Moreover, letting H1
c (Ω) denote the functions in H1

qp(Ω) with compact support, we

define for ψ ∈ H1
loc(Ω), the element L0ψ of

(
H1
c (Ω)

)′
by

(21) [L0ψ][ϕ] :=

∫
Ω

1

ε0
∇ψ∇ϕ for all ϕ ∈ H1

c (Ω).

Define

(22) L = {u ∈ K : ∀j = 1, ..., n. [(L0 − L1)ψj ][G1u] = 0},

where the action is interpreted as in (20).
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Remark 3. Observe that the action of Ku on any ϕ ∈ H1
qp can be written as

Ku[ϕ] =

∫
Ω

(
1

ε0
− 1

ε1

)
∇G1u∇ϕ.

Since
(

1
ε0
− 1

ε1

)
has compact support, the action of Ku can be extended to any

H1
loc-function ϕ. Hence we shall define

Ku[ϕ] :=

∫
Ω

(
1

ε0
− 1

ε1

)
∇G1u∇ϕ (ϕ ∈ H1

loc).

Then recalling (20) we get

(23) Ku[ψj ] =

∫ (
1

ε0
− 1

ε1

)
∇G1u∇ψj = [(L0 − L1)ψj ][G1u].

Lemma 4.5. The codimension of L satisfies codimL = n.

Proof. For u ∈ K,

[(L0 − L1)ψj ][G1u] =

∫
Ω

(
1

ε0
− 1

ε1

)
∇ψj∇G1u.

Let θ ∈ C∞(Ω) be compactly supported in the ŷ-direction with θ = 1 on [0, 1]2.
Then

[(L0 − L1)ψj ][G1u] =

∫
Ω

(
1

ε0
− 1

ε1

)
∇(θψj)∇G1u(24)

= Ku[θψj ] = 〈Ku, φ(θψj)〉H−1

= 〈Ku,Pφ(θψj)〉H−1 = 〈u, Pφ(θψj)〉K .

Hence, L = span{Pφ(θψj) : j = 1, . . . , n}⊥ and we need to show that

dim(span{Pφ(θψj) : j = 1, . . . , n}) = n.

Assume
∑
αjPφ(θψj) = 0 inK. AsK is symmetric and non-negative inH−1

qp (Ω),
this is equivalent to Ψ =

∑
αjφ(θψj) ∈ kerK. Now, KΨ = 0 is equivalent to

G0Ψ = G1Ψ. Let v := G0Ψ. Then (L0 + 1)v = (L1 + 1)v = Ψ, so

0 = ((L0 − L1)v)[v] =

∫ (
1

ε0
− 1

ε1

)
|∇v|2

and thus ∇v|D = 0 where D is the ball from Assumption 1 (iv). Hence L0v|D =
L1v|D = 0 (in the sense that for any ϕ ∈ C∞c (D) we have [L0v][ϕ] = [L1v][ϕ] = 0).
Moreover, v = φ−1Ψ =

∑
αjθψj . Therefore, for any ϕ ∈ C∞c (D),

[L0v][ϕ] =
∑

αj

∫
Ω

1

ε0
∇(θψj)∇ϕ

=
∑

αj

∫
D

1

ε0
∇(θψj)∇ϕ

=
∑

αj

∫
D

1

ε0
∇ψj∇ϕ

=
∑

αj

∫
Ω

1

ε0
∇ψj∇ϕ

=
∑

αjΛ1ψj [ϕ] = Λ1v[ϕ].
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So L0v|D = Λ1v|D, and hence v|D = 0. By unique continuation, see [1], v = 0 and
as the ψj are linearly independent over D (see [3, Proposition 3.8]), we get αj = 0
for all j. �

5. Upper bound on the number of eigenvalues

The main result in this section will require the following additional non-degeneracy
assumption on the band functions λs(k).

Assumption 3. There are α > 0 and δ > 0 such that for all (ŝ, k̂) ∈ Σ and

k ∈ [−π, π] satisfying |k − k̂| ≤ δ,

λŝ(k) ≥ Λ1 + α|k − k̂|2

holds.

Remark 4. The assumption is true if the zero of λŝ(k̂) − Λ1 is only of order 2.
Non-degeneracy assumptions of a similiar form are common in the mathematical
and physical literature (see e.g. [15] and references therein) and are believed to be
“generically” true. In other words, it is believed that degeneracy of the band function
can be removed by a small perturbation of the coefficients of the differential operator.

The next lemma provides a uniform bound on contributions to the Rayleigh
quotient away from points in Σ.

Lemma 5.1. Let µ ∈ ((Λ1 + 1)−1, (Λ0 + 1)−1). If

|1− µ(λs(k) + 1)|−1 ≤ c1(25)

uniformly for (s, k) in a set S̃ × J ⊆ N× [−π, π], then∣∣∣∣∣∣
∑
s∈S̃

∫
J

1

1− µ(λs(k) + 1)

1

λs(k) + 1

∣∣∣∣〈ψs(k), φ−1
k (V̂ Ku)k

〉
H1(0,1)2

∣∣∣∣2 dk
∣∣∣∣∣∣ ≤ C

∥∥∥∥ 1

ε0
− 1

ε1

∥∥∥∥
∞
‖u‖2K ,

where C > 0 is a constant depending only on c1, but not µ.

Proof. Note that the order of integration over J and summation over s can be
exchanged by the monotone convergence theorem. We have∫

J

∑
s∈S̃

1

1− µ(λs(k) + 1)

1

λs(k) + 1

∣∣∣∣〈ψs(k), φ−1
k (V̂ Ku)k

〉
H1(0,1)2

∣∣∣∣2 dk
≥ −Cµ

∫
J

∑
s∈S̃

1

λs(k) + 1

∣∣∣∣〈ψs(k), φ−1
k (V̂ Ku)k

〉
H1(0,1)2

∣∣∣∣2 dk
≥ −Cµ

∫ π

−π

∑
s

1

λs(k) + 1

∣∣∣∣〈ψs(k), φ−1
k (V̂ Ku)k

〉
H1(0,1)2

∣∣∣∣2 dk
= −Cµ ‖Ku‖2H−1 ≥ −Cµ

∥∥∥∥ 1

ε0
− 1

ε1

∥∥∥∥
∞
‖u‖2K ,

where the equality follows from Proposition 3.2 (5) and the final inequality from
Lemma 2.1. �



GAP LOCALIZATION OF MULTIPLE TE-MODES 13

Before stating the first main result we introduce an auxilliary function f , which
will play a crucial role in the estimates of the Rayleigh quotient, and prove some
identities and estimates involving f .

For k̃ such that kj + k̃ ∈ [−π, π] (j = 1, ..., n) and u ∈ H−1
qp (Ω) let

(26) f(k̃, u) :=

n∑
j=1

∑
s∈Skj

∣∣∣∣〈(V̂ Ku)kj+k̃, ϕs(·, kj + k̃)
〉
H−1([0,1]2)

∣∣∣∣2 .
Lemma 5.2. The function f from (26) can be represented as follows:

f(k̃, u) =

n∑
j=1

∑
s∈Skj

1

(λs(kj + k̃) + 1)2
|(V̂ Ku)kj+k̃[ϕs(·, kj + k̃)]|2(27)

=

n∑
j=1

∑
s∈Skj

1

(λs(kj + k̃) + 1)2

∣∣∣∣〈φ−1

kj+k̃
(V̂ Ku)kj+k̃, ϕs(·, kj + k̃)

〉
H1([0,1]2)

∣∣∣∣2(28)

f(k̃, u) =
1√
2π

n∑
j=1

∑
s∈Skj

1

(λs(kj + k̃) + 1)2

∣∣∣Ku[ϕs(·, kj + k̃)]
∣∣∣2 ,(29)

where the action is considered as an H−1((0, 1)2)−H1((0, 1)2)-pairing. Moreover,

(30) f(k̃, u) =
1√
2π

n∑
j=1

∑
s∈Skj

1

(λs(kj + k̃) + 1)2

∣∣∣[(L0 − L1)ϕs(·, kj + k̃)][G1u]
∣∣∣2 .

Proof. We have

(V̂ Ku)kj+k̃[ϕs(kj + k̃)] =
〈

(V̂ Ku)kj+k̃, φkj+k̃ϕs(kj + k̃)
〉
H−1([0,1]2)

= (λs(kj + k̃) + 1)
〈

(V̂ Ku)kj+k̃, ϕs(kj + k̃)
〉
H−1([0,1]2)

,

which proves (27).
From (15) and Lemma 3.1 it follows that

(V̂ Ku)kj+k̃[ϕs(·, kj + k̃)] =
〈
φ−1

kj+k̃
(V̂ Ku)kj+k̃, ϕs(·, kj + k̃)

〉
H1([0,1]2)

,

so (28) holds.
We next prove (29). In order to make use of the explicit form of the Floquet

transform on compactly supported functions, we let ΘN be a cut-off function with
ΘN (y) = Θ1(y/N) and Θ1 ∈ C∞c (R) with Θ1(y) = 1 for |y| ≤ 1 and Θ1(y) = 0
for |y| ≥ 2. Applying the Floquet transform V in H1

qp(Ω) to the function ΘN (L0 +
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1)−1Ku we get〈
V (ΘN (L0 + 1)−1Ku)(·, kj + k̃), ϕ

〉
H1((0,1)2)

=
1√
2π

∑
p∈Z

ei(kj+k̃)p

〈
ΘN (L0 + 1)−1Ku

(
· −
(

0
p

))
, ϕ

〉
H1((0,1)2)

=
1√
2π

∑
p∈Z

ei(kj+k̃)p

〈
ΘN (L0 + 1)−1Ku,ϕ

(
·+
(

0
p

))〉
H1((0,1)×(−p,−p+1))

=
1√
2π

∑
p∈Z

〈
ΘN (L0 + 1)−1Ku,ϕ

〉
H1((0,1)×(−p,−p+1))

=
1√
2π

〈
ΘN (L0 + 1)−1Ku,ϕ

〉
H1(Ω)

.

We now argue that in the limit N → ∞, we can move ΘN to the other side of
the inner product. Observe that〈
ΘN (L0 + 1)−1Ku,ϕs

〉
H1(Ω)

=
〈
ΘN (L0 + 1)−1Ku,ϕs

〉
L2+

〈
ε−1

0 ∇(ΘN (L0 + 1)−1Ku),∇ϕs
〉
L2 .

Clearly, the first term allows moving ΘN to the right and it remains to show that

lim
N→∞

〈
ε−1

0 ∇(ΘN (L0 + 1)−1Ku),∇ϕs
〉
L2 = lim

N→∞

〈
ε−1

0 ∇(L0 + 1)−1Ku,∇(ΘNϕs)
〉
L2 .

Therefore, it suffices to show that

lim
N→∞

〈
ε−1

0 ∇(ΘN )(L0 + 1)−1Ku,∇ϕs
〉
L2 = lim

N→∞

〈
ε−1

0 ∇(L0 + 1)−1Ku,∇(ΘN )ϕs
〉
L2

and we will see that both limits vanish. Now,〈
ε−1

0 (L0 + 1)−1Ku, (∇ΘN )∇ϕs
〉
L2(Ω)

≤
∥∥ε−1

0 (L0 + 1)−1Ku
∥∥
L2(Ω)

‖(∇ΘN )∇ϕs‖L2(Ω)

≤
∥∥ε−1

0 (L0 + 1)−1Ku
∥∥
L2(Ω)

C√
N
‖∇ϕs‖L2((0,1)2) ,

as

‖(∇ΘN )∇ϕs‖2L2(Ω) =

∫
supp(∇ΘN )

|∇ΘN |2|∇ϕs|2 ≤
C

N2
N ‖∇ϕs‖2L2((0,1)2) .

The other term can be estimated in a similar manner.
Using (15), Lemma 3.1 and (17),

(V̂ Ku)kj+k̃[ϕ] = 〈(φ−1
H V̂ f)(·, k), ϕ〉H1

= 〈(φ−1

kj+k̃
(V̂ Ku)kj+k̃, ϕ〉H1

=
〈

(V (L0 + 1)−1Ku)(·, kj + k̃), ϕ
〉
H1

,

which implies that

(V̂ Ku)kj+k̃[ϕ] =
1√
2π

lim
N→∞

〈
(L0 + 1)−1Ku),ΘNϕ

〉
H1(Ω)

=
1√
2π

lim
N→∞

Ku[ΘNϕs] =
1√
2π
Ku[ϕs],

where the last equality follows from compactness of the support of Ku. Equation
(29) now follows from (28). To obtain (30), we use Remark 3. �
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Lemma 5.3. Let L be the space defined in (22). For u ∈ L the function f(k̃, u)
satisfies the estimate

|f(k̃, u)| ≤ C|k̃|2
∥∥∥∥ 1

ε0
− 1

ε1

∥∥∥∥
∞
‖u‖2K .

Proof. We use (29). First note the following:

Ku[ϕs(·, kj + k̃)]

λs(kj + k̃) + 1
=

〈
Ku, (Lkj+k̃ + 1)ϕs(·, kj + k̃)

〉
H−1((0,1)2)

(λs(kj + k̃) + 1)
=
〈
Ku,ϕs(·, kj + k̃)

〉
H−1((0,1)2)

.

In particular, using (23), for u ∈ L we obtain

1

(λs(kj + k̃) + 1)
Ku[ϕs(·, kj + k̃)] =

〈
Ku,ϕs(·, kj + k̃)− ϕs(·, kj)

〉
H−1((0,1)2)

.

As the ϕs depend analytically on k,∥∥∥ϕs(·, kj + k̃)− ϕs(·, kj)
∥∥∥
H−1((0,1)2)

≤ C|k̃|,

and we get for u ∈ L that

|f(k̃, u)| ≤ C|k̃|2 ‖Ku‖2H−1((0,1)2) ≤ C|k̃|2
∥∥∥∥ 1

ε0
− 1

ε1

∥∥∥∥
∞
‖u‖2K ,

completing the proof. �

Lemma 5.4. There exists C > 0 such that f(0, u) ≥ C ‖u‖2K for all u ∈ L⊥ =
span{Pφ(θψj) : j = 1 . . . n}, where θ ∈ C∞(Ω) is any function compactly supported
in the ŷ-direction with θ = 1 on [0, 1]2.

Proof. Using (30) and (24), we have

f(0, u) =
1√
2π

n∑
j=1

∑
s∈Skj

1

(Λ1 + 1)2
|[(L0 − L1)ϕs(·, kj)][G1u]|2

=
1√
2π

n∑
j=1

1

Λ1 + 1

∣∣〈u, Pφ(θψj)〉K
∣∣2 .

Now let u =
∑n
µ=1 αµPφ(θΨµ) and set θµ = Pφ(θΨµ). Then

f(0, u) =
1√

2π(Λ1 + 1)

∑
j

∑
µ,ν

αµαν 〈θµ, θj〉K 〈θj , θν〉K =
α∗Gα√

2π(Λ1 + 1)
≥ λmin(G) ‖α‖2√

2π(Λ1 + 1)
,

where G is an n× n-matrix with entries

Gµ,ν =
∑
j 〈θµ, θj〉K 〈θj , θν〉K .

Then G = G̃2 where G̃γ,β = 〈θγ , θβ〉K. By the proof of Lemma 4.5, the set {θj :

j = 1, ..., n} is linearly independent, so G̃ is a positive definite Hermitian matrix
and also its square G is.

Now,

‖u‖2K = 〈Ku, u〉H−1 =
∑
i,j

αiαj 〈Kθi, θj〉H−1 =
∑
i,j

αiαj 〈θi, θj〉K = α∗G̃α ≤ λmax(G̃) ‖α‖2 .
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Thus,

f(0, u) ≥ 1√
2π(Λ1 + 1)

λmin(G)

λmax(G̃)
‖u‖2K .

�

We now state the main result of this section.

Theorem 5.5. Let Assumptions 1, 2 and 3 hold. Then there exists c > 0 such

that if
∥∥∥ 1
ε0
− 1

ε1

∥∥∥
∞
< c, then the operator L1 has at most n = |Σ| eigenvalues in

the spectral gap (Λ0,Λ1) of the operator L0.

Proof. We start by noting an equality for the Rayleigh quotient. Let u ∈ K. Then
by using proposition 3.2 (4),

〈Aµu, u〉K =

∫ π

−π

∞∑
s=1

1

1− µ(λs(k) + 1)

1

λs(k) + 1

∣∣∣∣〈ψs(k), φ−1
k (V̂ Ku)k

〉
H1(0,1)2

∣∣∣∣2 dk(31)

for µ ∈ ((Λ1 + 1)−1, (Λ0 + 1)−1).
By continuity of the band function λs we have, for each s ∈ N, either λs(k) ≤ Λ0

for all k ∈ [−π, π] or λs(k) ≥ Λ1 for all k ∈ [−π, π]. In the first case, 1/[(1 −
µ(λs(k)+1))(λs(k)+1)] ≥ 0 while in the second case, we have the reverse inequality.
Therefore, with s0 as in Corollary 4.3,

〈Aµu, u〉K ≥
∫ π

−π

∑
s≥s0

1

1− µ(λs(k) + 1)

1

λs(k) + 1

∣∣∣∣〈ψs(k), φ−1
k (V̂ Ku)k

〉
H1(0,1)2

∣∣∣∣2 dk(32)

=

∫ π

−π

∑
s∈S

1

1− µ(λs(k) + 1)

1

λs(k) + 1

∣∣∣∣〈ψs(k), φ−1
k (V̂ Ku)k

〉
H1(0,1)2

∣∣∣∣2 dk
+

∫ π

−π

∑
s≥s0,s6∈S

1

1− µ(λs(k) + 1)

1

λs(k) + 1

∣∣∣∣〈ψs(k), φ−1
k (V̂ Ku)k

〉
H1(0,1)2

∣∣∣∣2 dk.
We first consider the second sum. By Lemma 4.4 and Lemma 5.1, it can be

bounded below by

−C
∥∥∥∥ 1

ε0
− 1

ε1

∥∥∥∥
∞
‖u‖2K .(33)

Now, we turn our attention to the first sum. We remind the reader that the
set Σ consists of the elements (sj , kj) with j = 1, . . . , n. We split the domain of
integration into balls of radius δ around the points kj and the complement of the
union of these balls in [−π, π], where δ is chosen as in Assumption 3. Then

∫ π

−π

∑
s∈S

1

1− µ(λs(k) + 1)

1

λs(k) + 1

∣∣∣∣〈ψs(k), φ−1
k (V̂ Ku)k

〉
H1(0,1)2

∣∣∣∣2 dk
=

∑
s∈S

 n∑
j=1
sj=s

∫
Bδ(kj)

1

1− µ(λs(k) + 1)

1

λs(k) + 1

∣∣∣∣〈ψs(k), φ−1
k (V̂ Ku)k

〉
H1(0,1)2

∣∣∣∣2 dk
+

∫
Rs

1

1− µ(λs(k) + 1)

1

λs(k) + 1

∣∣∣∣〈ψs(k), φ−1
k (V̂ Ku)k

〉
H1(0,1)2

∣∣∣∣2 dk
]
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where Rs := [−π, π]\ ∪ n
j=1
sj=s

Bδ(kj). On Rs we again use that (1− µ(λs(k) + 1))−1

is uniformly bounded (with respect to s and k), since the continuous function
λs(·)−Λ1 is positive and therefore positively bounded away from 0 on the compact
set Rs. Using Lemma 5.1 again, the sum of the last integrals can be bounded below
by (33).

It remains to estimate the sum of the integrals over Bδ(kj). Exchanging the
order of the sums which can only add negative terms (if s ∈ Skj for several j) and
then shifting the integration variable yields∑

s∈S

n∑
j=1
sj=s

∫
Bδ(kj)

1

(1− µ(λs(k) + 1))(λs(k) + 1)

∣∣∣∣〈ψs(k), φ−1
k (V̂ Ku)k

〉
H1(0,1)2

∣∣∣∣2 dk
≥

n∑
j=1

∑
s∈Skj

∫
Bδ(kj)

1

(1− µ(λs(k) + 1))(λs(k) + 1)

∣∣∣∣〈ψs(k), φ−1
k (V̂ Ku)k

〉
H1(0,1)2

∣∣∣∣2 dk
=

n∑
j=1

∑
s∈Skj

∫
Bδ(0)

1

(1− µ(λs(kj + k̃) + 1))(λs(kj + k̃) + 1)

∣∣∣∣〈ψs(kj + k̃), φ−1

kj+k̃
(V̂ Ku(kj + k̃))

〉
H1(0,1)2

∣∣∣∣2 dk̃
=

n∑
j=1

∑
s∈Skj

∫
Bδ(0)

1

(1− µ(λs(kj + k̃) + 1))(λs(kj + k̃) + 1)2

∣∣∣∣〈ϕs(kj + k̃), φ−1

kj+k̃
(V̂ Ku(kj + k̃))

〉
H1(0,1)2

∣∣∣∣2 dk̃
≥

∫
Bδ(0)

1

1− µ(Λ1 + αk̃2 + 1)
f(k̃, u)dk̃,

where in the last step we have used Assumption 3 and Equation (28). Now, for
u ∈ L, by Lemma 5.3,∫
Bδ(0)

1

1− µ(Λ1 + αk̃2 + 1)
f(k̃, u)dk̃ ≥ C

∫
Bδ(0)

|k̃|2

1− µ(Λ1 + αk̃2 + 1)
dk̃

∥∥∥∥ 1

ε0
− 1

ε1

∥∥∥∥
∞
‖u‖2K

≥ −C̃
∥∥∥∥ 1

ε0
− 1

ε1

∥∥∥∥
∞
‖u‖2K .

Combining all our results, we get that for u ∈ L

〈Aµu, u〉K ≥ −C
∥∥∥∥ 1

ε0
− 1

ε1

∥∥∥∥
∞
‖u‖2K

for some C > 0, independent of µ ∈ ((Λ1 + 1)−1, (Λ0 + 1)−1). Therefore, if

C
∥∥∥ 1
ε0
− 1

ε1

∥∥∥
∞
< 1 the Rayleigh quotient is larger than −1 on the space L with

codimL = n. By the variational characterisation of the eigenvalues in (19) we have
κn+1(µ) > −1 for all µ ∈ ((Λ1 + 1)−1, (Λ0 + 1)−1). Therefore, using Lemmas 2.2
and 4.1, we see that no more than n eigenvalues of the operator L1 are created in
the gap. �

6. Lower bound on the number of eigenvalues

Lemma 6.1. Let µ ∈ ((Λ1 + 1)−1, (Λ0 + 1)−1). For all u ∈ K,

〈Aµu, u〉K ≥
√

2π

1− µ(Λ1 + 1)
‖Ku‖2H−1 .

holds.
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Proof. As in the proof of Theorem 5.5, we have that (32) holds for u ∈ K. This
leads to the estimate

〈Aµu, u〉K ≥ 1

1− µ(Λ1 + 1)

∫ π

−π

∑
s≥s0

1

λs(k) + 1

∣∣∣∣〈ψs(k), φ−1
k (V̂ Ku)k

〉
H1(0,1)2

∣∣∣∣2 dk
≥ 1

1− µ(Λ1 + 1)

∫ π

−π

∑
s

1

λs(k) + 1

∣∣∣∣〈ψs(k), φ−1
k (V̂ Ku)k

〉
H1(0,1)2

∣∣∣∣2 dk
≥

√
2π

1− µ(Λ1 + 1)
‖Ku‖2H−1

where the last inequality follows from Proposition 3.2 (5). �

Corollary 6.2. Let µ ∈ ((Λ1 + 1)−1, (Λ0 + 1)−1) and suppose that
∥∥∥ 1
ε0
− 1

ε1

∥∥∥
∞

sufficiently small. Then

inf
u∈K\{0}

〈Aµu, u〉
‖u‖2K

> −1.

Proof. This follows from Lemma 6.1 together with Lemma 2.1. �

Remark 5. This shows that for a fixed µ in the spectral gap, the size of the per-
turbation has to reach a threshold before it is possible for µ to lie in the spectrum.

Theorem 6.3. Let Assumptions 1 and 2 hold. For any ε1 such that
∥∥∥ 1
ε0
− 1

ε1

∥∥∥
∞

is sufficiently small, at least n = |Σ| eigenvalues are created in the spectral gap.

Proof. By Corollary 6.2, if
∥∥∥ 1
ε0
− 1

ε1

∥∥∥
∞

is sufficiently small, we can find µ′ ∈ ((Λ1 +

1)−1, (Λ0 + 1)−1) such that

(34) κ1(µ′) = inf
u6=0

〈Aµ′u, u〉K
‖u‖2K

> −1.

We next give an upper bound on the Rayleigh quotient using equality (31) and
decomposing the sum over s ∈ N into three parts: one over s < s0, one over s ≥ s0

with s 6∈ S, and one over s ∈ S. (Note that s ≥ s0 for all s ∈ S). By Lemma

5.1 the first sum is bounded from above by C ‖u‖2K as long as µ stays away from
(Λ0 + 1)−1. The second sum is bounded from above by 0. Therefore,

〈Aµu, u〉K ≤ C ‖u‖2K +

∫ π

−π

∑
s∈S

1

1− µ(λs(k) + 1)

1

λs(k) + 1

∣∣∣∣〈ψs(k), φ−1
k (V̂ Ku)k

〉
H1(0,1)2

∣∣∣∣2 dk
Now we split up the integration over [−π, π] into a part over the intervals Bδ(kj)
and a remainder, as before in the proof of Theorem 5.5. We get

〈Aµu, u〉K

≤ C ‖u‖2K +
∑
s∈S

 n∑
j=1
sj=s

∫
Bδ(kj)

1

1− µ(λs(k) + 1)

1

λs(k) + 1

∣∣∣∣〈ψs(k), φ−1
k (V̂ Ku)k

〉
H1(0,1)2

∣∣∣∣2 dk
+

∫
Rs

1

1− µ(λs(k) + 1)

1

λs(k) + 1

∣∣∣∣〈ψs(k), φ−1
k (V̂ Ku)k

〉
H1(0,1)2

∣∣∣∣2 dk
]
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and using Lemma 5.1 to estimate the integral over Rs, we continue the estimate as
follows:

≤ C ‖u‖2K +
∑
s∈S

n∑
j=1
sj=s

∫
Bδ(kj)

1

(1− µ(λs(k) + 1))(λs(k) + 1)

∣∣∣〈ψs(k), φ−1
k (V̂ Ku)k

〉
H1

∣∣∣2 dk

≤ C ‖u‖2K +
1

n

n∑
j=1

∑
s∈Skj

∫
Bδ(0)

∣∣∣〈ψs(kj + k̃), φ−1
k (V̂ Ku(kj + k̃))

〉
H1

∣∣∣2
(1− µ(λs(kj + k̃) + 1))(λs(kj + k̃) + 1)

dk̃

≤ C ‖u‖2K +
1

n

∫
Bδ(0)

1

1− µ(Λ1 + βk̃2 + 1)
f(k̃, u)dk̃.

In the last but one inequality we use the fact that any s ∈ S can be at most in n sets
Skj ; in the last line, due to analyticity, we have for |k̃| < δ that λs(kj+k̃) ≤ Λ1+βk̃2

for some β > 0. For any function

(35) u =

n∑
i=1

ξiPφ(θΨi) ∈ L⊥

with coefficients (ξi)
n
i=1 ∈ Cn, we have from Lemma 5.4 and continuity of f that

f(k̃, u) is bounded below on Bδ(0). Thus the Rayleigh quotient satisfies the follow-
ing estimate:

〈Aµu, u〉K
‖u‖2K

≤ C +
C

n

∫
Bδ(0)

1

1− µ(Λ1 + βk̃2 + 1)
dk̃ for some C > 0.

To show that the Rayleigh quotient tends to −∞ as µ→ (Λ1 + 1)−1, it is therefore
sufficient for ∫ δ

0

1

µ(Λ1 + βk̃2 + 1)− 1
dk̃

to diverge in the limit as µ↘ (Λ1 + 1)−1. We have∫ δ

0

1

µ(Λ1 + βk̃2 + 1)− 1
dk̃ = (µβ(µ(Λ1 + 1)− 1))−

1
2 arctan

(
δ

√
µβ

µ(Λ1 + 1)− 1

)
→ +∞ as µ↘ (Λ1 + 1)−1.

Therefore,

max
u∈L⊥\{0}

〈Aµu, u〉K
‖u‖2K

→ −∞ as µ↘ (Λ1 + 1)−1.

As codimL = n, the variational characterisation of the eigenvalues (19) implies
κn(µ) → −∞ as µ ↘ (Λ1 + 1)−1, and combined with Lemma 4.1 and (34) this
means that at least n eigenvalues are created in the gap. �

Theorem 5.5 and Theorem 6.3 together yield the following result.

Theorem 6.4. Let Assumptions 1, 2 and 3 hold, i.e.

(i) ε0, ε1 ∈ L∞(R2).
(ii) εi ≥ c0 > 0 for some constant c0 and i = 0, 1.

(iii) The perturbation is nonnegative, i.e.

ε1(x)− ε0(x) ≥ 0.

(iv) There exists a ball D such that ε1 − ε0 > 0 on D.
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(v) The band functions λs are not constant as functions of k ∈ [−π, π].

(vi) There are α > 0 and δ > 0 such that for all (ŝ, k̂) ∈ Σ and k ∈ [−π, π]

satisfying |k − k̂| ≤ δ,

λŝ(k) ≥ Λ1 + α|k − k̂|2.

Moreover, let
∥∥∥ 1
ε0
− 1

ε1

∥∥∥
∞
> 0 be sufficiently small. Then the number of eigenvalues

of the operator L1 in the gap (Λ0,Λ1) equals n, the finite number of solution pairs
(s, k) of the equation Λ1 = λs(k).
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Appendix A. Proof of Proposition 3.2

From [5, Theorem 4.3 & Theorem 4.7], we have σ(L0) = ∪kσ(Lk), as required
for Proposition 3.2 (1).

For Proposition 3.2 (2), let v ∈ H be defined by v(·, k) = (Lk−λ)−1(V̂ f)k. Then
in the proof of [5, Theorem 4.3] it is shown that (L0 − λ)u = f , where u = V −1v.
Thus both sides of (17) equal v(·, k) and the statement is true.

To prove Proposition 3.2 (3) let f ∈ L2(Ω) and use the decomposition (see [13],
[5])

f(:) =
1√
2π

∞∑
s=1

∫ π

−π
〈Uf, ψs(·, k)〉L2 ψs(:, k)dk,

where the series converges in L2(Ω). Thus for g ∈ H−1
qp (Ω),

(L0 − λ)−1g(:) =
1√
2π

∞∑
s=1

∫ π

−π

〈
U(L0 − λ)−1g, ψs(·, k)

〉
L2 ψs(:, k)dk

and using Proposition 3.2 (2) and that U |H1
qp(Ω) = V we get

(L0 − λ)−1g(:) =
1√
2π

∞∑
s=1

∫ π

−π

〈
(Lk − λ)−1V̂ g(k), ψs(·, k)

〉
L2
ψs(:, k)dk.(36)

Now, with φk = (Lk + 1) : Hk → H′k, using (12) and that φk and (Lk − λ)−1

commute we have〈
(Lk − λ)−1(V̂ g)k, ψs(·, k)

〉
L2

=
〈

(Lk − λ)−1(V̂ g)k, φkψs(·, k)
〉
H′k

=
〈

(V̂ g)k, (Lk − λ)−1φkψs(·, k)
〉
H′k

=
1

λs(k)− λ

〈
(V̂ g)k, φkψs(·, k)

〉
H′k

=
1

λs(k)− λ
(V̂ g)k[ψs(·, k)].
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Inserting this in (36) gives Proposition 3.2 (3). We next show Proposition 3.2 (4).
Noting that for λ = 1

µ − 1 we have

− 1

µ

1

λs(k)− λ
=

1

1− µ(λs(k) + 1)

and using (15), by Proposition 3.2 (3), we have〈
− 1

µ
(L0 + 1− 1

µ
)−1(Ku),Ku

〉
H−1

=
1

2
√
π

〈 ∞∑
s=1

∫ π

−π

1

1− µ(λs(k) + 1)
(V̂ Ku)k[ψs(·, k)]ψs(:, k)dk,Ku(:)

〉
H−1

=
1√
2π

lim
l→∞

〈
l∑

s=1

∫ π

−π

1

1− µ(λs(k) + 1)

〈
(φ−1
H V̂ Ku)(·, k), ψs(·, k)

〉
H1

ψs(:, k)dk, φ−1Ku(:)

〉
L2(Ω)

.

Next let

χl(:, k) =

l∑
s=1

1

1− µ(λs(k) + 1)

〈
(φ−1
H V̂ Ku)(·, k), ψs(·, k)

〉
H1((0,1)2)

ψs(:, k)

Then using the formula (11) for the inverse Floquet transform and the isometry
property of U we get〈
− 1

µ
(L0 + 1− 1

µ
)−1(Ku),Ku

〉
H−1

= lim
l→∞

〈
1√
2π

∫ π

−π
Ekχl(·, k) dk, φ−1Ku

〉
L2(Ω)

= lim
l→∞

〈
U−1χl, φ

−1Ku
〉
L2(Ω)

= lim
l→∞

〈
χl, Uφ

−1Ku
〉
L2((0,1)2×[−π,π])

.

Therefore, by Proposition 3.2 (2) using that U |H1
qp(Ω) = V , and by (12) we get〈

− 1

µ
(L0 + 1− 1

µ
)−1(Ku),Ku

〉
H−1

= lim
l→∞

∫ π

−π

〈
χl(k), φ−1

k (V̂ Ku)k

〉
L2(0,1)2

dk

= lim
l→∞

∫ π

−π

〈
φ−1
k χl(k), φ−1

k (V̂ Ku)k

〉
H1(0,1)2

dk

= lim
l→∞

∫ π

−π
(V̂ Ku)k[φ−1

k χl(k)]

= lim
l→∞

∫ π

−π

〈
φ−1
k χl(k), (φ−1

H V̂ Ku)(k)
〉
H1(0,1)2

= lim
l→∞

∫ π

−π

l∑
s=1

〈
(φ−1
H V̂ Ku)(k), ψs(k)

〉
H1(0,1)2

·
〈
ψs(k), (φ−1

H V̂ Ku)(k)
〉
H1(0,1)2

(1− µ(λs(k) + 1))(λs(k) + 1)
dk

= lim
l→∞

∫ π

−π

l∑
s=1

1

1− µ(λs(k) + 1)

1

λs(k) + 1

∣∣∣∣〈ψs(k), φ−1
k (V̂ Ku)k

〉
H1(0,1)2

∣∣∣∣2 dk.
(37)
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We now wish to interchange the order of taking the limit and integrating. To do
this note that

χl(:, k) =

l∑
s=1

λs(k) + 1

1− µ(λs(k) + 1)

〈
(φ−1
H V̂ Ku)(·, k),

ψs(·, k)√
λs(k) + 1

〉
H1((0,1)2)

ψs(:, k)√
λs(k) + 1

and set

χ(:, k) =

∞∑
s=1

1

1− µ(λs(k) + 1)

〈
(φ−1
H V̂ Ku)(·, k), ψs(·, k)

〉
H1((0,1)2)

ψs(:, k).

Since the set

{
ψs(k)√
λs(k) + 1

}
is an orthonormal basis in Hk and (φ−1

H V̂ Ku)(k) ∈

Hk, the series converges in Hk. In particular, we have that for every k ∈ [−π, π]

χl(·, k)→ χ(·, k) in H1((0, 1)2) as l→∞.
Moreover, by Bessel’s inequality∫

(0,1)2
|χ(x, k)− χl(x, k)|2dx ≤

∫
(0,1)2

|χ(x, k)|2dx

and as a function of k the right hand side lies in L1(−π, π). By Fubini’s theorem,
we have
(38)∫ π

−π

(∫
(0,1)2

|χ(x, k)− χl(x, k)|2dx

)
dk =

∫
(0,1)2

(∫ π

−π
|χ(x, k)− χl(x, k)|2dk

)
dx

and by dominated convergence the LHS of (38) tends to 0 and so the RHS of (38)
also does. This implies that

(39)

∫ π

−π
χl(·, k)dk →

∫ π

−π
χ(·, k)dk in L2((0, 1)2).

Therefore, using the Cauchy-Schwarz inequality we have that∣∣∣∣∫ π

−π

〈
(φ−1
H V̂ Ku)(k), φ−1

k (χ− χl)(k)
〉
H1(0,1)2

dk

∣∣∣∣
≤
∫ π

−π

∣∣∣∣〈(φ−1
H V̂ Ku)(k), (χ− χl)(k)

〉
H1(0,1)2

∣∣∣∣ dk → 0

as l → ∞ and so we can exchange the order of summation over s and integration
over k in (37). This gives〈

− 1

µ
(L0 + 1− 1

µ
)−1(Ku),Ku

〉
H−1

=

∫ π

−π

∞∑
s=1

1

1− µ(λs(k) + 1)

1

λs(k) + 1

∣∣∣∣〈ψs(k), φ−1
k (V̂ Ku)k

〉
H1(0,1)2

∣∣∣∣2 dk.
proving Proposition 3.2 (4).

Finally, we consider Proposition 3.2 (5). For f ∈ H−1
qp (Ω), we have

‖f‖2H−1 =
〈
φ−1f, φ−1f

〉
H1 =

〈
(L0 + 1)−1f, φ−1f

〉
H1

=
1√
2π

〈 ∞∑
s=1

∫ π

−π

1

λs(k) + 1
(V̂ f)k[ψs(·, k)]ψs(:, k)dk, φ−1f(:)

〉
H1
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where we have used Proposition 3.2 (3) for λ = −1.
Next, let

χ̃(:, k) =

∞∑
s=1

1

λs(k) + 1

〈
(φ−1
H V̂ f)(·, k), ψs(·, k)

〉
H1((0,1)2)

ψs(:, k).

By a similar argument to the proof of Proposition 3.2 (4), we can swap the
order of summation and integration and then using the formula (11) for the inverse
Floquet transform and the isometry property of V we get

‖f‖2H−1 =

〈
1√
2π

∫ π

−π
Ekχ̃(·, k) dk, φ−1f

〉
H1

=
1√
2π

〈
V −1χ̃, φ−1f

〉
H1 =

1√
2π

〈
χ̃, V φ−1f

〉
H .

Therefore, using Proposition 3.2 (2)

‖f‖2H−1 =
1√
2π

∫ π

−π

〈
χ̃(k), φ−1

k (V̂ f)k

〉
Hk

dk

=
1√
2π

∫ π

−π

〈 ∞∑
s=1

1

λs(k) + 1

〈
(φ−1
H V̂ f)(·, k), ψs(·, k)

〉
H1((0,1)2)

ψs(:, k), φ−1
k (V̂ f)k

〉
Hk

dk

=
1√
2π

∫ π

−π

∞∑
s=1

1

λs(k) + 1

∣∣∣∣〈ψs(k), φ−1
k (V̂ f)k

〉
H1(0,1)2

∣∣∣∣2 dk.
This completes the proof.
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