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 Abstract—Engagement is one of the most important factors in 
determining successful outcomes and deep learning in students. 
Existing approaches to detect student engagement involve periodic 
human observations that are subject to inter-rater reliability. Our 
solution uses real-time multimodal multisensor data labeled by 
objective performance outcomes to infer the engagement of 
students. The study involves four students with a combined 
diagnosis of cerebral palsy and a learning disability who took part 
in a 3-month trial over 59 sessions. Multimodal multisensor data 
were collected while they participated in a continuous performance 
test. Eye gaze, electroencephalogram, body pose, and interaction 
data were used to create a model of student engagement through 
objective labeling from the continuous performance test outcomes. 
In order to achieve this, a type of continuous performance test is 
introduced, the Seek-X type. Nine features were extracted 
including high-level handpicked compound features. Using leave-
one-out cross-validation, a series of different machine learning 
approaches were evaluated. Overall, the random forest 
classification approach achieved the best classification results. 
Using random forest, 93.3% classification for engagement and 
42.9% accuracy for disengagement were achieved. We compared 
these results to outcomes from different models: AdaBoost, 
decision tree, k-Nearest Neighbor, naïve Bayes, neural network, 
and support vector machine. We showed that using a multisensor 
approach achieved higher accuracy than using features from any 
reduced set of sensors. We found that using high-level handpicked 
features can improve the classification accuracy in every sensor 
mode. Our approach is robust to both sensor fallout and occlusions. 
The single most important sensor feature to the classification of 
engagement and distraction was shown to be eye gaze. It has been 
shown that we can accurately predict the level of engagement of 
students with learning disabilities in a real-time approach that is 
not subject to inter-rater reliability, human observation or reliant on 
a single mode of sensor input. This will help teachers design 
interventions for a heterogeneous group of students, where teachers 
cannot possibly attend to each of their individual needs. Our 
approach can be used to identify those with the greatest learning 
challenges so that all students are supported to reach their full 
potential. 

Keywords—Affective computing in education, affect 
detection, continuous performance test, engagement, flow, HCI, 
interaction, learning disabilities, machine learning, multimodal, 
multisensor, physiological sensors, Signal Detection Theory, 
student engagement. 

I. INTRODUCTION 
T is often a challenge to keep children engaged in 
learning activities, especially if the activity requires them 

to retain focus and active participation for a continuous 
period of time. Researchers reported that students with 
learning disabilities do not display any significant attention 
deficiency compared to non-disabled students – these 
students can complete the same activities if given more 
processing time [1]. Despite this outcome, student 
engagement can vary greatly depending on the activity, and 
understanding when the student is engaged, and when they 
are not, is not a straightforward task. 

While research has focused significantly on the ability of 
children with learning difficulties to recognize [2], perceive 
[3] and interpret [4] emotional cues, there is little to no 
research on the recognition of the emotional state of these 
students. The importance of carers being able to interpret the 
emotional cues and states of such students has been 
documented in [5]. It is found that carers made significantly 
more critical and ‘fundamental attribution’ [6] errors in the 
emotional expression of their clients with learning 
disabilities in comparison to their clients without learning 
disabilities. This affects the quality and quantity of their 
client’s treatment [5] and has a negative effect on the 
provisional treatment [7], [8]. Currently, carers rely on their 
expert understanding and personal experience of the 
students to interpret their voices, expressions, and gestures. 
Dependent on the personal experience with a particular 
client, a carers’ internal modeling of the emotional 
expression of that client can vary widely and demonstrate 
inter-rater reliability issues. 

One of the main ways to measure engagement in students 
with special educational needs is to use the Special Schools 
and Academies Trust (SSAT) Engagement Scale [9]. The 
Engagement Profile and Scale is a classroom tool developed 
through SSAT’s research into effective teaching and 

Mohammad H. Taheri, David J. Brown, Nasser Sherkat 

Modeling Engagement with Multimodal Multisensor 
Data: The Continuous Performance Test as an 

Objective Tool to Track Flow 

I 

M. H. Taheri is a Research Fellow at the Interactive Systems Research 
Group at Nottingham Trent University, Nottingham, NG14FQ, UK  
(e-mail: mohammad.taheri@ntu.ac.uk).   

D. J. Brown is the Research Group Leader of the Interactive Systems 
Research Group at Nottingham Trent University, Nottingham, NG14FQ, 
UK (e-mail: david.brown@ntu.ac.uk). 

N. Sherkat is a Professor and Head of the Engineering and Mathematics 
Department at Sheffield Hallam University, Sheffield, S11WB, UK (e-
mail: n.sherkat@shu.ac.uk). 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham Trent Institutional Repository (IRep)

https://core.ac.uk/display/326236966?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ICACII 2020: 14 International Conference on Affective Computing and Intelligent 
 

Taheri et al. 

 

589 

learning for children with complex learning difficulties and 
disabilities. It allows educators to focus on the child’s 
engagement as a learner and create personalized learning 
pathways [10]. The authors describe seven components of 
engagement namely, awareness, curiosity, investigation, 
discovery, anticipation, persistence, and initiation. Teachers 
assign a score out of four for each component giving a total 
score out of 28. One potential issue with the use of this scale 
is that teachers assign a subjective rating to each component, 
which will be subject to inter-rater variability. 

The scale has been used to assess the impact of new 
technologies in special education – especially in studies 
investigating the suitability of humanoid robots to support 
learning in students with Profound and Multiple Learning 
Disabilities (PMLD). The approach of using an engagement 
scale to create personalized learning pathways has been 
examined by others [11]-[13]. 

One way to overcome the variation in observer inter-rater 
reliability in tracking emotional expression is to introduce a 
reliable indicator of that emotion. In this research, a robust 
methodology for tracking engagement levels of children 
with PMLD or Cerebral Palsy (CP) is proposed using Signal 
Detection Theory (SDT) [14]. The application of this theory 
gives quantifiable information on the improvement of 
deterioration or attention in response to a Continuous 
Performance Test (CPT) specifically adapted to the abilities 
of such students [1], [15]. Performance in this test will 
provide objective labels to train machine learning algorithms 
using sensor data (e.g., on eye gaze and body pose) collected 
whilst the students are interacting with a PC. After obtaining 
a labeled dataset, machine learning models can be applied to 
the data so that in the future new unlabeled data can be 
presented to the model and engagement can be inferred. 

Many traditional interactive systems use devices such as a 
keyboard and mouse and are constructed to emphasize the 
transmission of explicit messages while ignoring implicit 
information about user interaction. The emerging science of 
affective computing can only be accelerated with the 
abundance of sensor data [16], [17] and wearables [18]. 
These multimodal human cues [19]-[21] provide the 
multimodal multisensor data points necessary for enhanced 
emotional modeling. Multimodal multisensor data have been 
instrumental in determining user affective states [19], [22]-
[28] including engagement [29]-[31]. There are a number of 
challenges to develop such a model including understanding 
the relationship between the terms used in educational 
contexts (e.g., ‘flow’ and ‘engagement’), developing 
appropriate CPTs suitable for the abilities of students with 
the most profound learning disabilities, selection of 
appropriate sensors and features derived from these data 
streams from which emotional states can be inferred, finding 
a suitable population of end-users to collect data with to 

train the machine learning algorithms, and finally comparing 
the performance of a range of machine learning methods to 
infer flow and engagement. This paper addresses each of 
these challenges. 

II. ENGAGEMENT, FLOW AND LEARNING 
In education, the use of the term ‘engagement’ is more 

familiar to teachers than flow. D’Mello and Graesser [32] 
see considerable overlap between the two terms: “we 
conceptualize engagement/flow as a state of engagement 
with a task such that concentration is intense, attention is 
focused, and involvement is complete” (p.146). Contrary to 
engagement, the concept of flow is well defined in 
Csíkszentmihályi’s works [33], [34].  One is in flow when 
one is engaged [31], and steady performance has been 
maintained at the comfortable limits of one’s skill 
limitations [35], [36] for the duration of time - making flow 
the optimal psychological state of engagement. This results 
in immersion, concentrated focus and deep learning [37], 
[38]. The relationship between flow and engagement has 
been illustrated in Bianchi-Berthouze’s [31] engagement 
model, a simplified version that has been shown in (1): 
  
𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 → 𝐹𝑙𝑜𝑤	 → 𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡	 (1) 
 

Performance trend tracking can be used as an indicator of 
flow [36]. This approach has been used in [39]-[41] as a 
model for relating affect (flow/engagement) to user 
performance in a pre-defined activity/task challenge. 

Engagement’s crucial role in learning was recognized by 
Carpenter [41], stating that “Sustainable learning can occur 
only when there is meaningful engagement”. Learner 
engagement in the classroom is the single, most reliable 
indicator of deep learning [36], [42], [43] and learner 
satisfaction [33], [37], [38]. Its role is central to classroom 
performance and the achievement of learning outcomes 
[45]-[48]. For these reasons, flow, a sub-state of 
Engagement [31], [33], [48], is a more suitable measure to 
follow or track the quality of experience; firstly it can be 
objectively monitored, and secondly, through its monitoring, 
engagement is also established. Flow is the optimal state of 
engagement, where engagement meets productivity [37], 
[38]. Maintaining flow in learning is especially significant 
because it is the most reliable indicator for determining 
successful learning [36], [45]-[48]. In the absence of learner 
engagement, deep conceptual learning is also not present 
[47], [49], which is an essential attribute to long-term 
learning and new skill achievement [49]. 
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III. CHALLENGES IN UNDERSTANDING ENGAGEMENT IN 
STUDENTS WITH LEARNING DISABILITIES  

Abrams stated [50], "The vast majority of children with 
learning disabilities have some emotional problem 
associated with the learning difficulty.” Generally, however, 
teachers have prioritized the diagnosis and remediation of 
learning disabilities [51]. 

Studies have considered self-reported affect states as the 
ground truth for inter-rater agreement studies [52], [53]. 
These studies have looked at the level agreement and 
correlation between self-rated affect states and peers, 
clinicians, and long-term partners. The level of correlation 
even though significant between the 40th and 70th percentiles 
[52], [53], still leaves room for improvement. In addition, 
self-rated affect states may carry bias or not be 
representative of the true affect state. Therefore, an 
automated method that would base its ground truth on self-
rated affect states would thus be impacted by such bias and 
unknown reliability factors. The validity of a machine 
learning method based on clinician, or peer-rated affect 
states would inherit even greater bias, reliability, and 
interrater reliability uncertainty, as it is one more level 
separated. Importantly, a machine learning method with 
100% classification accuracy trained with clinician-rated 
affect data would at best achieve around 70% correctness of 
the self-rated affect states. Furthermore, the self-rated affect 
states may themselves have a bias or be unrepresentative. 
This creates a problem for both the clients and care workers 
as it has been shown that observation is not a reliable 
method of determining a person’s mood and affect state [6]. 
This can only be more intensified with PMLD and CP users, 
as their behaviors, body language and voice may not have 
the same cues as mainstream people. Moreover, the levels of 
skill and experience between care workers and teachers vary 
widely, as does their capacity and accuracy of interpretation 
of others’ behaviors. This uncertainty of interpretation and 
inaccuracy in the observation of the affect state of a person 
experiencing PMLD or CP (mood and emotional well-
being) can be detrimental to their quality of life [5], [7], [8]. 
Hence, the well-being of a student with PMLD or CP can be 
improved if their levels of interest and engagement could be 
determined and tracked by more independent and repeatable 
means, such as using technology, and in our case sensors. 
This added interpretation of a student’s state of affect is not 
meant to replace teachers’ or carers’ interpretation, but more 
to augment this judgment. 

Monitoring a person's level of interest and engagement in 
activity allows carers, teachers, and parents to be responsive 
to those levels. In this study, we investigate the ability of 
sensor-based technology to detect and track sustained 
attention in a repetitive demanding activity, with a 

multimodal multisensor platform. This allows us to make 
inferences on the attention level of the student throughout 
the length of this activity through their responses to the 
challenges presented in the repetitive activity. 

An objective approach to the reporting of engagement is 
the use of a standardized test to monitor for indicators of 
flow. We demonstrate the possibility of tracking and then 
modeling body movements, eye gaze, electroencephalogram 
(EEG) and interaction data from students with PMLD and 
CP to estimate their level of engagement, as a good indicator 
of what interests them and positively influences the quality 
of that experience. 

IV.  A PLATFORM TO MEASURE ENGAGEMENT USING 
MULTIMODAL MULTISENSOR DATA FOR PMLD 

A gamified platform is proposed that monitors the 
qualities of flow, namely engagement through performance 
tracking using SDT [14] measures and outcomes. For the 
remainder of the paper, we will refer to this engagement 
tracking platform as ‘the platform’.  

The participant is required to pay continuous attention to 
a computer screen where an interactive game provides them 
with a pre-defined signal detection challenge. The 
participant is in control of the response they give, and 
feedback is given to them regarding the correctness of their 
response to the challenge. This is the basis for Swanson’s 
CPT [15]. The CPT is an integral component of the 
platform, and we have therefore created a version, the 
‘Seek-X’ type. This test has been created to be used 
specifically as an objective tool for engagement tracking 
using the CPT test outcomes to label multisensor data.  

We have named this CPT ‘Seek-X type’ because the 
participant is asked to seek the target image between other 
non-target images acting as a matrix of noise. ‘Type-Seek-
X’ exercises engage eye gaze as a crucial element of 
answering the SDT challenge. The Seek-X type CPT is of 
the non-rare target type, see (2): 

 
 

CPT	test	types = 	+
𝐵𝑦	𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒	 5𝑇𝑦𝑝𝑒 − 𝑋	 ⟶ 𝑆𝑒𝑒𝑘 − 𝑋					

𝑇𝑦𝑝𝑒 − 𝐴𝑋 ⟶ 𝑆𝑒𝑒𝑘 − 𝐴𝑋						

𝐵𝑦	𝑡𝑎𝑟𝑔𝑒𝑡	𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦	 C𝑅𝑎𝑟𝑒															𝑁𝑜𝑛 − 𝑟𝑎𝑟𝑒																	
	 (2) 

 
 
In summary, the period of sustained engagement is 

marked by participants' attention and interest being 
maintained in an interactive interaction. Maintaining 
sustained attention indicates the key foundation for 
recognizing lasting engagement. For this reason, this work 
explores classical methods for attention tracking using a 
neuropsychological test that measures a person's sustained 
and selective attention (the CPT) [15]. The CPT is reported 
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to be the most popular measure of sustained attention or 
vigilance—the ability to sustain attentional focus and remain 
alert to stimuli over time [54], [55]. The first attempt to 
objectively evaluate the relationship between maintaining 
attention in students with learning disabilities using CPTs 
was introduced by Swanson in [15], [56] and later expanded 
by Eliason and Richman [1]. Using SDT [14], [15], [58]-
[62], quantifiable objective data on the improvement or 
deterioration of attention are collected and analyzed using 
SDT detailed in [58], [59].  

A. Data Collection 
Four students were recruited for data collection (see 

Participants). They took part in an 11-week long study with 
up to four sessions weekly, depending on participant 
availability. 

Each session included 48 challenges. Each test lasted 
between 6-32 minutes depending on participant readiness or 
other setting-up challenges. Every session recorded nearly 4 
minutes of data. A total of 59 sessions of the CPT test were 
carried out (average of 15 sessions per participant). A series 
of 48 slides with pauses in between were displayed for each 
participant.  

This CPT test design was based on Rosvald and Mirsky’s 
original paper [61]. Recommended time alterations to the 
experiment length were made to match the shorter length 
activities that students with PMLD are accustomed to at 
school [15]. The CPT test was therefore shortened to about 4 
minutes for our participants, and the whole process takes 
around 15 minutes. This is compared to other research, 
which suggests a 30-minute test for neurotypical participants 
[62]. 

The difficulty of the CPT was also adapted for each 
participant by making the maximum response time (slide 
display time + blank slide display time) shorter or longer or 
by adjusting the image matrix grid size. These times are 
initially 1.8 s and 1 ± 0.1 s, respectively, and are increased 
or decreased depending on participant capacity. These times 
(seen in Table I) were established in a series of pilot tests 
where the aim was to reach close to the 85% rule for 
learning, where the participant makes around 15% mistakes 
and 85% correct responses [35] when in flow. The Seek-X 
type CPT slide timeline is demonstrated in Fig. 1. 

It is important in SDT that the participant can 
demonstrate they understand the difference between the 
target and noise, given enough time. To establish this, the 
game objective was re-introduced to the participants at the 
start of every session using a paper-based mockup to test the 
participants’ understanding of the challenge and validate 
their response.  
 
 

TABLE 1  
CPT SETTINGS ADJUSTED PER PARTICIPANT CAPACITY 

Participant 
alias 

P 
scales 
mean 

Slide display time  
/ Stimulus duration 

(s) 

Blank slide display time 
/ Interstimulus interval 

(s) 
Will 6.93 1.8 1.1 ± 0.1 
Jen 19.45* 1 1.1 ± 0.1 

Mark 3.7 8 2.1 ± 0.1 
Rick 6.76 1.8 1.1 ± 0.1 

*Jen is enrolled in the National Curriculum.  

 
 

 
Fig. 1. Seek-X type CPT slide timeline 

 

B. Experimental	platform	and	the	CPT	 
 The platform tracks student performance in a repetitive 
game, which rewards them with exciting visual and audio 
feedback when they answer correctly, but ultimately 
fatigues the student by being exhausting over a long period. 
The student is required to pay attention to the game 
dynamic, which challenges them to pay selective and 
sustained attention to the elements on the screen and 
respond appropriately. This induces different states of affect, 
with lower levels of valence, as the game carries on and the 
students’ attention capacity naturally decreases. During this 
game, real-time multimodal multisensor data is collected 
within the experimental platform, which is used later to 
create a machine learning model of flow. The experimental 
platform was developed in MATLAB to collect data from 
various consumer-grade sensor hardware. The experimental 
platform and the relative student position are visualized in 
Fig. 2. 
 The new type of CPT, of type ‘Seek-X’ was designed for 
this study. Each slide has a mixture of three images, 
comprising of the target image, the target imitation and the 
contrast image, as seen in Fig. 3. The target imitation bears a 
close resemblance to the target image (similar colors, 
general shape), however, the contrast image can easily be 
identified. 
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Fig. 2. The multimodal multisensor experimental platform with the 

eye gaze, body pose, EEG sensor and the CPT. 
 
 

   
Target image Target imitation 

image 
Contrast image 

Fig. 3. CPT image types 
 
 The ratio of the mixture of the main image to the filler 
image in all slide types is always 9 to 1 or as close as 
possible to this ratio, depending on the grid size and limited 
spaces available. We found that for our test user group a 
grid of 4 x 4 introduced enough difficulty to allow for 
participant responses, without being so easy that the 
participant would not make any mistakes when fatigued.  
 The distribution of the Hard Target (HT) pattern among 
the other random patterns has an occurrence probability of 
50%. The other CPT occurrences are standardized [61] as 
Hard Foul (HF), Easy Target (ET) and Easy Foul (EF). 
These patterns and their corresponding labels are seen in 
Table 2. 
 

TABLE 2  
THE DISTRIBUTION OF PATTERNS IN THE SEEK-X TEST 

Pattern HT HF ET EF 
Distribution 50% 25% 12.5% 12.5% 
CPT label Hard Target: 

Target image 
mixed in with 

imitations 
targets with a 
few contrast 

images. 

Hard Foul: 
Imitation target 

images with 
some contrast 

images. 

Easy Target: 
Target Image 

mixed in 
contrast 

images with 
some imitation 

targets. 

Easy Foul:  
Contrast 

images with 
some 

imitation 
targets. 

 

 The participants were seated in a chair in front of a 20” 
computer monitor, at a controlled distance of 50 cm to 80 
cm from the screen. Each participant was asked to press the 
keyboard spacebar, or a big button if wheelchair-bound, 
whenever they saw the target image on the screen, and not 
to press the button when they did not see the target image on 
the screen. During this activity, participant eye gaze, body 
pose, EEG measurements and button interaction data were 
continuously recorded. 
 The participant was then presented with 48 instances of 
images displayed in a controlled random sequence on the 
screen. Each image was displayed for a stimulus duration 
(slide display time) followed by a blank slide displayed for 
an interstimulus interval.  
 Real-time eye gaze position using Tobii EyeX [63], body 
pose data using Kinect v2, EEG data from the Muse 
headband [64] and interaction data from the USB button is 
recorded in MATLAB [65]. The Muse EEG headband 
streams 16-bit voltage data in microvolt (µV) units at 500 
Hz, which is equal or comparable to medical-grade EEG 
specifications [66]. The Tobii EyeX eye gaze tracking 
controller [67] uses near-infrared light to track the eye 
movements and gaze point of a student [68]. It works in 
variable light conditions and allows for student head 
movement while maintaining accuracy, which is crucial for 
our target user group. It has a frequency of 70 Hz and uses 
backlight assisted near-infrared (NIR 850 nm + red light 
(650 nm)) to achieve a 95% tracking population [69]. The 
Kinect 2 sensor [70] is a motion-sensing peripheral for body 
tracking. Using structured light and machine learning it can 
infer body position [70]. Kinect 2 is reported with an 
average depth accuracy of under 2 mm in the central 
viewing angle and increases to 2-4 mm in the range of up to 
3.5 mm [71]. The furthest distance captured by Kinect 2 is 
4.5 mm, where the average error typically increases beyond 
4 mm. The experimental platform was designed to replicate 
the majority of the CPT test variations reported in relevant 
studies [1], [15], [61], [72]–[76]. The features extracted 
from these sensor data streams are described under feature 
extraction. 
 

C. Participants 
 Four participants with PMLD were recruited to collect 
labeled sensor data whilst using the gamified platform. 
These four participants have a wide range of abilities, from 
extreme mobility restrictions to moderate learning 
disabilities. Our four participants are given pseudonyms, 
referred to in this paper as Will, Jen, Mark, and Rick.  
 The four participants are made up of three boys, and one 
girl, aged 16 to 19 years. Information leaflets were sent to 
the special educational needs school from which they were 
recruited to inform staff and parents about the project.  
 Students were selected based on their performance in 
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scales, which represent a set of descriptions used to record 
and assess the progress of children who have special 
educational needs (P-scales) [77], [78] (see TABLE 1). 
Permission for the study was given by Nottingham Trent 
University’s ethics committee. The user characteristics of 
each participant are now described in detail. 
 Will is 18 years old, has a diagnosis of global 
development delay (GDD) and learning disability. These 
impact on his speech, language, and social interaction with 
others. This means his ability to concentrate on a single 
activity for an extended period is limited, which in turn, 
limits his sustained attention. His body mobility is not 
restricted, however slightly imprecise. His speech sounds 
imprecise and is limited in the selection of words. His 
capability in conducting particular tasks in quick succession 
is good; however, he struggles to maintain sustained 
attention.  
 Jen is 19 and has a rare form of epilepsy. She is one of 
the more capable students at the school; she is very 
cooperative and shows an interest in being involved in the 
study. She also talks about music and theater and has 
interests in fashion and celebrities. 
 Rick is 19 and has a global delay, a rare form of epilepsy 
and a severe learning difficulty. Rick has problems 
processing information and communication. His attention is 
usually committed to a single concept (an activity, a 
memory, a sound). He is incredibly reliant on routine, and 
he will try to avoid any disruptions to it. He enjoys loud 
motor sounds, power tools, and garden work. He often 
reflects on activities he has done in the past or will do in the 
future with single words or short phrases. His mobility is not 
constrained but is delayed and processing time needs to be 
allowed for any responses. Physical objects and sounds help 
him associate with new concepts. 
 Mark is 16 years old and has myotonic dystrophy; this 
makes his muscles very weak. Myotonic dystrophy is a 
progressive and life-limiting condition. Mark uses a 
wheelchair and is at risk of chest infections and sudden heart 
failure. He uses a specialized CP wheelchair for body 
support and transportation. The wheelchair supports his 
body frame and keeps him upright and secure with a safety 
belt. His head is rested against his right ear on a padded 
headrest. His mobility disability is extreme; however, he has 
some imprecise movement in his neck and arms. At the 
school, he uses both eye gaze technology and switches to 
interact with computer interfaces. Mark uses his voice to 
communicate; he likes sharing his sense of humor, he laughs 
when things go wrong, and makes the sound ‘uh-oh’ to 
signal mistakes. He enjoys making choices and can become 
frustrated when he is not offered choices. Mark likes 
interacting with computers, however, shows sensitivity to 
anything resting on his forehead like the EEG headband. 
Because of his CP, he required a member of staff to be 
present during the study. Mark shows a definite progression 

with communication and is now very accepting of and 
participating in a wider variety of activities, events, and 
opportunities in school. 
 

D. Feature extraction 
 Brain-Computer Interfaces (BCIs) represent a novel 
mode of communication that has been used in emotional 
classification [79], and cognitive aware applications [80]. 
BCIs are also considered unique in augmentative and 
alternative communication (AAC) as they do not require 
physical movement from a user. This makes BCIs a suitable 
AAC method for people with Severe Speech and Physical 
Impairments (SSPI) [81], or CP [82]–[85] who do not have 
access to conventional means of communication including 
speech and typing [84]. 
 The quality of a BCI — to offer a direct mode of 
information from the brain — makes it especially ideal as an 
element in potential real-time affective user state detection 
[86], computer interaction for rehabilitation [87] and in 
brain multimedia interaction [88]. A BCI can also be a 
complementary source of information towards multimodal 
interaction systems as well, used in conjunction with other 
modalities such as gesture, facial expressions, gaze and 
body posture [89]–[91]. 
 EEG frequency has been used as a feature to determine 
the active brain state [92]–[94]. In this study, five channels 
of EEG data are recorded, TP9, AF7, FPz, AF8 and TP10 
[95] at a frequency of 500 Hz. EEG Kalman filtering has 
been shown to be useful in removing EMG induced artifacts 
[96]–[102]. A robust Adaptive Autoregressive (AAR) model 
with an order of six detailed in [102] was used. The AAR 
model estimate of the EEG Kalman filter was utilized to 
reduce the impact of Electromyography (EMG) spikes from 
body movement, eye blinks and other facial muscle 
movements. These EMG spikes are isolated in a few 
samples, which makes the data ideal for AAR Kalman 
filtering. In Fig. 4, we see that it has removed the EMG 
artifact that can be seen between samples points A and B, 
enhanced the EEG spikes, and revealed an EEG peak 
between C and D.  
 By using an AAR Kalman filter on the data, we estimate 
the EEG wave during the EMG incident artifacts using 
surrounding neighboring EEG samples and correct those 
affected samples. This is done by evaluating a moving set of 
samples and checking for EMG contamination. The 
contamination is then removed by estimating a normal rate 
of progression for the signal to reach from point A to point 
B using a sliding window for the length of the recording. 
 Studies show [103]–[106] that the EEG beta rhythm (14–
30 Hz) is activated when the brain is in a state of arousal. In 
other EEG studies, mental fatigue related features are 
associated with decreased alpha band (8-13 Hz) power at 
one or more parietal locations (e.g., P7 and P8). Ning-Han 
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Liu et al. [107] connected these two factors in their study 
and showed that alertness can be measured by the signal 
power of α divided by the signal power of β. Timothy 
McMahan et al. [108] also demonstrated that the ratio is 
related to arousal.  
 Using the signal power of α divided by the signal power 
of β as the EEG feature, the EEG recordings are labeled 
with the CPT outcomes. A Butterworth bandpass filter was 
employed to extract the frequency response of the α and β 
bands from the EEG signal as demonstrated in [109]. 
Discrete Fourier Transform (DFT) was used to calculate the 
Power Spectral Density (PSD) of the α and β time series.  
 DFT periodogram methods for estimating the spectrum 
power density are prone to variation [110]. Periodogram 
estimate variation is correlated to the square of the value of 
the spectrum itself. Welch’s method reduces this variance by 
averaging independent periodogram estimates. Each Welch 
window covers 50% of the next, which results in the 
smoothed-out average of independent periodogram spectrum 
estimations. We use a Hamming window as it produces the 
least amount of overshoot δ!"##$%& < δ!"%% < δ'"()*+)) 
[110] with the most accurate results for EEG data [109], 
[111].  
 A Hamming window of M = 100 samples was chosen 
with a 50% overlap, and since the EEG frequency is 500 Hz, 
this Hamming window is equivalent to 200 ms of data. To 
help illustrate, an average data interval length is 2.3 seconds 
long and would have 2300 ÷ 200 × 2 = 23 overlapping 
Hamming windows. Let {𝑥𝑑(𝑛)} be the sequence, 𝑑 =
1, 2, 3⋯𝐿 signal intervals and 𝑀 the interval length. 
Welch’s method to estimate the power spectrum discrete 
time sequence is shown in (3). Where 𝑈 is the normalization 
factor (4) and the Hamming window calculation is shown in 
(5). Using the Welch method, the ratio of the alpha band 
power 𝑓, to the beta band power 𝑓-	can is simplified as (6).  
 
 
Welch Method: 
𝑝̂𝑑(𝑓) = .

/0
	 I∑ 𝑥𝑑(𝑛)𝑤(𝑛)𝑒12345/1.

678 I3 (3) 
 
 
𝑈 is the normalization factor for Welch Method: 
 
𝑈 = .

/
∑ |𝑤(𝑛)|/1.
678  (4) 

 
 
Hamming window: 
 

𝑤[𝑛] = 	N0.54 − 0.46 cos W
346
/
X , 0 ≤ 𝑛 ≤ 𝑀,

0																																											𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (5) 

 
 

The EEG Alertness feature: 
 
Alertness = 9:;(5!)

9:;(5")
 (6) 

 
 

 
Fig. 4. AAR Kalman filtering reduces EMG noise and enhances 

EEG spikes 
 
 Body pose can be one of the strongest communication 
channels [112]. Body pose is acquired through the Kinect 
v2.0 SDK [70], which will provide joint tracking data at 30 
Hz. Tracking of the head, neck, mid-spine, right and left 
shoulders and left and right hands are recorded. Lower joints 
are not included as occlusion from the table as part of the 
platform prevents such recordings. Studies have shown that 
body posture and gesture can communicate affective 
modalities and also specific emotional categories [27]. They 
have also been indicators of a firm or weak correlation of 
engagement during Human-Computer Interaction in 
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gameplay [31]. In this study, the student is positioned in 
front of a computer system and is challenged to press a 
button when they identify the target. This type of interaction 
setup restricts the range of body movements and gestures a 
student can engage in. Numerous studies [113]–[118] have 
investigated the importance of body fidgeting in detecting 
attention for students with PMLD. Fidgeting is an indicator 
of the onset of attention loss, boredom and engagement 
deterioration [116], [122]-[125]. We calculate rapid body 
movement from body pose to assess fidgeting levels. The 
equation to extract this feature is seen in (7). Where ∆𝑑2 is 
the displacement vector of joint 𝑗 out of 𝑁 joints and ∆𝑡 is 
the time passing between the displacement samples.  
 

Body fidgeting = .
>
∑ ?∆;#?

∆A
>
27.  (7) 

 
 Eye gaze data is recorded at 70 Hz. This data includes 
Cartesian information regarding the eye gaze location 
relative to the bottom left corner of the screen. We track 
gaze, which is both on and off-screen. The combination of 
off-screen gaze tracking and eye detection provides 
information on when the user turns their head away from the 
screen. Three features were extracted from the eye gaze 
data: ‘eye scanning’, ‘eye dwelling’ and ‘eyes off-screen’. 
These features are commonly used in eye gaze technologies 
to understand attention, interest and engagement [123], 
[124].  
 Scanning represents the eye gaze behavior of when the 
gaze tracks across more than one image element. The 
scanning feature is calculated in (8) and represents the sum 
of the inverse distance from the center of each element. 
Where 𝑟B6 is that distance; from the eye gaze location to the 
center of image 𝑖 out of 𝐼 = 16 total image elements, for 
sample n, out of 𝑁 total discrete sensor samples. This is 
demonstrated in Fig. 5.  
 
Scanning = ∑ ∑ .

C$%
D
B7.

>
67.  (8) 

 
 Dwelling represents the eye gaze behavior of when the 
gaze stays relatively in the same position for a duration of 
time. This behavior is independently calculated from the 
location of image elements on the screen. The dwelling 
feature is calculated in (9), which is the sum of the inverse 
distance from each eye gaze position to the next. Where 𝑛 is 
the sample number out of 𝑁 total discrete sensor samples, 
and ∆𝑑 is the distance the eyes have  moved  since  the  
previous sample,  as  demonstrated  in Fig. 6.   
 
Dwelling = ∑ .

∆;%
>
67.  (9) 

 

 
Fig. 5. Scanning calculation 

with respect to the active 
elements on the screen 

 
Fig. 6. Dwelling calculation 

independent of active elements 
on the screen 

 
 The third feature extracted from the eye gaze data is 
‘eyes off screen’. This continuous but binary feature 
determines if the participant is looking within the screen 
area, regardless of whether there was a slide or blank slide 
on the display. This feature is calculated as in (10).  
 

Eyes	off	screen = 	 g1					𝑒𝑦𝑒𝑠	𝑜𝑓𝑓	𝑠𝑐𝑟𝑒𝑒𝑛0					𝑒𝑦𝑒𝑠	𝑜𝑛	𝑠𝑐𝑟𝑒𝑒𝑛			 (10) 

 
  Interaction data features were extracted from the 
participants’ behavior activating a button press. The type of 
pressing, including quick presses or repetitive presses, was 
recorded as were other sensor data with a view to behavior, 
not just input, but as an independent sensor mode. This 
makes our approach unique as the input device is considered 
not only as an objective indicator of attention but also as a 
separate mode of interaction. We remain impartial to which 
slide is displayed and only consider the interaction behavior. 
How the button is pressed, specifically how fast the button is 
pressed, and how many times it is pressed is of interest. 
From button presses, we extract two features: single fast 
button presses and repetitive button presses. Single fast 
button presses are calculated using the formula described in 
(11), with the caveat that they are only calculated if the 
participant presses the button once and only once during the 
response time duration. In other instances, the value for this 
feature is zero. Maximum press count is the second feature 
extracted from the button press data shown in (12). This 
value is calculated for only the allowed response time 
interval and is zero when the button is not pressed.  
 
Single fast press = .

CEF9G6FE	ABIE
 (11) 

 
 
Max press count = total	press	attempts (12) 

 
High-Level Compound Features (HLCF) were created to 

create a higher dimensionality in the feature space as 
described in the Mudra multimodal framework [125]. The 
first feature is a compound feature, which is simply a 
normalized mean of the features that traditionally serve 
indicators of attention. The High-level Attention feature is 
calculated as the mean of the normalized features of single 
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fast presses, eye dwelling, eye scanning and EEG alertness, 
which are seen in (13).  

 
HLA =	!

"
(𝑛𝑜𝑟𝑚. 𝑆𝑖𝑛𝑔𝑙𝑒	𝑓𝑎𝑠𝑡	𝑝𝑟𝑒𝑠𝑠 + 	𝑛𝑜𝑟𝑚.𝐷𝑤𝑒𝑙𝑙𝑖𝑛𝑔 +

	𝑛𝑜𝑟𝑚. 𝑆𝑐𝑎𝑛𝑛𝑖𝑛𝑔 + 𝑛𝑜𝑟𝑚. 𝐴𝑙𝑒𝑟𝑡𝑛𝑒𝑠𝑠) (13) 
 
 
High-level Distraction feature is calculated as the mean of 
normalized features of body fidgeting, eyes off-screen and 
press count as seen in (14). 
 
HLD =	!

#
(𝑛𝑜𝑟𝑚.𝐵𝑜𝑑𝑦	𝑓𝑖𝑑𝑔𝑒𝑡𝑖𝑛𝑔 + 𝑛𝑜𝑟𝑚. 𝐸𝑦𝑒𝑠	𝑜𝑓𝑓	𝑠𝑐𝑟𝑒𝑒𝑛	 +

𝑛𝑜𝑟𝑚.𝑀𝑎𝑥	𝑝𝑟𝑒𝑠𝑠	𝑐𝑜𝑢𝑛𝑡) 
 (14) 

V. EXPERIMENTAL RESULTS 

A. Labelling and data fusion 
  The CPT provides an objective means of labeling the 
multimodal sensor data. The CPT outcome measures 
(correct commissions/Hits, False Alarms (FA), correct 
omissions and misses) are objective outcomes of the 
participant’s attention and engagement with the game. 
Without these labels, there would be no objective measure 
or automated way of performing a supervised learning 
method on the data. An overview of how the data streams 
are collected and labeled against CPT outcome measures is 
shown in Fig. 7. Each slide from the moment it is displayed 
until the moment of the first button press, or until the 
moment of a new slide being shown (in case of no press), 
represents a sample of data. Overall, there were 2615 
samples collected from the 59 sessions of data collection. 
The data from all four participants was collated together. 
 

B. Machine learning results 
 A robust cross-validation method ensures that the results 
are not subject to overfitting. Leave-one-out [126] 
classification is a state of the art cross-validation 
methodology and is widely accepted not to be susceptible to 
overfitting. We show (regardless of the classification 
method), that there is a relationship between affective state 
and the multimodal multisensor data features. In this study, 
2615 frames, over the length of 59 sessions, were collected 
and classified into two categories (engaged and disengaged) 
using nine features (7 low-level and 2 high-level compound 
features). The aim of classification is to determine the 
affective state by predicting the CPT outcome. With two 
classes, the random classifier classification accuracy to beat 
is 50%. The overall approach used to evaluate the fit of the 
different architectures was leave-one-out cross-validation. 
Impartial scoring metrics were used to competitively 
compare the performance of the machine learning 
architectures as these methods normalize across categories 

(and are suitable for imbalanced datasets). The evaluation 
parameters used for determining the comparative 
performance of the machine learning architectures were 
Area Under the ROC Curve (AUC), Negative Log-
likelihood and Kappa. The software used to create this 
architecture is Python 3.7 and two high-performance 
computers, which ran in parallel over several weeks. The 
two PCs were both equipped with Intel i7-7700HQ 2.80 
GHz CPUs, and 16 GB of DDR4 RAM. The CPU was 
benchmarked at 82 Gigaflops, with 15 GB/s memory 
transfer rate and 1 GB/s SSD disk transfer rate. 
 

 
Fig. 7. Multimodal fusion diagram shows the temporal connectivity 

between the samples and multi-level feature fusion 
  
 The summary of results is shown in Table 3. Overall, the 
random forest classification approach achieved the best 
classification results in all modes of data. This was both 
when including high-level features, or when only using a 
sub-set of the data modes. This finding is supported by other 
studies [127], which suggests that random forest provides 
consistent pairwise similarity, crucial for multimodal data. 
Pairwise-similarity facilitates the combination of features, 
adding higher dimensionality to the feature space whilst 
being less sensitive to data sample size [128]. The best 
method, random forest used both high- and low-level 
features and achieved 93.3% classification for flow and a 
42.9% accuracy for non-flow. The random forest method 
incorporated 100 trees and all nine features were included at 
each of the 255 nodes, with 128 leaves in total. AdaBoost, 
(another ensemble method), outperformed random forest for 
the single modality feature classification. However, in every 
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example, using any machine learning method, multimodal 
data features delivered significantly better classification 
results than any single modality.  
 When compared to the second-best classification 
method, random forest outperforms neural network on the 
classification of non-flow classes with a margin of 16.5% 
and has an 11.7% better coverage in AUC (see Table 3). 
Besides neural networks, other machine learning methods 
were also assessed; AdaBoost, decision tree, k-Nearest 
Neighbor, naïve Bayes, and support vector machine, 
however, all had inferior performance when compared to 
random forest. 

 Including the two high-level [125] handpicked features 
(HLA and HLD) in the feature space, improved the 
classification in every sensor combination, and every 
machine learning methodology. In the random forest model 
including HLCF increased the AUC by 1.5% more 
coverage, and the classification of True Positives (TP) by 
0.9%, and True Negatives by 2.8%. On average, if only two 
modes of sensor input were available, including interaction 
data improves the outcome of AUC coverage by 16.8%, 
compared to any other two modes of data, making 
interaction data the single most important secondary feature. 
The single most important mode of data on its own however 
is eye gaze, with 3.2% better AUC coverage compared to 
interaction data.  
 The system developed using these machine learning 
models would not be affected by both sensor fallout and 

occlusions. At best (all high- and low-level features using 
random forest) 80.3% AUC coverage is achieved. Using a 
sub-set of three sensor modes 78.1%-73% AUC coverage is 
achieved, whilst with a subset of two sensor modes 
(including interaction) 76.5%-69.2% AUC coverage is 
achieved. Using a subset of two sensor modes (not including 
interaction) 70.8%-61.0% AUC coverage is achieved, and 
with only a single mode of sensor data between 63.7%-
48.8% AUC coverage is achieved.  
 

VI. CONCLUSIONS 
 An approach to labeling multimodal sensor data to train 
machine-learning algorithms to infer the engagement and 
flow of students with profound and multiple disabilities has 
been presented. We posit that this approach can overcome 
the variation in observer inter-rater reliability when using 
standardized scales in tracking the emotional expression of 
students with such profound disabilities. The accuracy of 
our approach increases with multiple modes of sensor input, 
and our method is robust to sensor occlusion and fall-out. 
Multiple sources of sensor input are provided, to 
accommodate a wide variety of users and their needs. Our 
model can reliably track the flow of students with profound 
disabilities, regardless of the sensors available. A system 
incorporating this model can help teachers design 

TABLE 3 
BEST CLASSIFICATION RESULTS ACHIEVED WITH RANDOM FOREST USING MULTI-LEVEL FEATURE FUSION 

Features Best 
Classification 
Method Found 

Negative log likelihood 
for Flow 

(Less is better) 

Negative log likelihood 
for Non-Flow 
(Less is better) 

Kappa AUC TP TN F1 Precision Recall 

All features Random Forest 0.1377 1.0149 0.418 0.803 93.8% 42.9% 0.819 0.817 0.833 
Low-Level 0.1440 0.9753 0.374 0.788 92.9% 40.1% 0.806 0.802 0.820 
High-Level 0.1250 0.9547 0.237 0.686 93.1% 26.4% 0.768 0.762 0.794 
All features Neural Network 0.1237 0.8191 0.300 0.773 93.6% 31.5% 0.786 0.783 0.808 
Low-Level 0.1203 0.7910 0.273 0.767 95.3% 26.4% 0.781 0.783 0.811 
All features AdaBoost 0.2775 2.1803 0.388 0.794 93.3% 40.7% 0.810 0.807 0.824 
Low-Level 0.2756 2.0422 0.335 0.765 90.7% 39.7% 0.791 0.785 0.802 
All features Naïve Bays 0.1341 0.7574 0.233 0.712 91.3% 28.7% 0.764 0.755 0.784 
Low-Level 0.1097 0.7463 0.095 0.728 98.0% 8.50% 0.732 0.748 0.796 
All features k-NN 0.1105 1.4139 0.207 0.746 96.4% 19.2% 0.763 0.771 0.804 
Low-Level 0.1115 1.5077 0.169 0.730 96.5% 15.9% 0.752 0.760 0.799 
All features Tree 0.2545 1.6061 0.309 0.706 89.9% 38.4% 0.782 0.776 0.793 
Low-Level 0.1157 1.6414 0.258 0.686 89.4% 34.0% 0.767 0.760 0.780 
All features SVM 0.1107 0.6620 0.086 0.454 76.2% 33.2% 0.686 0.701 0.673 
Low-Level 0.1026 0.6750 0.059 0.467 72.7% 34.0% 0.667 0.693 0.647 

   

Eye + EEG + Inter. Random Forest 0.1429 1.0202 0.349 0.765 92.4% 38.4% 0.793 0.793 0.812 
Eye + Body + Inter. Random Forest 0.1433 1.0784 0.371 0.781 91.6% 41.9% 0.803 0.798 0.814 
EEG + Body + Inter. Random Forest 0.1619 1.5544 0.318 0.730 91.9% 36.0% 0.788 0.783 0.804 

   

Eye + EEG Random Forest 0.1335 0.7164 0.277 0.679 95.0% 27.1% 0.781 0.783 0.810 
Eye + Body Random Forest 0.1619 1.5544 0.318 0.708 93.7% 27.9% 0.776 0.772 0.801 
EEG + Body AdaBoost 0.4902 2.2224 0.122 0.610 84.2% 27.4% 0.719 0.713 0.725 

   

Eye + Inter. Random Forest 0.1380 1.1820 0.308 0.765 93.6% 32.2% 0.788 0.785 0.810 
Body + Inter. AdaBoost 0.2579 2.0817 0.327 0.692 83.5% 52.1% 0.776 0.783 0.770 
EEG + Inter. AdaBoost 0.3002 2.0323 0.246 0.708 85.7% 38.3% 0.756 0.753 0.759 

   

EEG AdaBoost 0.2821 0.8682 0.100 0.559 84.6% 24.8% 0.714 0.706 0.723 
Eye gaze AdaBoost 0.2646 1.3051 0.255 0.637 89.2% 34.0 % 0.766 0.758 0.778 

Body AdaBoost 0.3091 1.0059 0.003 0.488 93.2% 7.10% 0.702 0.674 0.754 
Interaction AdaBoost 0.2491 0.6092 0.035 0.605 95.8% 6.70% 0.713 0.694 0.774 

           

All Features Constant Classifier 0.1004 0.6854 0.000 0.000 100% 0.00% 0.702 0.630 0.794 
Low-Level 
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personalized interventions for a very heterogeneous group of 
students, where teachers cannot possibly attend to each of 
their individual needs. This approach could be used to 
identify those with the greatest learning challenges, to 
guarantee that all students are supported to reach their full 
potential. 
 This research was conducted as part of a Ph.D. program 
of research at Nottingham Trent University (NTU) and has 
been adopted as part of the Erasmus+ KA201 Pathway+ 
project to determine the affective state of students with mild 
and moderate learning disabilities (2017-1-UK01-KA201-
036761) [129]. 

REFERENCES  
[1] M. J. Eliason and L. C. Richman, “The Continuous Performance 

Test in learning disabled and nondisabled children.,” J. Learn. 
Disabil., vol. 20, no. 10, pp. 614–9, Dec. 1987, doi: 
10.1177/002221948702001007. 

[2] E. Bloom and N. Heath, “Recognition, expression, and 
understanding facial expressions of emotion in adolescents with 
nonverbal and general learning disabilities,” J. Learn. Disabil., 
vol. 43, no. 2, pp. 180–192, Mar. 2010, doi: 
10.1177/0022219409345014. 

[3] V. L. Petti, S. L. Voelker, D. L. Shore, and S. E. Hayman-Abello, 
“Perception of Nonverbal Emotion Cues by Children with 
Nonverbal Learning Disabilities,” J. Dev. Phys. Disabil., vol. 15, 
no. 1, pp. 23–36, 2003, doi: 10.1023/A:1021400203453. 

[4] H. B. Holder and S. W. Kirkpatrick, “Interpretation of emotion 
from facial expressions in children with and without learning 
disabilities,” J. Learn. Disabil., vol. 24, no. 3, pp. 170–177, Mar. 
1991, doi: 10.1177/002221949102400305. 

[5] L. Weigel, P. E. Langdon, S. Collins, and Y. O’Brien, 
“Challenging behaviour and learning disabilities: The relationship 
between expressed emotion and staff attributions,” Br. J. Clin. 
Psychol., vol. 45, no. 2, pp. 205–216, 2006, doi: 
10.1348/014466505X67510. 

[6] F. Heider, The psychology of interpersonal relations. Hoboken: 
John Wiley & Sons Inc, 1958. 

[7] D. Dagnan, P. Trower, and R. Smith, “Care staff responses to 
people with learning disabilities and challenging behaviour: A 
cognitive-emotional analysis,” Br. J. Clin. Psychol., vol. 37, no. 
1, pp. 59–68, Feb. 1998, doi: 10.1111/j.2044-
8260.1998.tb01279.x. 

[8] R. Sharrock, A. Day, F. Qazi, and C. R. Brewin, “Explanations 
by professional care staff, optimism and helping behaviour: an 
application of attribution theory.,” Psychol. Med., vol. 20, no. 4, 
pp. 849–55, Nov. 1990. 

[9] “SSATrust - Engagement profile & scale.” 
[10] B. Carpenter, “Engaging young people with complex learning 

difficulties and disabilities in learning,” no. Cldd. 
[11] J. P. Roscoe, “‘Can the use of a humanoid robot enhance the 

learning of children with learning disabilities?,’” University of 

Nottingham, 2014. 
[12] P. Standen et al., “Engaging Students with Profound and Multiple 

Disabilities Using Humanoid Robots,” Springer, Cham, 2014, pp. 
419–430. 

[13] T. Hughes-Roberts et al., “Examining engagement and 
achievement in learners with individual needs through robotic-
based teaching sessions,” Br. J. Educ. Technol., vol. 50, no. 5, pp. 
2736–2750, Sep. 2019, doi: 10.1111/bjet.12722. 

[14] J. I. Marcum, “A statistical theory of target detection by pulsed 
radar,” Dec. 1947. 

[15] H. L. Swanson, “Vigilance Deficit in Learning Disabled 
Children: A Signal Detection Analysis,” J. Child Psychol. 
Psychiatry., vol. 22, no. 4, pp. 393–9, Oct. 1981, doi: 
10.1111/j.1469-7610.1981.tb00563.x. 

[16] A. Lanatà, G. Valenza, and E. P. Scilingo, “Eye gaze patterns in 
emotional pictures,” J. Ambient Intell. Humaniz. Comput., vol. 4, 
no. 6, pp. 705–715, Dec. 2013, doi: 10.1007/s12652-012-0147-6. 

[17] R. N. Khushaba, C. Wise, S. Kodagoda, J. Louviere, B. E. Kahn, 
and C. Townsend, “Consumer neuroscience: Assessing the brain 
response to marketing stimuli using electroencephalogram (EEG) 
and eye tracking,” Expert Syst. Appl., vol. 40, no. 9, pp. 3803–
3812, Jul. 2013, doi: 10.1016/J.ESWA.2012.12.095. 

[18] R. W. Picard, “Affective Computing,” MIT Press, no. 321, pp. 1–
16, 1995, doi: 10.1007/BF01238028. 

[19] M. Pantic, A. Nijholt, A. Pentland, and T. S. Huang, “Human-
Centred Intelligent Human-Computer Interaction (HCI^2): how 
far are we from attaining it?,” Int. J. Auton. Adapt. Commun. 
Syst., vol. 1, no. 2, pp. 168–187, 2008, doi: 
10.1504/IJAACS.2008.019799. 

[20] Z. Zeng, M. Pantic, G. I. Roisman, and T. S. Huang, “A survey of 
affect recognition methods: Audio, visual, and spontaneous 
expressions,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, 
no. 1, pp. 39–58, Jan. 2009, doi: 10.1109/TPAMI.2008.52. 

[21] M. Pantic, A. Pentland, A. Nijholt, and T. Huang, “Human 
Computing and Machine Understanding of Human Behavior: A 
Survey,” 2006. 

[22] Beckman Institute, “Multimodal Human Computer Interaction 
Towards a Proactive Computer,” 2001. 

[23] R. Ishii, Y. Shinohara, I. Nakano, and T. Nishida, “Combining 
Multiple Types of Eye-gaze Information to Predict User’s 
Conversational Engagement,” Hum. Factors, pp. 1–8, 2011. 

[24] A. Jaimes and N. Sebe, “Multimodal human–computer 
interaction: A survey,” Comput. Vis. Image Underst., vol. 108, 
no. 1–2, pp. 116–134, Oct. 2007, doi: 
10.1016/j.cviu.2006.10.019. 

[25] M. Pantic, N. Sebe, J. F. Cohn, and T. Huang, “Affective 
Multimodal Human-Computer Interaction,” Proc. 13th Annu. 
ACM Int. Conf. Multimed., pp. 669–676, 2005, doi: 
10.1145/1101149.1101299. 

[26] R. Sharma, V. I. Pavlovic, and T. S. Huang, “Toward multimodal 
human-computer interface,” Proc. IEEE, vol. 86, no. 5, pp. 853–
869, May 1998, doi: 10.1109/5.664275. 



ICACII 2020: 14 International Conference on Affective Computing and Intelligent 
 

Taheri et al. 

 

599 

[27] A. Kleinsmith and N. Bianchi-Berthouze, “Recognizing Affective 
Dimensions from Body Posture,” in Affective Computing and 
Intelligent Interaction, 2007, pp. 48–58. 

[28] N. Savva, A. Scarinzi, and N. Bianchi-Berthouze, “Continuous 
recognition of player’s affective body expression as dynamic 
quality of aesthetic experience,” IEEE Trans. Comput. Intell. AI 
Games, vol. 4, no. 3, pp. 199–212, 2012, doi: 
10.1109/TCIAIG.2012.2202663. 

[29] S. Asteriadis, K. Karpouzis, and S. Kollias, “The Importance of 
Eye Gaze and Head Pose to Estimating Levels of Attention,” 
2011 Third Int. Conf. Games Virtual Worlds Serious Appl., no. 
September 2015, pp. 186–191, 2011, doi: 10.1109/VS-
GAMES.2011.38. 

[30] Z. Zeng, J. Tu, B. M. Pianfetti, and T. S. Huang, “Audio-visual 
affective expression recognition through multistream fused 
HMM,” IEEE Trans. Multimed., vol. 10, no. 4, pp. 570–577, 
2008, doi: 10.1109/TMM.2008.921737. 

[31] N. Bianchi-Berthouze, W. W. Kim, and D. Patel, “Does Body 
Movement Engage You More in Digital Game Play? and Why?,” 
in Affective Computing and Intelligent Interaction, 2007, pp. 
102–113. 

[32] S. D’Mello and A. Graesser, “Dynamics of affective states during 
complex learning,” Learn. Instr., vol. 22, no. 2, pp. 145–157, 
2012, doi: 10.1016/j.learninstruc.2011.10.001. 

[33] M. Csikszentmihalyi and M. Csikzentmihaly, “Flow: The 
psychology of optimal experience,” vol. 41, no. May, 1991. 

[34] M. Csikszentmihalyi, “The Flow of Creativity,” Creat. Flow 
Psychol. Discov. Invent., pp. 107–126, 1996. 

[35] R. C. Wilson, A. Shenhav, M. Straccia, and J. D. Cohen, “The 
Eighty Five Percent Rule for optimal learning,” Nat. Commun., 
vol. 10, no. 1, pp. 1–9, 2019, doi: 10.1038/s41467-019-12552-4. 

[36] M. Taheri et al., “State Diagram for Affective Learning in an 
Educational Platform,” pp. 4–6, 2018. 

[37] M. Csikszentmihalyi, “Creativity: Invention, Flow and the 
psychology of discovery and Invention,” in Personnel 
Psychology, vol. 51, no. 3, 1997, p. 16. 

[38] P. H. Mirvis and M. Csikszentmihalyi, “Flow: The Psychology of 
Optimal Experience,” Acad. Manag. Rev., vol. 16, no. 3, pp. 636–
640, 1991, doi: 10.5465/AMR.1991.4279513. 

[39] G. Chanel, C. Rebetez, M. Bétrancourt, and T. Pun, “Boredom, 
engagement and anxiety as indicators for adaptation to difficulty 
in games,” MindTrek - 12th Int. MindTrek Conf. Entertain. Media 
Ubiquitous Era, no. January 2008, p. 13, 2008, doi: 
10.1145/1457199.1457203. 

[40] A. R. Basawapatna, A. Repenning, K. H. Koh, and H. Nickerson, 
“The zones of proximal flow,” Proc. ninth Annu. Int. ACM Conf. 
Int. Comput. Educ. Res. - ICER ’13, p. 67, 2013, doi: 
10.1145/2493394.2493404. 

[41] B. Carpenter, S. Rose, H. Rawson, and J. Egerton, “The rules of 
engagement,” SEN Mag., no. 54, pp. 34–54, 2011, doi: 
10.1016/S1548-5315(11)70723-9. 

[42] B. Carpenter et al., Engaging Learners with Complex Learning 

Difficulties and Disabilities: A resource book for teachers and 
teaching assistants. Taylor & Francis, 2015. 

[43] R. Iovannone, G. Dunlap, H. Huber, and D. Kincaid, “Effective 
Educational Practices for Students with Autism Spectrum 
Disorders.,” Focus Autism Other Dev. Disabil., vol. 18, pp. 150–
165, 2003, doi: Article. 

[44] M. J. Lee and B. Ferwerda, “Personalizing online educational 
tools,” Humaniz. 2017 - Proc. 2017 ACM Work. Theory-Informed 
User Model. Tailoring Pers. Interfaces, co-located with IUI 2017, 
pp. 27–30, 2017, doi: 10.1145/3039677.3039680. 

[45] C. R. Henrie, L. R. Halverson, and C. R. Graham, “Measuring 
student engagement in technology-mediated learning: A review,” 
Comput. Educ., vol. 90, pp. 36–53, 2015, doi: 
10.1016/j.compedu.2015.09.005. 

[46] A. K. |Wiggins. J. B. |Grafsgaard. J. F. |Boyer. K. E. E. N. |Lester. 
J. C. Vail, “The Affective Impact of Tutor Questions: Predicting 
Frustration and Engagement,” Int. Educ. Data Min. Soc., 2016. 

[47] S. Aslan et al., “Investigating the Impact of a Real-time, 
Multimodal Student Engagement Analytics Technology in 
Authentic Classrooms,” in Conference on Human Factors in 
Computing Systems - Proceedings, 2019, doi: 
10.1145/3290605.3300534. 

[48] J. Hamari, D. J. Shernoff, E. Rowe, B. Coller, J. Asbell-Clarke, 
and T. Edwards, “Challenging games help students learn: An 
empirical study on engagement, flow and immersion in game-
based learning,” Comput. Human Behav., vol. 54, no. 
JANUARY, pp. 170–179, 2016, doi: 10.1016/j.chb.2015.07.045. 

[49] “Engaging children with complex learning difficulties and 
disabilities in the Primary Classroom. Barry Carpenter,” no. 
2002, 2011. 

[50] J. C. Abrams, “On learning disabilities: Affective 
considerations,” J. Reading, Writing, Learn. Disabil. Int., vol. 2, 
no. 3, p. 190, Jan. 1986, doi: 10.1080/0748763860020303. 

[51] B. Hiebert, B. Y. Wong, and M. Hunter, “Affective influences on 
learning disabled adolescents.,” Learn. Disabil. Q., vol. 5, no. 4, 
pp. 334–343, 1982, doi: 10.2307/1510915. 

[52] R. R. McCrae, “Consensual validation of personality traits: 
Evidence from self-reports and ratings,” J. Pers. Soc. Psychol., 
vol. 43, no. 2, pp. 293–303, 1982, doi: 10.1037/0022-
3514.43.2.293. 

[53] D. Watson and L. A. Clark, “Self- Versus Peer Ratings of 
Specific Emotional Traits: Evidence of Convergent and 
Discriminant Validity,” J. Pers. Soc. Psychol., vol. 60, no. 6, pp. 
927–940, Jun. 1991, doi: 10.1037/0022-3514.60.6.927. 

[54] J. S. Warm, R. Parasuraman, and G. Matthews, “Vigilance 
requires hard mental work and is stressful.,” Hum. Factors, vol. 
50, no. 3, pp. 433–41, Jun. 2008. 

[55] G. J. DuPaul, A. D. Anastopoulos, T. L. Shelton, D. C. 
Guevremont, and L. Metevia, “Multimethod Assessment of 
Attention-Deficit Hyperactivity Disorder: The Diagnostic Utility 
of Clinic-Based Tests,” J. Clin. Child Psychol., vol. 21, no. 4, pp. 
394–402, Dec. 1992, doi: 10.1207/s15374424jccp2104_10. 



Modeling Engagement with Multimodal Multisensor Data ICACII 2020: 14 International Conference on Affective Computing and Intelligent 
 

 600 

[56] H. L. Swanson, “A Developmental Study of Vigilance in 
Learning-disabled and Nondisabled Children,” J. Abnorm. Child 
Psychol., vol. 11, no. 3, pp. 415–29, Sep. 1983, doi: 
10.1007/BF00914249. 

[57] W. Peterson, T. Birdsall, and W. Fox, “The theory of signal 
detectability,” Trans. IRE Prof. Gr. Inf. Theory, vol. 4, no. 4, pp. 
171–212, Sep. 1954, doi: 10.1109/TIT.1954.1057460. 

[58] N. A. Macmillan and C. D. Creelman, Detection Theory: A 
User’s Guide. Psychology Press, 2005. 

[59] J. A. Swets and R. M. Pickett, Evaluation of diagnostic systems : 
methods from signal detection theory. Academic Press, 1982. 

[60] W. P. Tanner and J. A. Swets, “A decision-making theory of 
visual detection,” Psychol. Rev., vol. 61, no. 6, pp. 401–409, 
1954, doi: 10.1037/h0058700. 

[61] H. E. Rosvold, A. F. Mirsky, I. Sarason, E. D. Bransome, and L. 
H. Beck, “A continuous performance test of brain damage.,” J. 
Consult. Psychol., vol. 20, no. 5, pp. 343–350, 1956, doi: 
10.1037/h0043220. 

[62] D. H. Sykes, V. I. Douglas, G. Weiss, and K. K. Minde, 
“Attention in hyperactive children and the effects 
methylphenidaten (Ritalin),” J. child Psychol. psychiatry, vol. 12, 
no. 2, pp. 129–139, 1971, doi: 10.1111/j.1469-
7610.1971.tb01056.x. 

[63] “Be first to get a Tobii EyeX Dev Kit Want to develop for 
Android or Linux ? Get a,” vol. 595, p. 795. 

[64] I. Software, “Muse : The Brain Sensing Headband Tech Spec 
Sheet.” 

[65] “MATLAB - The Language of Technical Computing - 
MathWorks United Kingdom.” [Online]. Available: 
http://uk.mathworks.com/products/matlab/. [Accessed: 07-Mar-
2016]. 

[66] M. Teplan, “Fundamentals of EEG measurement,” Meas. Sci. 
Rev., vol. 2, pp. 1–11, 2002, doi: 10.1021/pr070350l. 

[67] “Tobii EyeX Controller – get your own eye tracker.” 30-Jul-
2015. 

[68] “An introduction to Tobii EyeX | Tobii Developer Zone.” 
[Online]. Available: http://developer.tobii.com/an-introduction-
to-the-tobii-eyex-sdk/. [Accessed: 03-Mar-2016]. 

[69] “Specifications for EyeX – Tobii Eye Tracking Support.” 
[Online]. Available: https://help.tobii.com/hc/en-
us/articles/212818309-Specifications-for-EyeX. [Accessed: 10-
Apr-2019]. 

[70] “Kinect hardware.” [Online]. Available: 
https://dev.windows.com/en-us/kinect/hardware. [Accessed: 03-
Mar-2016]. 

[71] Q. Wang, Q. Wang, and G. Kurillo, “Evaluation of Pose Tracking 
Accuracy in the First and Second Generations of Microsoft 
Kinect Evaluation of Pose Tracking Accuracy in the First and 
Second Generations of Microsoft Kinect,” no. November, 2015, 
doi: 10.1109/ICHI.2015.54. 

[72] M. Rosenberg, S. Noonan, J. Degutis, and M. Esterman, 
“Sustaining visual attention in the face of distraction: a novel 

gradual-onset continuous performance task.,” Atten. Percept. 
Psychophys., vol. 75, no. 3, pp. 426–39, 2013, doi: 
10.3758/s13414-012-0413-x. 

[73] C. A. Riccio, Cecil R. Reynolds, P. Lowe, and J. J. Moore, “The 
continuous performance test: a window on the neural substrates 
for attention?,” Arch. Clin. Neuropsychol., vol. 17, no. 3, pp. 
235–272, Apr. 2002, doi: 10.1016/S0887-6177(01)00111-1. 

[74] S. H. Klee and B. D. Garfinkel, “The computerized continuous 
performance task: a new measure of inattention.,” J. Abnorm. 
Child Psychol., vol. 11, no. 4, pp. 487–495, 1983, doi: 
10.1007/BF00917077. 

[75] C. K. Conners, “The computerized continuous performance test.,” 
Psychopharmacol. Bull., vol. 21, no. 4, pp. 891–2, Jan. 1985. 

[76] C. A. Riccio, J. J. M. Waldrop, C. R. Reynolds, and P. Lowe, 
“Effects of stimulants on the continuous performance test (CPT): 
implications for CPT use and interpretation.,” J. Neuropsychiatry 
Clin. Neurosci., vol. 13, no. 3, pp. 326–335, Aug. 2001, doi: 
10.1176/appi.neuropsych.13.3.326. 

[77] “Teacher assessment: using P scales to report on pupils with SEN 
- Detailed guidance - GOV.UK.” [Online]. Available: 
https://www.gov.uk/guidance/teacher-assessment-using-p-scales. 
[Accessed: 07-Mar-2016]. 

[78] “P scales: attainment targets for pupils with SEN - Publications - 
GOV.UK,” Department for Education. [Online]. Available: 
https://www.gov.uk/government/publications/p-scales-
attainment-targets-for-pupils-with-sen. [Accessed: 07-Mar-2016]. 

[79] T. Affective and O. F. E. Emotion, “BRAIN – COMPUTER 
INTERFACE : FUNDAMENTALS AND ANALYSIS OF EEG-
BASED EMOTION CLASSIFICATION.” 

[80] A. Bulling and T. O. Zander, “Cognition-Aware Computing,” 
IEEE Pervasive Comput., vol. 13, no. 3, pp. 80–83, 2014, doi: 
10.1109/MPRV.2014.42. 

[81] M. Akcakaya et al., “Noninvasive brain-computer interfaces for 
augmentative and alternative communication,” IEEE Rev. 
Biomed. Eng., vol. 7, no. c, pp. 31–49, 2014, doi: 
10.1109/RBME.2013.2295097. 

[82] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, 
and T. M. Vaughan, “Brain-computer interfaces for 
communication and control.,” Clin. Neurophysiol., vol. 113, no. 
6, pp. 767–91, Jun. 2002. 

[83] M. Ahsan, M. Ibrahimy, and O. Khalifa, “EMG signal 
classification for human computer interaction: a review,” Eur. J. 
Sci. …, vol. 33, no. 3, pp. 480–501, 2009, doi: ISSN1450-216X. 

[84] I. Daly et al., “On the control of brain-computer interfaces by 
users with cerebral palsy,” Clin. Neurophysiol., vol. 124, no. 9, 
pp. 1787–1797, 2013, doi: 10.1016/j.clinph.2013.02.118. 

[85] J. R. Wolpaw and D. J. McFarland, “Control of a two-
dimensional movement signal by a noninvasive brain-computer 
interface in humans.,” Proc. Natl. Acad. Sci. U. S. A., vol. 101, 
no. 51, pp. 17849–54, 2004, doi: 10.1073/pnas.0403504101. 

[86] T. O. Zander and C. Kothe, “Towards passive brain-computer 
interfaces: applying brain-computer interface technology to 



ICACII 2020: 14 International Conference on Affective Computing and Intelligent 
 

Taheri et al. 

 

601 

human-machine systems in general.,” J. Neural Eng., vol. 8, no. 
2, p. 025005, Apr. 2011, doi: 10.1088/1741-2560/8/2/025005. 

[87] E. Haselsteiner and G. Pfurtscheller, “Using time-dependent 
neural networks for EEG classification.,” IEEE Trans. Rehabil. 
Eng., vol. 8, no. 4, pp. 457–63, Dec. 2000. 

[88] Y. P. Lin et al., “EEG-based emotion recognition in music 
listening,” IEEE Trans. Biomed. Eng., vol. 57, no. 7, pp. 1798–
1806, 2010, doi: 10.1109/TBME.2010.2048568. 

[89] D. P.-O. O. Bos et al., “Human-computer interaction for BCI 
games: Usability and user experience,” Proc. - 2010 Int. Conf. 
Cyberworlds, CW 2010, pp. 277–281, Oct. 2010, doi: 
10.1109/CW.2010.22. 

[90] C. Mühl et al., “Bacteria Hunt,” J. Multimodal User Interfaces, 
vol. 4, no. 1, pp. 11–25, Aug. 2010, doi: 10.1007/s12193-010-
0046-0. 

[91] C. Mühl et al., “Bacteria Hunt: A multimodal, multiparadigm 
BCI game,” enterface2009, no. 1, pp. 1–22, 2009, doi: 
10.1007/s12193-010-0046-0. 

[92] T. Egner and M. B. Sterman, “Neurofeedback treatment of 
epilepsy: from basic rationale to practical application.,” Expert 
Rev. Neurother., vol. 6, no. 2, pp. 247–57, Feb. 2006, doi: 
10.1586/14737175.6.2.247. 

[93] O. M. Bazanova and D. Vernon, “Interpreting EEG alpha 
activity.,” Neurosci. Biobehav. Rev., vol. 44, pp. 94–110, 2013, 
doi: 10.1016/j.neubiorev.2013.05.007. 

[94] M. Adjounadi, M. Cabrerizo, I. Yaylali, and P. Jayakar, 
“Interpreting EEG functional brain activity,” IEEE Potentials, 
vol. 23, no. 1, pp. 8–13, 2004, doi: 10.1109/MP.2004.1266932. 

[95] Trans Cranial Technologies Ltd., “10 / 20 System Positioning 
Manual,” p. 20, 2012. 

[96] A. Kubler, E. Holz, T. Kaufmann, and C. Zickler, “A User 
Centred Approach for Bringing BCI Controlled Applications to 
End-Users,” in Brain-Computer Interface Systems - Recent 
Progress and Future Prospects, 2013. 

[97] V. P. Oikonomou,  a T. Tzallas, and D. I. Fotiadis, “A Kalman 
filter based methodology for EEG spike enhancement.,” Comput. 
Methods Programs Biomed., vol. 85, no. 2, pp. 101–8, Feb. 2007, 
doi: 10.1016/j.cmpb.2006.10.003. 

[98] F. Morbidi, S. Member, A. Garulli, S. Member, C. Rizzo, and S. 
Rossi, “Application of Kalman filter to remove TMS-induced 
artifacts from EEG recordings,” pp. 1–7. 

[99] M. Arnold, W. H. Miltner, H. Witte, R. Bauer, and C. Braun, 
“Adaptive AR modeling of nonstationary time series by means of 
Kalman filtering.,” IEEE Trans. Biomed. Eng., vol. 45, no. 5, pp. 
553–62, May 1998, doi: 10.1109/10.668741. 

[100] A. Schlögl, F. Lee, H. Bischof, and G. Pfurtscheller, 
“Characterization of four-class motor imagery EEG data for the 
BCI-competition 2005.,” J. Neural Eng., vol. 2, no. 4, pp. L14-
22, Dec. 2005, doi: 10.1088/1741-2560/2/4/L02. 

[101] V. P., A. T., S. Konitsiotis, D. G., and D. I., “The Use of Kalman 
Filter in Biomedical Signal Processing,” in Kalman Filter Recent 
Advances and Applications, no. April, 2009. 

[102] G. Pfurtscheller, C. Neuper,  a Schlögl, and K. Lugger, 
“Separability of EEG signals recorded during right and left motor 
imagery using adaptive autoregressive parameters.,” IEEE Trans. 
Rehabil. Eng., vol. 6, no. 3, pp. 316–25, Sep. 1998. 

[103] L. Trejo et al., “EEG-based estimation of mental fatigue: 
Convergent evidence for a three-state model,” Found. Augment. 
Cogn., pp. 201–211, 2007, doi: 10.1007/978-3-540-73216-7_23. 

[104] A. Gevins and M. E. Smith, “Detecting transient cognitive 
impairment with EEG pattern recognition methods,” Aviat. Sp. 
Environ. Med., vol. 70, no. 10, pp. 1018–1024, Oct. 1999. 

[105] T. C. Hankins and G. F. Wilson, “A comparison of heart rate, eye 
activity, EEG and subjective measures of pilot mental workload 
during flight.,” Aviat. Space. Environ. Med., vol. 69, no. 4, pp. 
360–7, Apr. 1998. 

[106] D. Ming et al., “Electroencephalograph (EEG) signal processing 
method of motor imaginary potential for attention level 
classification,” Proc. 31st Annu. Int. Conf. IEEE Eng. Med. Biol. 
Soc. Eng. Futur. Biomed. EMBC 2009, vol. 2009, pp. 4347–4351, 
Jan. 2009, doi: 10.1109/IEMBS.2009.5332743. 

[107] N. H. Liu, C. Y. Chiang, and H. C. Chu, “Recognizing the degree 
of human attention using EEG signals from mobile sensors.,” 
Sensors (Basel)., vol. 13, no. 8, pp. 10273–10286, Jan. 2013, doi: 
10.3390/s130810273. 

[108] T. McMahan, I. Parberry, and T. D. Parsons, “Evaluating Player 
Task Engagement and Arousal Using Electroencephalography,” 
Procedia Manuf., vol. 3, no. Ahfe, pp. 2303–2310, 2015, doi: 
10.1016/j.promfg.2015.07.376. 

[109] A. Ameera, A. Saidatul, and Z. Ibrahim, “Analysis of EEG 
Spectrum Bands Using Power Spectral Density for Pleasure and 
Displeasure State,” IOP Conf. Ser. Mater. Sci. Eng., vol. 557, no. 
1, 2019, doi: 10.1088/1757-899X/557/1/012030. 

[110] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time 
Signal Processing, Second. Pearson, 1999. 

[111] J. Musson and J. Li, “A Comparative Survey of PSD Estimation 
Methods for EEG Signal Analysis,” Student Capstone Conf. 
Proc., pp. 1–6, 2010, doi: 10.1002/0471142301.ns0625s52. 

[112] N. Bianchi-Berthouze, “The Affective Body Argument in 
Technology Design,” in Proceedings of the International 
Working Conference on Advanced Visual Interfaces - AVI ’16, 
2016, pp. 3–6, doi: 10.1145/2909132.2933286. 

[113] J. Farley, E. F. Risko, and A. Kingstone, “Everyday attention and 
lecture retention: The effects of time, fidgeting, and mind 
wandering,” Front. Psychol., vol. 4, no. SEP, p. 619, Sep. 2013, 
doi: 10.3389/fpsyg.2013.00619. 

[114] M. D. Smith and M. S. Barrett, “The Effect of Parent Training on 
Hyperactivity and Inattention in Three School-Aged Girls with 
Attention Deficit Hyperactivity Disorder,” Child Fam. Behav. 
Ther., vol. 24, no. 3, pp. 21–35, Oct. 2002, doi: 
10.1300/J019v24n03_02. 

[115] C. K. Conners, L. Eisenberg, and A. Barcai, “Effect of 
Dextroamphetamine on Children,” Arch. Gen. Psychiatry, vol. 
17, no. 4, p. 478, Oct. 1967, doi: 



Modeling Engagement with Multimodal Multisensor Data ICACII 2020: 14 International Conference on Affective Computing and Intelligent 
 

 602 

10.1001/archpsyc.1967.01730280094011. 
[116] P. L. Holborow and P. S. Berry, “Hyperactivity and Learning 

Difficulties,” J. Learn. Disabil., vol. 19, no. 7, pp. 426–431, Aug. 
1986, doi: 10.1177/002221948601900713. 

[117] E. Benedetto-Nasho and R. Tannock, “Math computation, error 
patterns and stimulant effects in children with Attention Deficit 
Hyperactivity Disorder,” J. Atten. Disord., vol. 3, no. 3, pp. 121–
134, Oct. 1999, doi: 10.1177/108705479900300301. 

[118] S. L. Smith, No easy answer : the learning disabled child at home 
and at school. Bantam Books, 2012. 

[119] B. Fenesi, K. Lucibello, J. A. Kim, and J. J. Heisz, “Sweat So 
You Don’t Forget: Exercise Breaks During a University Lecture 
Increase On-Task Attention and Learning,” J. Appl. Res. Mem. 
Cogn., vol. 7, no. 2, pp. 261–269, 2018, doi: 
10.1016/j.jarmac.2018.01.012. 

[120] S. Lis, N. Baer, C. Stein-En-Nosse, B. Gallhofer, G. Sammer, and 
P. Kirsch, “Objective measurement of motor activity during 
cognitive performance in adults with attention-
deficit/hyperactivity disorder,” Acta Psychiatr. Scand., vol. 122, 
no. 4, pp. 285–294, 2010, doi: 10.1111/j.1600-
0447.2010.01549.x. 

[121] A. M. F. Zinno, G. Douglas, S. Houghton, V. Lawrence, J. West, 
and K. Whiting, “Hyperactivity Disorder ( ADHD ) during 
computer video game play,” Br. J. Educ. Technol., vol. 32, no. 5, 
pp. 607–618, 2001. 

[122] N. Bianchi-Berthouze and Nadia Bianchi-Berthouze, 
“Understanding the role of body movement in player 
engagement,” Human-Computer Interact., vol. 28, no. 1, pp. 40–
75, 2013, doi: 10.1080/07370024.2012.688468. 

[123] J. A. Vigo, “Eye Gaze Tracking for Tracking Reading Progress,” 
p. 100, 2013. 

[124] P. Fattahi, “Eyetracking Definitions: Basic Definition of Terms,” 
Teltow, Germany, 2011. 

[125] L. Hoste, B. Dumas, and B. Signer, “Mudra: A Unified 
Multimodal Interaction Framework,” 2011, pp. 97–104, doi: 
10.1145/2070481.2070500. 

[126] H. Zhang, Y. Zhu, J. Maniyeri, and C. Guan, “Detection of 
variations in cognitive workload using multi-modality 
physiological sensors and a large margin unbiased regression 
machine.,” Conf. Proc.  ... Annu. Int. Conf. IEEE Eng. Med. Biol. 
Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf., vol. 2014, pp. 2985–
8, Jan. 2014, doi: 10.1109/EMBC.2014.6944250. 

[127] K. R. Gray, P. Aljabar, R. A. Heckemann, A. Hammers, and D. 
Rueckert, “Random forest-based similarity measures for multi-
modal classification of Alzheimer’s disease,” Neuroimage, vol. 
65, pp. 167–175, 2013, doi: 10.1016/j.neuroimage.2012.09.065. 

[128] S. Hor and M. Moradi, “Scandent Tree: A Random Forest 
Learning Method for Incomplete Multimodal Datasets,” Springer, 
Cham, 2015, pp. 694–701. 

[129] “Mobile Pedagogical Assistant to develop meaningful pathways 
to personalised learning.” [Online]. Available: https://pedagogics-
pathway.eu/. [Accessed: 09-Apr-2020]. 

 


