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ABSTRACT Previous research efforts on developing an Intrusion Detection and Prevention Systems (IDPS)
for Android mobile devices rely mostly on centralized data collection and processing on a cloud server. How-
ever, this trend is characterized by two major limitations. First, it requires a continuous connection between
monitored devices and the server, which might be infeasible, due to mobile network’s outage or partial
coverage. Second, it increases the risk of sensitive information leakage and the violation of user’s privacy.
To help alleviate these problems, in this paper, we develop a novel Host-based IDPS for Android (HIDROID),
which runs completely on a mobile device, with a minimal computation burden. It collects data in run-time,
by periodically sampling features reflecting the utilization of scarce resources on a mobile device (e.g. CPU,
memory, battery, bandwidth, etc.). The detection engine exploits statistical and machine learning algorithms
to build a data-driven model for the benign behavior. Any observation failing to match this model triggers an
alert, and the preventive agent takes proper countermeasure(s) to minimize the risk. HIDROID requires no
malicious data for training or tuning, which makes it handy for day-to-day usage. Experimental test results,
on a real-life device, show that HIDROID is well able to learn and discriminate normal from malicious
behavior, with very promising accuracy of up to 0.9, while maintaining false positive rate by 0.03.

INDEX TERMS Android, security and privacy, intrusion detection and prevention system (IDPS), anomaly
detection, malware detection, behavior analysis, machine learning, prototype development.

I. INTRODUCTION
Smartphones play crucial role in modern life. They provide
a wide range of appealing features enabling mobile users to
access a plethora of high quality personalized services [1],
which makes them attractive for cybercriminals. They enable
ubiquitous connectivity by holding a portfolio of active radio
interfaces (e.g. LTE, UMTS, WiFi, Bluetooth, etc.). With
the deployment of Fifth-Generation (5G) mobile networks,
this list will be proliferated even further, complementing
them with revolutionary radio access technologies to support
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Giga-bit-per-second speeds on move [2], [3]. Nevertheless,
this may also increase their attack surface since these inter-
faces could be leveraged as potential attack vectors.

Android is the most popular mobile operating system, cap-
turing around 75% of global market share, which renders it a
prime target for attackers [4]. In particular, its open operating
system characteristic allows the user to install applications
from not only trusted, but also untrusted sources (i.e. third-
party markets). Consequently, malwares looking like an inno-
cent software (e.g. games, utilities, etc.) might be downloaded
and installed, which can pose serious security threats.

Apart from traditional Short Message Service (SMS)-
or Multimedia Messaging Service (MMS)-based Denial of

23154 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-6526-7334
https://orcid.org/0000-0002-7429-2144
https://orcid.org/0000-0002-8074-0417
https://orcid.org/0000-0001-9829-0955
https://orcid.org/0000-0003-2972-9965
https://orcid.org/0000-0002-9843-9219


J. Ribeiro et al.: HIDROID: Prototyping a Behavioral Host-Based Intrusion Detection and Prevention System for Android

Service (DoS) attacks, future smartphones can be exposed to
more sophisticated attacks originated from mobile malwares
(e.g. viruses, worms, Trojans, etc.). These attacks can target
not only the device itself, but also the mobile infrastructure.
Mobile malwares also enable attackers to exploit the stored
personal data on the device or to launch attacks (e.g. DoS)
against other entities, such as other user devices (e.g. smart-
phones, tablets, etc.), radio access networks, backhaul, or core
network, or other external networks connected to the core
[1], [5]. Therefore, security mechanisms such as Intrusion
Detection and Prevention Systems (IDPSs) are of utmost
importance to protect smartphones from a plethora of known
and unknown threats and ensure the user’s privacy.

Previous research efforts on designing an IDPS for
Android mostly rely on rooting the device [6] or collecting
data from remote devices and processing them in a command
and control center within the cloud [7]–[9] However, these
approaches have some severe limitations: i) they require a
continuous link between a mobile device and a central IDPS
server, that might not be always feasible due to the network’s
outage or partial coverage; and ii) they increase the risk of
sensitive information leakage, whichmay lead to the violation
of user’s privacy. To mitigate these problems, in this paper,
we extend our previous work in [10] and develop a proto-
type for a fully autonomous Host-based IDPS for Android
(HIDROID). In particular, this paper provides following con-
tributions:

1) we develop HIDROID as an IDPS application for
Android, describing its full functional and implemen-
tation details;

2) we complement the detection engine of the proposed
Intrusion Detection System (IDS), in [10], with an
Intrusion Prevention System (IPS), paving the way
towards a complete IDPS solution;

3) we evaluate the performance of HIDROID while run-
ning on a real-life mobile device and present our exper-
imental results.

In order to keep the computation burden of HIDROID
on a mobile device at minimum, without loss of generality,
we implement a couple of lightweight Machine Learn-
ing (ML) and statistical algorithms, namely one-class
K-means [11] – a variant of K-means clustering algorithm
with only one cluster encompassing the benign data – and
the univariate Gaussian algorithm for anomaly detection
[12], [10]. The results published in our previous work,
in [10], were based on simulations only, while this work
presents experimental results from our implemented proto-
type. Furthermore, it is the first time that we employ one-class
K-means algorithm for intrusion detection – in [10], we had
studied the standard K-means algorithm, with two clusters,
which requires both benign and malicious data for training.
In contrast, the one-class variant proposed in this work relies
only on benign data for training.

In fact, the merit of K-means algorithm, for an on-device
IDPS, is its low computational cost. This allows the algorithm
to be run on a resource-limited mobile device. However,

the algorithm also demonstrates a very good detection perfor-
mance according to our previous study in [10]. Nevertheless,
HIDROID is modular in design and permits to plug and play
other learning algorithms as well. Its extracted features reflect
the total resource utilization on the host device. It runs wholly
on the mobile device, a host-based approach, and requires
no root permission. Upon detecting any security incident,
the Prevention Engine launches adequate counteraction(s) to
minimize the risk. These countermeasures can range from
disconnecting the device from the Internet, switching off its
WiFi and Bluetooth interfaces as well as the mobile data
connection, to displaying a plain text alert on the screen,
informing the user about the evidence and the likelihood of
the detected intrusive event. This alert message pops up with
key recommendations to the user to prevent cascading the
risk. The Graphical User Interface (GUI) displays in run-time
monitored features along with the latest intrusion detection
results.

The rest of this paper is structured as follows. Section II
reviews the related work. Section III presents HIDROID’s
architecture and its different components. Section IV
describes its functional operation through flowcharts.
Section V covers the implementation details including both
hardware and software. Section VI describes experimental
setup and discusses our real-life test results, evaluating the
performance of HIDROID. Finally, Section VII concludes
and draws guidelines for future work.

II. RELATED WORK
Malware detection methods are divided into three main cat-
egories: 1) static, 2) dynamic, and 3) hybrid [13]. The static
techniques (also known asmisuse- or signature-based) main-
tain an updated database of malicious code patterns (i.e.
attack signatures) and scan the code, without running it, for
those signatures. Although being fast, they are susceptible to
generate false negatives because any small variation in the
code can easily evade the detection. In contrast, dynamic tech-
niques (also known as behavioral or anomaly-based) monitor
the behavior of an application in runtime. They construct a
model for normal behavior. Any observation considerably
deviating from this model is considered as an anomalous
behavior. The main advantage of dynamic techniques is their
capability to detect zero-day attacks though they may gener-
ate a large number of false positives, due to facing benign
examples unseen in the training data. Finally, hybrid tech-
niques combine both static and dynamic methods in order to
exploit the high detection precision of the static approach and
the zero-day attack detection by dynamic analysis.

Behavior-based IDPSs essentially construct a data-driven
model for the benign behavior. The data can generally contain
three major types of features [4], [14]: 1) resource utilization
on a mobile device, i.e. consumed CPU/memory, drained
battery, incoming/outgoing network traffic, etc.; 2) sys-
tem calls of the mobile operating system’s kernel invoked
by different applications, e.g. the number of times func-
tions such as open, read, write, kill, etc. are called by an
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application; 3) access permissions requested by an applica-
tion, e.g. to read/send SMS, accessing the camera, micro-
phone, contact list, device’s location, etc., that are registered
in the manifest file [4], [15].

Based on the location where the detection algorithm is
deployed, IDPSs are further divided into three major cate-
gories [16]:

1) Host-based: the whole system, including the detec-
tion engine, is deployed on the mobile device itself,
an autonomous IDPS [10], [17], [18].

2) Centralized: a command and control center in the cloud
monitors the mobile devices. In-depth analyses are
performed on powerful servers, taking advantage of
their abundant computation power and memory capac-
ity [6], [19]–[23].

3) Distributed: the system is partly deployed on the
mobile device and partly within the cloud. The data
collection agent and some lightweight analyses are
performed on the device, whereas computationally
expensive analyses are carried out on a remote server
computer [7], [24], [25].

There are several existing IDS solutions for Android [4],
notably Andromaly [17], Aurasium [26], Crowdroid [6],
Drozer [27] and Kirin [28]. In the following, we briefly
review them.
Andromaly [17] is a behavioral host-based malware detec-

tion framework for Android that continuously monitors
resource consumption on a mobile device. It employs super-
vised ML algorithms to classify a labelled dataset as benign
or anomalous. The audit data is collected from two Android
devices, each running four benign and four malicious applica-
tions. The detection process consists of run-time monitoring,
data collection, pre-processing and analysis of features such
as CPU consumption, number of sent packets through the
WiFi interface, battery level, keyboard and touchscreen press-
ing rate, etc. An ensemble algorithm (e.g. majority voting,
weighted average, etc.) is applied to combine the results
of multiple learning algorithms in order to reliably assess
the infection level of the device. A smoothing filter is then
employed, combining the current detection outcome with
the past history of alerts, in order to reduce the number of
instantaneous false positives. Upon a detection, a notification
message is displayed for the user and some automatic or
manual countermeasures are considered to mitigate the risk.
However, there are two main limitations with Andromaly.
First, it relies on supervised learning which entails construct-
ing a labelled dataset, which is a tedious task in practice since
it requires infecting the device with a set of malwares and
labelling the data by a human. Second, Andromaly’s capabil-
ity for detecting real malwares still needs further investiga-
tion as the authors test it only against their own homemade
simple malwares.
Aurasium [26] is a technology that enforces arbitrary run-

time security policies in a simple and robust way to control the
execution of apps, even the ones obtained from an untrusted
place. The system is composed of two major components:

1) the repackagingmechanism inserting instrumentation code
into arbitrary Android apps; and 2) the monitoring code inter-
cepting an app’s interactions with the system that enforces
various security policies. Instead of installing the app directly
on the mobile device, the app is pushed by the user to the
Aurasium black box where a hardened version of the app is
created. Then, the user installs this hardened version. It is
assured that all of the app’s interactions are closely monitored
for malicious activities and adequate protection policies for
the user’s privacy and security are actively enforced. Never-
theless, the Aurasium process can be dangerous since it uses
repackaging that is done by a third-party application. Further-
more, Aurasium modifies the original application – despite
for a good cause. It also includes more policies and add its
own code. This procedure forces to add a new signature and
thus Aurasium itself can be treated as a malware by other
IDSs.
Crowdroid [6] is a behavior-based (dynamic) malware

detection system constituted by two major parts: 1) a crowd-
sourcing app (Crowdroid) running on the mobile device that
is responsible for collecting the behavioral data (system calls)
of Android applications; and 2) a remote server for the trace
analysis and malware detection. It analyzes the behavior of
Android applications and detects malwares in the form of
Trojan horses. Crowdroid makes use of a crowdsourcing
system to obtain the traces of application’s behavior. A major
constraint of this solution is that it uses the Strace, a system
utility on the device to collect the system calls of the app,
which requires the root access. Also, the collection of system
calls is for a specific application and not for the entire system.
So, it analyzes the behavior of one application at a time.
Drozer [27] is a comprehensive attack and security assess-

ment framework for Android. It is available as an open-
source software, under Berkeley Source Distribution (BSD)
license, which is maintained by MWR InfoSecurity.1 It is
essentially a hybrid solution consisting of two main compo-
nents: 1) the Agent app that is installed on the device and
interacts with other apps through the Inter-Process Commu-
nication (IPC) mechanism; and 2) the server-side component,
which is installed on a server and can remotely monitor the
Android device. In addition, Drozer can interact with the
Dalvik virtual machine to discover installed packages and
related app components. Furthermore, it allows interaction
with the app-components like services, content providers and
broadcast receivers to identify vulnerabilities. It can also
interact remotely with Android operating system through
a shell. Although Drozer can detect some types of intru-
sions [27] and it is modular in design, it interacts with the
user only through the command line, which can be a handicap
for ordinary users that are less familiar with command line
interfaces.
Kirin [28] is an on-device security policy enforcement

mechanism. It verifies the permissions requested by an
app against a set of rules. These rules are previously defined

1https://www.mwrinfosecurity.com/
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TABLE 1. Pros and cons of different malware detection systems for
android.

based on the combination of certain dangerous permissions
that might be requested by an app. Kirin decides whether or
not to permit the installation of new app, based on these rules,
on behalf of the user. In addition, it provides a methodology
for upgrading security requirements in Android and performs
certification of the applications at install time. AlthoughKirin
can detect some dangerous functionalities, it is far from being
complete. Its set of rules can detect only specific types of
malware and may reject legitimate applications. For instance,
it cannot detect a malware that requests permissions that look
like the ones requested by a legitimate application. Kirin
analyzes the application on install time but is not designed for
monitoring the application behavior on runtime. Table 1 sum-
marizes the advantages and disadvantages of the reviewed
works.

However, despite these existing solutions, there are still
several limitations with IDPSs for Android. Towards that end,
HIDROID brings several novelties to the state-of-the-art. For
example, Andromaly [17] analyzes the data collected from
the behavior of few artificially generated malwares by the
authors and relies on a supervised dataset for training, which

entails considerable human effort in practice. In contract,
HIDROID analyzes data collected from real-world malwares
and is trained using an unlabeled dataset. As another example,
Crowdroid [6] is a cloud-based IDS that extracts features
related to the frequency of system calls and performs com-
putationally expensive data analysis tasks on a server. Never-
theless, HIDROID is a host-based IDPS that runs completely
on the mobile device, therefore needing no connection to
the server. Furthermore, HIDROID extracts and analyzes
features representing the overall behavior of the device (by
capturing the user’s behavior), whereas Crowdroid relies on
characterizing the behavior of each individual application,
which limits its scalability to a larger number of malwares.
Additionally, Kirin [28] is a static approach as it checks the
permissions that an application requests at install-time (and
not in run-time), and Aurasium [26] modifies the source code
of the application under vigilance, using a tool that unpacks
the application, embeds the IDS’s own code, repacks the
application, and resigns it, which could itself be considered as
an intrusive behavior by third-party IDS applications. In con-
trast, HIDROID exploits a dynamic learning approach for
detection and does not modify the applications’ code at all.
Last but not least, unlike the reviewed works, which perform
only the detection task, HIDROID complements the detection
with a prevention engine.

III. HIDROID COMPONENTS
HIDROID app consists of the following main components,
as illustrated in Fig. 1: Run Time Data Acquisition, Run
Time Dataset Generation, Feature Normalization, Detection
Engine, Intrusion Probability Assessment, Alert Manager,
and Prevention Engine.

A. RUN TIME DATA ACQUISITION
The Run Time Dara Acquisition component is the initiating
building block of the system. It is responsible for collect-
ing data on run-time for the set of features summarized by
Table 2.

B. RUN TIME DATASET GENERATION
The Run-Time Dataset Generation module succeeds the data
acquisition and constructs training/test datasets in run-time.
It saves the collected data in CSV (Comma-Separated Values)
files where each file contains the data collected during one
data acquisition interval which can be adjusted by the user
from 1 min up to 1 h. Each entry (row), in the file, represents
one training sample (example) and each column represents
one feature.

C. FEATURE NORMALIZATION
The Feature Normalization module receives the dataset from
the Run-Time Dataset Generation component, in a CSV file,
and normalizes the features (i.e. the columns of this file).
The normalization is performed as follows. For each column
(feature), it first subtracts the mean value of the column
from every entry and then divides the results by the standard
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FIGURE 1. Architecture of HIDROID.

TABLE 2. Extracted features for Android malware detection.

deviation of the same column. This operation is repeated for
every column and the output is saved in a new CSV file;
each column of the new file has therefore zero mean and unit
standard deviation.

D. DETECTION ENGINE
The Detection Engine incorporates both ML and statisti-
cal algorithms. The ML algorithm is of unsupervised cate-
gory, namely K-means clustering algorithm. More precisely,
we use a variant of K-means with only one cluster, rep-
resenting the benign data [29], [30]. During the training
phase, we set a boundary separating benign region from the
outlier region. To find this boundary, in the training phase,
we assume that a certain majority of data (say 98%) is origi-
nated from benign behavior and the rest (2%) is due to outliers
or noise. Hence, we set a spherical threshold (using Euclidian
distance) in a way that encompasses 98% of the training data,
while the rest 2% (outliers) lie outside the boundary.

As for the statistical algorithm, we use the univariate
Gaussian algorithm, elaborated in [10]. The rationale behind
choosing this algorithm is its low computational cost, but
still a comparable performance to its multivariate counterpart
since the latter requires computing the inverse of the covari-
ance matrix, which is a computationally expensive operation,
especially for a resource-constrained mobile device.

It is worth noting that the essential difference between
univariate andmultivariate Gaussianmodels is that the former
assumes that all features are independent from one another,
while the latter does not make such an assumption. Both
algorithms principally estimate the parameters of the underly-
ing (Gaussian) distribution, e.g. the mean and the variance or
the covariance matrix (in case of a multivariate model), using
a maximum likelihood estimator. Then, the algorithm sets
a threshold for the probability distribution function, below
which, is considered as anomaly. Upon any observation, its
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probability is calculated, and if it falls below this threshold
(i.e. in the tale of the distribution), the detection engine
reports an anomaly.

E. INTRUSION PROBABILITY ASSESSMENT
The Intrusion Probability Assessment analyzes the out-
put (binary) decision vector of theDetection Engine. It calcu-
lates the probability of intrusion for a given data acquisition
period based on the ratio of malicious examples observed in
the test dataset generated in that period. This calculation is
simply done by dividing the number of 1’s in the input binary
vector to its length.

F. ALERT MANAGER
The Alert Manager calculates the overall probability of intru-
sion given the probability of intrusion for the current and past
monitoring periods. Particularly, it receives the current prob-
ability of intrusion coming from the Intrusion Probability
Assessment component and calculates the overall probability.
This calculation takes into account the number of consecutive
alerts and their associated probability of intrusion occurred
in the recent past. The overall probability of intrusion at time
instant k, P(k), is calculated as follows:

P(k) = 1−
∏α−1

j=0
(1− P0(k − j)) (1)

Here P0(k) indicates the instantaneous probability of
intrusion at time index k and α represents the number of
consecutive intrusions that have been observed in row. When
the overall probability of intrusion (P(k)) is calculated and it
exceeds a predefined threshold (security level), the Preven-
tion Engine is triggered.

G. PREVENTION ENGINE
The Prevention Engine alerts the user and provides him/her
with the probability that the system is compromised and the
following recommended counteractions:
1) Open the ‘‘Battery Management’’ in System Settings

to verify what applications are consuming too much
battery,

2) Open the ‘‘Application Management’’ in System Set-
tings to verify the last application installed and if it was
really installed by user,

3) Reboot the system.
Moreover, the Prevention Engine is able to carry out the

following countermeasures:
1) disable the Wi-Fi interface,
2) disable 3G data connection,
3) disable the Bluetooth connection,
4) rename malware files (e.g. Trojans) that automatically

send system information to a remote server controlled
by an attacker.

IV. FUNCTIONAL DESCRIPTION
As discussed above, for the detection engine, we imple-
mented the univariate Gaussian and the one-cluster K-Means

FIGURE 2. Initialization process of HIDROID.

algorithms. The aim is to study the performance of the overall
IDPS and each of these detection algorithms in run-time
operation. We install the IDPS app on the smartphone under
test and keep it running while we use the device normally.
The app begins by collecting the training examples, sampling
15 features every 2s. The sampled features are summarized by
Table 2. The collected examples are appended to a CSV file
until it reaches 12000 rows. The number of training samples
(12000) was set based on the results of our previous study,
where we achieved satisfactory results [10], [31].

Fig. 2 illustrates the initialization process of HIDROID.
It starts with the training phase by reading the samples and
running the procedures for each algorithm [10]. To determine
the threshold for outliers, we vary the boundary between 80%
and 100%, e.g. when the boundary is 95%, 95% of the whole
training examples lie inside the boundary and the rest 5% lie
outside. Then, we count the number of True Positives (TPs)
and False Positives (FPs) for each malware in the dataset.
We then choose the optimum value for the threshold by
finding the point where FP is very low or zero, while the
TP is as high as possible. This is indeed the point where the
accuracy reaches its maximum (cf. Fig. 8).

It is worth noting that for the case of K-means algorithm,
we perform both training (calculation of the centroid) and
tuning (finding the optimal radius for the boundary) in a
single step and so we use the whole 12000 training examples
at once. However, for the case of Gaussian algorithm, we split
the dataset and use 10,000 of them only for training (calcu-
lation of mean and variance vectors) and the rest 2000 for
calibration (finding the optimum threshold on the probability
distribution function that separates the tail region) [10]. Any
data point with probability higher than this threshold is con-
sidered benign; i.e. the lower values for the probability imply
a malicious event. For the case of K-means algorithm, for an
observed sample, if the Euclidian distance to the centroid is
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FIGURE 3. Run-time operation of HIDROID.

simply lower than the boundary, the sample is classified as
benign, otherwise it is classified as malicious.

When the training is completed, all parameters are stored
in the SharedPreferences and this ends the initialization pro-
cess. SharedPreferences is indeed an Application Program-
ming Interface (API) from Android Software Development
Kit (SDK) to store and retrieve application preferences which
are simply a set of data values that are stored persistently.
Hence, even if the application stops running, or the device is
switched off, the stored data in the SharedPreferences is still
there [32], [33].

The IDPS is now ready to operate. Fig. 3 depicts its run-
time operation. The shared preferences are useful in case
the application is interrupted; when it restarts, it restores the
values that were in use before the interruption. As we can
see from the figure, HIDROID continually reads, classifies,

and stores the classification result by appending it to a binary
vector (0 stands for benign and 1 stands for malicious).
It writes the sampled feature vector to a temporary CSV file,
by appending it to the end of the file as a new entry until a
predefined number of entries are collected. We consider this
number to be 600, corresponding to 20 minutes of reading
in intervals of 2s. It is worth noting that the classification is
done at run time to reduce the memory usage; we only need
to store a binary vector, with length 600, showing the results
of classification for all entries.

When the IDPS collects 600 examples, it stops reading
and classifying and then proceeds to the intrusion probability
assessment. This probability is indeed calculated as the ratio
of ones (malicious observations) in the output binary vector of
the detection engine. If the calculated probability of intrusion
at time instant k, P0 (k), is less than or equal to the user’s
defined security level (see Fig. 6), it assumes that there is
no intrusion and injects the collected 600 examples to the
training CSV file, by replacing the oldest 600 entries in
that file with the new ones. Otherwise, if the probability of
intrusion for the actual processing time, P0(k), exceeds the
security level, the IDPS considers this as a sign of intrusion
and stores P0(k) in a vector. Note that the security level is
indeed a threshold value for the probability of intrusion (Pth).
It is set by the user and when the probability of intrusion,
evaluated by theProbability Assessmentmodule, exceeds that
threshold, the IDPS reports an intrusion.

When an intrusion is detected, the Prevention Engine takes
counteractions to minimize the risk and triggers an alert.
Based on the severity of the condition, figured out from the
overall probability of intrusion P(k), it proposes an appro-
priate countermeasure that user should take to minimize the
risk. User can choose to cancel this message – assuming
the risk – or to apply the recommended prevention action.
The default actions include: 1) disconnecting the device from
the Internet by switching off 3G/4G, WiFi, and Bluetooth
interfaces; 2) locating potentially malicious files or the ones
with signs of malicious activity by looking for keywords
such as ‘‘name’’, ‘‘phone’’, ‘‘email’’, or ‘‘imei’’ in the text. If
any malicious file is found, the Prevention Engine renames
the file and reports it to the user. The preventive actions
can be escaladed according to the level of the overall prob-
ability of intrusion, i.e. the number of consecutive alerts
in row. That is, the Alert Manager takes a decision based
on the overall probability of intrusion, formulates an output
and displays a warning message on the screen suggesting a
counteraction.

There are some actions that the application can take (e.g.
disconnecting the device from the Internet) without user’s
consent and without system rights in an unrooted device.
However, in situations where it is not permitted to carry
out a certain action, it can at least provide useful sugges-
tions to instruct the user how to react. For example, it can:
1) launch the ‘‘Battery usage’’ in the Settings to let the
user know if there is any application consuming too much
battery; 2) launch the Application Manager in Settings and
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FIGURE 4. HIDROID structural diagram.

suggest the user to look out for the last installed applica-
tions. Nevertheless, in the end, it is the user’s decision that
overrides.

V. HIDROID PROTOTYPE IMPLEMENTATION
A. IMPLEMENTATION OVERVIEW
We developed HIDROID as a regular Android application
using the latest version of the Android Studio platform (ver-
sion 3.2.1) on a laptop running WindowsTM10 with lat-
est updates. The Android Studio platform is dedicated for
Android application development and uses all necessary tools
for editing, compiling, testing, and installing Android appli-
cations. It also includes emulators that allow developers to
test the applications on different hardware. We installed and
tested HIDROID on an un-rooted Samsung Galaxy J100H
smartphone (CPUARMCortex A7, 1200MHz, 2 core, RAM
512 MB and 4GB storage) running Android KitKat (version
4.4.4). The Samsung Galaxy smartphone supported extended
memory card and micro-sim card and was also equipped with
camera, Bluetooth, WiFi, USB and positioning system (GPS,
A-GPS, GLONASS).

B. STRUCTURAL DIAGRAM
Fig. 4 shows the structural diagram of HIDROID where all
its functional blocks along with their inter-connections are
illustrated. The user can see the run-time measurements of
the sampled features and adjust data collection parameters
such as sampling period, data collection duration, retraining
period, and the security level. Furthermore, the user can also
force retraining the learning algorithms at any time, which
is an important feature. For instance, after installing any
new application on the mobile device, the IDPS needs to be
retrained since this new installed application may consider-
ably impact the device’s behavior, resulting in a potentially
high number of false positives. Finally, once an intrusive
behavior is detected, the user is informed by an alert message
displayed on the user interface.

C. BACKGROUND RUNNING
Android apps are built as a combination of components that
can be invoked individually. The Activity is the component
that provides a user interface and invoke methods for various
stages of its life cycle such as: onCreate(), used to create
variables; user interface configurations; or onDestroy(), used
when the application is terminated to delete variables and
release the memory [34].

Other components such as broadcast receivers and Ser-
vices allow the app to perform background tasks without
interacting with the user. Our implementation uses the service
to run all the main functions in the background, while the
user is running other applications in the foreground. However,
as Android applications run, the device’s available memory
may decrease. When the memory gets critically low, Android
terminates processes so as to release the occupied memory
[32], [33]. Our application uses the label ‘‘START_STICKY’’
at the ‘‘onStartCommand()’’ callback method that tells the
system to create a fresh copy of the service after it recovers
from low memory [32], [33]. Also, we implement a mech-
anism that receives a boot indication (intent) after system
boots and starts the Service automatically. Intent is indeed
an Android data structure to bind information between code
objects such as Activities or Services or between different
Android applications [33].

D. USER INTERFACE
The user interface is organized in several functional pages
allowing the user to configure and setup parameters and
view the values of the principal features collected in run-time
by tapping in the respective icon, as illustrated by Fig. 5.
As shown in the figure, it displays the elapsed time from
the beginning of the current data acquisition interval and the
number of collected training samples for the current dataset
(i.e. the number of rows in the dataset). The user can also
access to the latest updates regarding the instantaneous and
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FIGURE 5. HIDROID’s user interface, main page.

FIGURE 6. HIDROID’s user interface, Settings page.

overall probabilities of intrusion, the number of generated
alerts and the threshold value.

Furthermore, the acquisition interval, analysis period,
training period and the security level parameters can be set
up on the Settings page, as shown in Fig. 6. The value of
the acquisition interval can vary from 1 to 5 seconds, and
the analysis period varies between 5 and 50 minutes. The
training is performed before any new analysis starts but the
user can force it manually (Fig. 5) or scheduling it through
the Settings. In addition, it is noteworthy that every time that

HIDROID is re-started, it refreshes the detection algorithms
by executing the retraining phase.

Moreover, on the Settings page, the user can set the secu-
rity level to avoid false positives triggered by circumstantial
occasions or noise. Although this parameter is essentially a
probability and its value can be between 0 to 1, as discussed in
Section VII, the recommended values lie between 0.05 (5%)
and 0.15 (15%) as shown in Fig. 6.

Finally, other useful functionalities that user can find in the
menu bar (see Fig. 5) include a Clear All button that resets all
variables to default and cleans all the previous results.

E. CLASS DIAGRAM
Fig. 7 shows the class diagram of HIDROID application, with
the most representative classes. In the following, we briefly
describe each of these classes [32], [33].
• The ActivityMain class implements the main interface.
This class controls the entire application. It verifies the
administration rights, it starts the ServiceIdps and sets
the default variables values to start running. It gets the
feature reading values such CPU, memory, battery, etc.
and sends them to the user interface.

• SplashActivity class controls the welcome page that
opens when the application is started and stays alive for a
few seconds then closes before the home page is loaded.

• CSVWriter implements all the necessary functions to
write in CSV files.

• AlertDialod implements the dialog interface. It is neces-
sary to build the dialogs used in the Alert Manager.

• The ServiceIdps class implements a service. It imple-
ments all the main functionalities of the full design such
as data acquisition, analysis and saving, training, clas-
sification, Alert Manager, etc. Moreover, it binds data
with ActivityMain. It further implements functions to
detect suspicious malicious text files. Finally, it is able to
manage network connections, e.g. WiFi and Bluetooth.

• The SettingUp class is the activity that controls the
graphical interface for user set up the parameters needed
for reading, training, and other adjustments. At closure,
this class returns to ActivityMain.

• The class AdminReceiver is used to activate the
administration rights and gain access to several protected
features. It implements methods to enable or disable
administration rights.

• The class SmsOutgoingObserver is a service used to
count the number of outgoing SMSs to unknown num-
bers. It needs permission to access the contact list.

• The BootReceiver class is a BroadcastReceiver used
to capture the intent broadcasted by the system when
finishes the boot process to start the application.

• The Alarm class is a BroadcastReceiver that captures the
intent from the system alarm at a pre-set time to start the
periodic retraining.

• The SharedPreferences class is responsible to store and
retrieve application preferences which are simply sets of
data values stored persistently. This means that the data
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FIGURE 7. HIDROID Class diagram.

stored in the SharedPreferences still exists even if the
application is closed or the device is switched off.

• The Prefs class is used to hold the variables’ default
values that will permit the application to start.

• The ActivityHelp controls the view interface that dis-
plays instructions to set the parameters alongwith a short
description of how the application works.

• The ActivityAbout controls the view displaying applica-
tion information.

• The class ServiceIdps.Values is used to return multiple
variable values. When using ServiceIdps.Values class,
the function returns a pointer to this class where it holds
the variables’ values.

VI. PERFORMANCE EVALUATION
A. EXPERIMENTAL SETUP
To evaluate the detection performance of HIDROID,
in this section, we conduct several real-life experiments.
We installed HIDROID on a Samsung mobile phone and used
the device normally, i.e. sending SMS, placing and receiving
phone calls, accessing the Internet, etc.

We firstly made sure that the device was clean from any
malware and let the application collect 15 test datasets, each
containing 600 examples, representing the benign behavior.
We set the data acquisition interval to 20 min and the sam-
pling period to 2 seconds; therefore, each dataset contains
600 entries. After collecting benign datasets, we installed
one malware at a time from the list provided by Table 3 and
continued using the device in the same way as we did before.
The application collected 15 test datasets from each installed

malware, again each with 600 entries. We repeated this data
collection with every malware listed in the table and ended up
with 60 malicious datasets (4 × 15). The samples collected
during one data acquisition interval were saved in a CSV
file, each row representing one example and each column
representing one feature.

The detection results of the two implemented algorithms
(i.e. one-class K-Means and univariate Gaussian) were also
saved in a CSV file, summarizing the total number of cor-
rect and erroneous decisions for each dataset. Note that for
a benign dataset, the total number of correct and wrong
decisions are reflected by True Negatives (TNs) and FPs,
respectively. In contrast, for a malicious dataset, the total
number of correct and wrong decisions are reflected by TPs
and False Negatives (FNs), respectively.

We use Accuracy, True Positive Rate (TPR), and False
Positive Rate (FPR) as performance metrics. These metrics
are defined as follows [17].
Accuracy is the ratio of correct decisions out of the total

number of decisions that the IDS takes:

A =
TP+ TN

TP+ TN + FP+ FN
(2)

TPR, also known as Detection Rate, Sensitivity, or Recall
is the ratio of positive examples that are correctly
detected (recalled) by the IDS:

TPR =
TP

TP+ FN
(3)
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TABLE 3. Android malwares used in our trials.

FIGURE 8. Accuracy, TPR and FPR of K-means algorithm when boundary
varies from 0.7 to 1.

FPR is defined as the ration of negative examples that are
wrongly classified as positive:

FPR =
FP

FP+ TN
(4)

B. DETECTION PERFORMANCE
Fig. 8 and Fig. 9 illustrate Accuracy, TPR and FPR for
K-means and Gaussian algorithms, respectively, when we
expand the parameter boundary from 0.7 to 1. The boundary
is defined as the ratio of the training data that lies below
the threshold separating benign from malicious data. For
example, when boundary is 0.9, threshold is set to a value
that encompasses 90 per cent of the training data as the
normality region – the rest 10 per cent of the training data is
assumed to be outliers, e.g. originated from noise or anoma-
lies. Note that, in the case of K-means algorithm, threshold
is a distance from the cluster’s centroid, whereas in Gaussian
algorithm, it is the probability (a fraction between 0 and 1) of
the tail of the distribution where malicious examples occur.
It can be noted from Fig. 8 that the maximum Accuracy of

FIGURE 9. Accuracy, TPR and FPR of Gaussian algorithm when boundary
varies from 0.7 to 1.

FIGURE 10. ROCs of K-means and Gaussian classifiers.

K-means is 0.909, which is attained when the boundary is
0.9. In contrast, the maximum Accuracy of the Gaussian
algorithm, as Fig. 9 shows, is 0.914, which is attained when
the boundary is 0.95. Overall, the two algorithms demonstrate
quite similar Accuracy, which is around 0.91.

C. RECEIVER OPERATING CHARACTERISTIC
Fig. 10 illustrates Receiver Operating Characteristic (ROC)
for the two implemented learning algorithms, plotting TPR
against FPR. We observe that the two algorithms have very
similar ROC curves that are considerably far away from the
ROC curve of a random classifier, illustrated by the dashed
diagonal line in the figure. In general, having a higher Area
Under Curve (AUC) is desirable because it allows the learn-
ing algorithms to operate in the knee point of their ROC,
where they attain a very low FPR (between 0.02 and 0.03),
while still maintaining a good TPR, around 0.8 to 0.85.
It is worth noting that though the two algorithms demon-
strate similar ROC curves, their knee points are attained with
different boundary values: K-means reaches its knee point
when boundary is set to 0.9, whereas the Gaussian algorithm
reaches its knee point when the boundary is set to 0.95.
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TABLE 4. Optimal tuning and performance for both K-means and
Gaussian algorithm.

FIGURE 11. Detection rate of K-means algorithm as a function of
detection threshold for Probability of Intrusion (Pth).

FIGURE 12. Detection rate of Gaussian algorithm as a function of
Probability of Intrusion threshold (Pth).

This is indeed important when we deal with tuning the learn-
ing algorithms by identifying the threshold that separates the
benign from the malicious region. Table 4 summarizes the
results for the optimal tunings of the two learning algorithms.

D. SECURITY LEVEL
Fig. 11 and Fig. 12 illustrate the detection rate of the
K-means and the Gaussian algorithms, respectively, when the
threshold for the probability of intrusion (cf. Fig. 6) varies
from 0 to 0.15. In these figures. As mentioned above, for
each malware, we constructed 15 test datasets, each with
600 examples collected from a device infected with that par-
ticular malware. We further collected 15 datasets, similarly
each with 600 examples, when the device was clean from
any malware (benign datasets). For each malware, we fed its
15 associated malicious datasets, one by one, to the IDPS. For
each dataset, the IDPS calculates the probability of intrusion

FIGURE 13. Detection rate of K-means algorithm for large detection
thresholds for Probability of Intrusion (Pth).

FIGURE 14. Detection rate of Gaussian algorithm for large values of
Probability of Intrusion threshold (Pth).

and if it exceeds a certain threshold (security level), it reports
a detection in its output.

In these figures, we calculate the detection rate or TPR
(cf. (3)) as the ratio of the test datasets for a malware that
the IDPS correctly detects, out of the 15 fed datasets for that
particular malware. That is, the IDPS uses 600 examples in
a test dataset to make a single decision; when the ratio of
correctly detected examples in a dataset exceeds the proba-
bility of intrusion threshold, the IDPS considers the overall
outcome of the dataset as one TP.

Note that, the detection rate for a benign dataset, illustrated
by the light blue curve in the figures, is simply calculated as
the ratio of the 600 examples in the dataset that are wrongly
detected (i.e. FPs). Moreover, the Average curve, illustrated
in green, is the average of detection rate curves of the four
tested malwares.

Fig. 13 and Fig. 14 show the detection performance of
K-Means and Gaussian algorithms, respectively, when the
probability of intrusion detection extends beyond 0.15 (cf. to
Fig. 11 and Fig. 12). As it can be noted from these figures,
the best threshold for the probability of intrusion lies between
0.1 and 0.15. Lower values result in a too sensitive IDS,
causing too many FPs, whereas larger values lead to a loose
security, failing to detect too many positive incidents, both
cases lead to a deteriorated detection rate. The best threshold
is where we can reach a minimal FPR while still maintain-
ing a very good TPR. Note that when Pth exceeds 0.15,
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TABLE 5. Application characteristics.

the detection performance starts deteriorating gradually and
when Pth approaches 0.5, the detection performance drops
sharply. Hence, values larger than 0.5 are not recommended
at all.

E. APPLICATION CHARACTERISTICS
HIDROID occupies 5.41 Mega Bytes (MB) of memory space
on the Secure Digital (SD) card. It consumes, in average,
3.8% of CPU, which occasionally peaks to 17%. HIDROID’s
impact on the battery consumption of the mobile device is
only 2%. We measured the CPU consumption, for a duration
of two hours, using the command line tool ‘‘top’’.Wemeasure
the memory occupancy using the android system application
‘‘Application Information’’. To measure HIDROID’s impact
on battery consumption, we developed an application that
behaves like a screen saver by randomly display a set of
pictures on the screen to prevent the device from sleeping.
We let it run for two hours with HIDROID not running and
battery level was registered for then, the battery was charged
to maximum power (100%). The process was repeated with
HIDROID running and we considered the HIDROID con-
sumption as the difference between the first and second val-
ues. It should be noted that the measures were performed at
least three times and averaged.

VII. CONCLUSION
In this paper, we developed and tested a novel host-based
IDPS application for Android (HIDROID) and presented
its implementation details and run-time performance evalu-
ation results. The application is autonomous and runs com-
pletely on a mobile device, without relying on a remote
server. It monitors the device by regularly sampling features
representing the overall resource utilization of the device (e.g.
CPU, memory, battery, etc.). The detection engine adopts
both ML and statistical algorithms and can detect not only
known but also unprecedented (zero-day) attacks. When
HIDROID observes a suspicious behavior, it provides the
user with the probability of intrusion and takes necessary
countermeasure(s) to minimize the risk. It further provides
the user with some recommended counteractions. Test exper-
iments with a real-life mobile device and several real mal-
wares showed that HIDROID is well able to discriminate an
infected device from a benign one. It demonstrates a very
promising accuracy of up to 0.91 while limiting the FPR
to below 0.03. HIDROID also incurs minimal computation
burden to the host mobile device; it consumes 3.8% of the

device’s CPU and 2% of its battery. For future work, this
study can be extended in several directions. Firstly, it is
worthwhile to implement other learning algorithms, e.g. One-
Class Support Vector Machine (OCSVM) [35] or combine
the detection outcomes of multiple learning algorithms to
improve the detection performance. Secondly, there is still
lack of comprehensive training datasets for Android malware
detection study. Therefore, we plan to create richer datasets,
constructed from a wider spectrum of malwares and test
HIDROID against them. Finally, for future work, we intend
to use an appropriate design pattern, such as Model-View-
Controller (MVC), to develop a more stable and efficient
version of HIDROID.
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