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Dependence Structure in the Australian Electricity Markets:  

New Evidence from Regular Vine Copulae 
 

Abstract 

In this study, regular vine copula was used to investigate the dependence structure of electricity 

prices at the state level in the Australian National Electricity Market (NEM), during three 

periods related to the adoption and abolition of the carbon tax. In the pre-carbon period, we 

found evidence of tail dependence separately in the northern and southern NEM, but not across 

them. During the carbon period, the joint spike in the northern NEM disappeared, and the tail 

dependence in the southern NEM decreased. In the post-carbon period, the best dependence 

structure turned out to be a flexible structure of the regular vine, which exactly matches the 

geographical infrastructure connectedness of transmission wires. Besides, both upper and 

lower tail dependences were found in all adjacent states after the abolition of the carbon tax, 

suggesting a more integrated market regarding tail dependence. Our findings have substantial 

implications for risk management in the NEM, especially for those participants exposed to 

multiple states.  

 

Keywords: Australian National Electricity Market; dependence structure; tail dependence; R-

vine copula. 
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1. Introduction 

As in the case of non-storable energy markets, electricity markets are characterized by 

particular features that make them distinctive from other energy markets. Among the different 

electricity markets in the world, the Australian National Electricity Market (NEM) has a unique 

structure. This is because most of the electricity in Australia is generated, purchased, and sold 

in free markets, requiring the market to match the supply and demand for electricity 

simultaneously. This task is performed by NEM for the east coast and southern states. 

According to Manner (2019), NEM conducts the most efficient auction of electricity in the 

world. However, the market prices of power in the spot NEM are incredibly volatile, and there 

is an asymmetric and nonlinear price dependency among markets in different states. 

Specifically, in the short-term, prices can fluctuate to levels immensely more substantial than 

the long-term (average daily) price. Consequently, market participants (retailers and generators) 

and traders need efficient risk management instruments when transacting in the NEM. At this 

stage, to reduce price volatility, market participants generally make contracts for hedging 

purposes, such as fixing the future electricity price. These derivative contracts can be 

informally and formally traded in over-the-counter markets and the Australian Securities 

Exchange (ASX), respectively. The ASX has eight futures products, which are hinged on 

"base-load," "peak-period," electricity purchases, and sales in each quarter for four states, i.e., 

New South Wales, Queensland, South Australia, and Victoria. Therefore, it is essential to 

provide an efficient risk management method for market participants in the NEM. 

To this end, the present study aimed at analyzing the dependence structure of electricity 

markets across Australian states by using the vine copula methodological approach. 

Specifically, the analysis explored the dependence structure among the daily electricity prices 

in five Australian states, spanning the period July 1, 2008, to June 30, 2019. The copula 

approach is a powerful tool used to explore the dependence structure across markets (Nelsen, 
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1999). In the multivariate case, vine copula can provide an efficient risk management approach, 

particularly for studying tail dependence among the daily electricity prices in different states 

(Sukcharoen and Leatham, 2017). Among specific variants of the vine copula approaches, the 

regular (R-) vine copula method stands out because of its distinctive advantages. Compared 

with the canonical (C-) vine and drawable (D-) vine copulas, the R-vine copula has a 

substantially flexible structure, which can help researchers find a more intrinsic dependence 

structure.   

In recent literature, copula approaches have been extensively used in energy markets. 

A strand of the literature has used copula approaches within the energy and oil markets (Czado 

et al., 2010; Reboredo, 2011; Sukcharoen and Leatham, 2017). Certain studies have also 

considered the copula approach and analyzed the dependence between energy (mainly oil 

markets) and stock markets (Aloui et al., 2013a; Li and Wei, 2018; Reboredo, 2015; 

Sukcharoen et al., 2014; Wen et al., 2012). Another strand of the literature has focused on the 

dependence between energy markets and exchange rates (Aloui et al., 2013b; Reboredo et al., 

2014). These studies provide evidence that the copula approach is robust to the frequency of 

data used, but it can model the presence of asymmetric effects across different markets. The 

most closely related article to this study is Manner et al. (2019), which focused on forecasting 

the joint distribution of Australian electricity prices by a stochastic autoregressive D-vine 

copula.  

In agreement with these studies using various copula approaches, this paper 

investigated the dependence structure across electricity markets in Australian states by a more 

flexible vine copula structure, the R-vine copula. This study sheds further light on the critical 

changes in the dependence structures of three periods (pre-carbon, carbon-tax, and post-carbon) 

to provide implications for risk management in the NEM. To the best of our knowledge, this is 

the first paper in the literature to examine the dependence structure across electricity markets 
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by the R-vine copula. Our contribution is twofold; first, we revealed the dependence structure 

across electricity markets in Australian states in three periods. In the pre-carbon period, we 

found evidence of tail dependence separately in the northern and southern NEM, but not across 

them. During the carbon period, the joint spike in the northern NEM disappeared, and the tail 

dependence in the southern NEM decreased. We found that the dependence structure in the 

post-carbon period matched the geographical presence of the national electricity transmission 

grid, which indicated that the structure could only be revealed by R-vine copula. Both upper 

and lower tail dependences were found in all adjacent states after the abolition of the carbon 

tax, suggesting a more integrated market concerning tail dependence. Second, our approach 

offers a risk-management tool based on the R-vine copula and valuable insights into the tail 

risks of unfavorable price movements for market participants in the Australian NEM, especially 

for participants involved in multiple states.  

The remaining parts of this paper are organized as follows. Section 2 presents a brief 

review of related literature. Section 3 provides the methodology, while Section 4 reports the 

data and descriptive statistics. Section 5 presents the empirical results, Section 6 discusses our 

findings in-depth, and Section 7 concludes. 

 

2. Literature Review 

An increasing number of studies have used the copula methodological approach to examine 

the presence of dependence structure across markets, including energy markets. It is also 

imperatively essential to note that there are a few numbers of papers that analyzed the price 

dynamics in the NEM. Hu et al. (2005) demonstrated strategic bidding and rebidding behavior 

in the NEM, spanning the period May 1, 2002, to May 31, 2003. They indicated that market 

prices are mainly controlled by the larger generators, by providing 'capacity' quotations rather 

than 'price' quotations. Additionally, they highlighted that larger generators do not reduce the 
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market price during peak periods by exploiting the presence of market regulations, which leads 

to inefficient markets, particularly during peak periods. Higgs (2009) indicated that the 

introduction of the Queensland-New South Wales Interconnector (QNI) is the central issue of 

the significant interaction between both states. It is also noteworthy that although the findings 

emphasize critical interconnections between related pairs, the author concluded that the 

Australian electricity markets have limited interdependence across the country. This evidence 

implies that at the state level, the Australian electricity markets are characterized as isolated 

markets from January 1, 1999, to December 31, 2007. Cutler et al. (2011) used 30-min spot 

electricity price data in South Australia, spanning the period September 2008 to August 2010, 

to examine market dynamics. In determining electricity prices in South Australia, it was 

demonstrated that the demand side of the market is a more critical factor than the supply side. 

According to their results on the negative correlation between spot electricity price and wind 

generation, wind power is a significant driver of electricity prices. However, according to Bell 

et al. (2017), there is no considerable causality between electricity price and wind generation 

in South Australia, since wind power outputs are associated with the events of extreme amounts. 

These findings imply a significant role in the demand-side dynamics (i.e., wind generation) in 

spot electricity prices at the state level. However, Cutler et al. (2011) only examined the case 

of South Australia; and therefore, any price interactions across more states were neglected. 

Analyzing the price interactions across states in the NEM is a relatively noteworthy 

research task. Considering the intraday 5-min electricity price data from December 8, 1998, to 

May 5, 2016, Apergis et al. (2017a) examined volatility spillover across four Australian states: 

New South Wales, Queensland, South Australia, and Victoria. Their analysis focused on the 

asymmetries in electricity price volatility, known as 'good' volatility and 'bad' volatility. They 

found that electricity markets in these states have interacted asymmetrically, and the presence 

of some degree of market power has been utilized by generators across related electricity 



6 

 

markets. Apergis et al. (2017b) obtained significant convergence at wholesale electricity prices 

in New South Wales, Queensland, and Victoria. Still, there was no significant evidence in the 

case of South Australia, implying that there are common characteristics of electricity markets 

in these states. Their findings indicated that similar carbon tax regimes could explain the 

common features in these states. 

Several studies have used vine copula approaches in energy variables and markets. 

Sukcharoen and Leatham (2017) applied the C-vine and D-vine copula models for price 

margins between refined products (gasoline and heating oil) and the production cost of crude 

oil. The authors concluded that the D-vine copula approach is more suitable for hedging 

purposes when it comes down to related assets in the refinery. Using the time-varying Gaussian 

copula approach, Pircalabu et al. (2017) investigated the tail dependence between wind power 

production and electricity prices in Denmark. They found that the risk is underestimated if 

independence is assumed between prices and wind power production. They further proposed 

to reduce the risk by using an underlying hedging instrument in the forward market. Finally, 

Manner et al. (2019) used the stochastic autoregressive D-vine (SCAR-Dvine) copula to 

forecast the out-of-sample log of daily electricity prices in the Australian NEM, during 2010-

2015. Based on their findings, the SCAR-Dvine copula outperformed various other types of 

approaches, because it provided a robust back-testing procedure. The authors concluded that 

the SCAR-Dvine approach could be considered as a hedging tool for market participants 

(especially retailers) in the NEM.  

Overall, there is still a gap in the empirical literature for understanding the dependence 

structure across spot electricity prices in the case of the NEM due to two aspects. First, although 

D-vine copula was used by Manner et al. (2019) for forecasting, such vine copula is limited by 

the drawable structure. It is incapable of reflecting a more general dependence structure. 

Second, the existing literature typically partitions the data into different periods in an arbitrary 
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manner. For forecasting evaluation, Manner et al. (2019) split the data into the in-sample period 

(2010-2012) and the out-of-sample period (2013-2015). However, structural breaks caused by 

policy changes affect electricity prices in Australian states and their dependence structure, such 

as the adoption and abolition of the carbon tax from July 2012 and June 2014. Using daily data, 

spanning the period July 1, 2008, to June 30, 2019, this paper employed R-vine copula models 

to investigate the dependence structure of the NEM in three different periods, pre-carbon 

(2008-2012), carbon tax (2012-2014), and post-carbon (2014-2019). This paper revealed the 

evolvement of dependence structure across states while generating substantial implications for 

risk management in the NEM. Accurately, the findings show that specific policy changes in 

the NEM are related to changes in the dependence structure across the Australian states. 

 

3. Methodology 

Since electricity cannot be stored on a massive scale at a low-cost, electricity price is more 

relevant for market participants, rather than the (log) returns in financial studies. Traditionally, 

a natural logarithm of the spot price is taken on electricity prices to scale down the numeric 

values (e.g., Lucia and Schwart, 2002; Manner et al., 2019). However, this is only applicable 

for prices that cannot take negative values. Electricity prices at lower frequencies, such as 

weekly or monthly data, tend to be strictly positive. Still, the aggregation removes a lot of the 

tail behavior that is particularly interesting in this study. Following Pircalabu et al. (2017), we 

decided to use the original price without logarithms, because daily electricity prices in NEM 

can take negative values, as shown in Section 4.1. Based on the choice of the variable of interest, 

we started Section 3.1 by decomposing electricity prices into deterministic and stochastic 

components. Then, we elaborated on how to model the stochastic components through the 

ARMA(p,q)-GARCH(1,1) model, which produces standardized residuals for copula analysis. 

We illustrated two preliminary dependence analysis tools, quantile dependencies, and a 
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structural break test. Finally, an explanation is presented of our primary method of modeling 

the multidimensional dependence structure by R-vine copula. 

3.1 Deterministic and Stochastic Components 

Following Huisman and Mahieu (2003) and Manner et al. (2019), the spot price for electricity 

in State 𝑖 at time 𝑡 consists of a deterministic component 𝑓𝑖,𝑡 and a stochastic part 𝑥𝑖,𝑡: 

 𝑝𝑖,𝑡 = 𝑓𝑖,𝑡 + 𝑥𝑖,𝑡          𝑖 = 1,… ,5 (1) 

where the component 𝑓𝑖,𝑡 is a deterministic function of time that captures predictable 

patterns, such as seasonality, trend, and special events. The remaining component 𝑥𝑖,𝑡 follows 

a stochastic process involving autocorrelation and heteroskedasticity, which has been modeled 

in Section 3.2. Considering the characteristics of the NEM, we decided to specify the 

deterministic component 𝑓𝑖,𝑡 as: 

 𝑓𝑖,𝑡 = 𝛽𝑖,0 + 𝜷𝒊,𝟏𝑫𝑡
(𝑌𝑒𝑎𝑟)

+ 𝜷𝒊,𝟐𝑫𝑡
(𝑀𝑜𝑛𝑡ℎ)

+ 𝜷𝒊,𝟑𝑫𝑡
(𝐷𝑜𝑊)

+ 𝜷𝒊,𝟒𝑫𝒊,𝑡
(𝐸𝑣𝑒𝑛𝑡)

 (2) 

where 𝛽𝑖,0 is the average price level at each state. 𝑫𝑡
(𝑌𝑒𝑎𝑟)

 is a set of dummy variables 

indicating the fiscal year in the NEM, which is between every July in different years. We 

decided to use the fiscal year rather than the calendar year, because the market price cap (MPC), 

the maximum price that generators can bid, is adjusted1 on July 1 based on movements in the 

consumer price index (Simshauser, 2019). 𝑫𝑡
(𝑀𝑜𝑛𝑡ℎ)

 is a group of dummy variables reflecting 

annual seasonality. 𝑫𝑡
(𝐷𝑜𝑊)

 is a collection of dummy variables incorporating the day-of-week 

effect. Lastly, 𝑫𝒊,𝑡
(𝐸𝑣𝑒𝑛𝑡)

 is the dummy variable denoting a special event in a specific state. This 

 
1 MPC was $14,500/MWh in 2018/19, $14,200/MWh in 2017/18, $14,000/MWh in 2016/17, $13,800/MWh in 

2015/16, $13,500/MWh in 2014/15, and $13,100/MWh in 2013/14.  
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study only considered the Basslink outage2 between December 2015 and April 2016, which 

caused the energy crisis in Tasmania.  

3.2 Marginal Models for Stochastic Components 

Copula-based models enable the separation of marginal behavior and dependence structure 

across markets; this advantage enhances the efficiency of model estimations (Patton, 2012). 

After removing the deterministic component, we focused on modeling the stochastic element 

featured by autocorrelation and heteroskedasticity. To perform this task, the ARMA(p,q)-

GARCH(1,1) model3 with skewed t innovation was selected due to three motivations. First, the 

level equation is set to be an ARMA(p,q) to capture the autocorrelation. Second, the volatility 

equation is described by a GARCH(1,1) to reflect the heteroskedasticity. Third, we observed 

many outliers in the data, especially for right tail outliers due to the definite price spikes. Thus, 

the standardized residuals are chosen to follow the simple and flexible skewed t distribution of 

Hansen (1994). The marginal model4 is presented below: 

 

𝑥𝒊,𝑡 =∑𝜙𝑖,𝑘𝑥𝑖,𝑡−𝑘

𝑝

𝑘=1

+ 𝜀𝑖,𝑡 +∑𝜃𝑖,𝑠𝜀𝑖,𝑡−𝑠

𝑞

𝑠=1

          𝑖 = 1, … , 𝑛 

𝜎𝑖,𝑡
2 = 𝜔𝑖 + 𝛼𝑖𝜀𝑖,𝑡−1

2 + 𝛽𝑖𝜎𝑖,𝑡−1
2  

𝜀𝑖,𝑡 = 𝜎𝑖,𝑡𝜂𝑖,𝑡, 𝜂𝑖,𝑡|𝛺𝑖,𝑡−1 ~ 𝑖. 𝑖. 𝑑.  𝑠𝑘𝑒𝑤𝑒𝑑 𝑡 

(3) 

where 𝑥𝒊,𝑡 is the stochastic component taken from Equation (1), 𝜎𝑖,𝑡 is the conditional 

volatility, 𝛺𝑖,𝑡−1  is the information set generated by (𝑥𝒊,𝑡−1, 𝑥𝒊,𝑡−2, … ) , and 𝜂𝑖,𝑡  is the 

standardized residuals, which is in line with the skewed t distribution regarding shape and 

skewness parameters. The quasi-maximum likelihood method (Bollerslev and Wooldridge, 

 
2 For details, refer to https://en.wikipedia.org/wiki/2016_Tasmanian_energy_crisis (Accessed on November 23, 

2019). 
3 Higher orders in the GARCH part of the ARMA-GARCH model, such as ARMA(p,q)-GARCH(2,2), have also 

been experimented and show the fallacies that they cannot outperform the ARMA(p,q)-GARCH(1,1) model in 

terms of BIC. 
4 There is no intercept in the level equation because removing the deterministic component results in having a 

stochastic component always with zero means. 

https://en.wikipedia.org/wiki/2016_Tasmanian_energy_crisis
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1992) is applied to estimate the marginal models, and the best lag lengths of ARMA(p,q)-

GARCH(1,1) are selected by the BIC information criteria.  

Specifying the correct marginal models is a crucial step. Without correctly specified 

marginal models, the estimated copula model would be unable to capture the correct 

dependence structure. This is because the copula model has the i.i.d. assumption on the 

observations. To ensure that the standardized residuals are close to the i.i.d. assumption (at 

least no autocorrelation and no heteroskedasticity), we considered three diagnostic tests 

developed by Fisher and Gallagher (2012). The weighted Ljung-Box analysis is applied to 

standardized residuals to examine the hypothesis of no serial correlation. To check the 

hypothesis of no heteroskedasticity, the weighted Ljung-Box test is also used on squared 

standardized residuals, and the weighted ARCH-LM test is employed on standardized residuals.  

Before dependence analysis in the copula framework, the standardized residuals must 

be transformed into the (conditional) probability integral transform variables, 𝑈𝑖,𝑡 =

𝐹𝑖(𝑥𝑖,𝑡|𝛺𝑖,𝑡−1), which are uniformly distributed in the domain [0,1]. The probability integral 

transform (PIT) can be implemented in both parametric and nonparametric ways (Patton, 2013). 

In this study, according to Dißmann et al. (2013), we employed the empirical PIT because there 

is always some uncertainty in the residual distribution if the sample size is large. To be specific, 

the empirical PIT is conducted via the empirical distribution function (EDF): 

 𝐹̂𝑖(𝜀) ≡
1

𝑇 + 1
∑𝕝

𝑇

𝑡=1

(𝜀𝑖̂,𝑡 ≤  𝜀) (4) 

where 𝕝(⋅) is the identity function.  

3.3 Quantile Dependence 

As a preliminary analysis before vine copula modeling, quantile dependence can be used as a 

convenient tool to visualize the pairwise dependence structure in the lower and upper joints of 

their support. For positively dependent variables (our case), it is defined as: 
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 𝜆𝑞 = {
ℙ(𝑈1,𝑡 ≤ 𝑞|𝑈2,𝑡 ≤ 𝑞), 0 < 𝑞 ≤ 1/2

ℙ(𝑈1,𝑡 > 𝑞|𝑈2,𝑡 > 𝑞), 1/2 < 𝑞 < 1
 (5) 

  And it can be estimated by finite samples 

 𝜆̂𝑞 =

{
 
 

 
 1

𝑇𝑞
∑ 𝕝(𝑈1,𝑡 ≤ 𝑞|𝑈2,𝑡 ≤ 𝑞)

𝑇

𝑡=1
, 0 < 𝑞 ≤ 1/2

1

𝑇𝑞
∑ 𝕝(𝑈1,𝑡 > 𝑞|𝑈2,𝑡 > 𝑞)

𝑇

𝑡=1
, 1/2 < 𝑞 < 1

 (6) 

  When compared with a scalar dependence measure, such as Pearson's correlation, 

Kendall's tau, and Spearman's rho, quantile dependence provides a more valuable description 

of the pairwise dependence structure. This is because it shows the full picture of the dependence 

strength, as we move from the center (𝑞 = 1/2) to the two tails. Additionally, it reveals whether 

the dependence structure is symmetric in the lower (0 < 𝑞 ≤ 1/2) and upper (1/2 < 𝑞 < 1) 

supports. The preliminary analysis of quantile dependence offers insights on the choice of 

possible parametric copulas, which should capture the empirical features observed in the 

empirical data. 

3.4 Structural Breaks in Dependence 

Since our data covers an extended period, it is unrealistic to assume that the dependence 

structure remains constant all the time. In the literature, there are two methods of dealing with 

such a problem. The first method assumes that the dependence is intrinsically time-varying and 

follows some functional forms, including the Generalized Autoregressive Score (GAS) model 

(Creal et al., 2012; Pircalabu et al., 2017), stochastic autoregressive copula (SCAR) method 

(Manner et al., 2019) and the regime-switching approach (Wang et al., 2013). The second 

method considers that the dependence is subject to structural breaks, due to external shocks, 

such as policy changes. In this paper, we took the position of the second method and considered 

structural breaks. Patton (2013) provided the details of two structural break tests (a simple test 

and a sup test) in a rank correlation, depending on whether the break date is known or unknown. 
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 The present study used a test based on Patton's (2013) simple test, which assumes that 

the researchers have prior knowledge about the time when a break in the dependence may have 

occurred. The justification for using the simple test is that we know the exact dates when the 

Australian government adopted and abolished the carbon pricing scheme, which is discussed 

in detail in Section 4.4. It should be highlighted that we are more interested in the Kendell's 

tau, rather than the Spearman's rho used in Patton (2013) because the former is required in 

choosing the best tree structure for vine copulas, which is elaborated in Section 3.4. The 

hypothesis test can be formulated in the following way: 

 

𝐻0: 𝜏1 = 𝜏2        𝑣. 𝑠.      𝐻𝐴: 𝜏1 ≠ 𝜏2 

𝜏𝑡 = {
𝜏1,   𝑡 ≤ 𝑡∗

𝜏2,   𝑡 > 𝑡∗
 

(7) 

  where 𝑡∗ is the break date determined by the prior knowledge. The test statistics is 

|𝜏̂1 − 𝜏̂2|, where 𝜏̂1 and 𝜏̂2 are estimated by the sample before and after the break. 

 With justification from Chen and Fan (2006) and under the null hypothesis that the 

dependence measure is equal before and after 𝑡∗, it turns out that the 𝑝-value of the statistics 

can be obtained via the simple i.i.d. bootstrap procedure: 1) generate the bootstrapped 

standardized residuals by randomly drawing rows with replacement from the original matrix 

of standardized residuals; 2) estimate the 𝜏̂1
∗ and 𝜏̂2

∗ and calculate the bootstrapped statistics; 3) 

repeat Steps 1 and 2 a large number of times; 4) obtain the 𝑝-value by calculating the frequency 

that the original test statistics are less than the bootstrapped ones. Since we directly 

bootstrapped the standardized residuals rather than the original data, no marginal model re-

estimation was involved, and thus this simple i.i.d. bootstrap procedure can quickly be 

completed in practice. 
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3.5 Vine Copula Method 

Copula models can capture the complex and nonlinear dependence structure of a multivariate 

distribution across markets. Therefore, copula methods are superior to traditional approaches, 

such as Vector Autoregressive (VAR) causality models, because they are only capable of 

capturing a linear-dependence relationship, but not the asymmetric distributional dependence 

across markets. The copula model used in the analysis provides the opportunity to explore both 

the tail dependence and the asymmetric dependence across different electricity markets.5 

Among the different variations of copula models, the approach of vine copula initially 

introduced by Joe (1996), is widely used to model high dimensional dependence. Its core idea 

is to decompose the multivariate copula density function into individual pairwise copula 

density functions. Thus, the multidimensional dependence structure can be flexibly modeled 

by pair copula construction (PCC). The PCC method was developed by Bedford and Cooke 

(2001, 2002) and Kurowicka and Cooke (2006). Aas et al. (2009) used a maximum pseudo-

likelihood approach to develop an inference method for pair-copula decomposition, and the 

vine copula concept was popularized by their empirical demonstration, using non-Gaussian 

pair copulas on financial data. Recent surveys on vine copula were conducted by Czado (2010), 

Czado et al. (2010), and Joe and Kurowicka (2011). 

  A parametric vine copula consists of three components: 1) a set of linked trees to specify 

the pairs of variables and their conditioning variables; 2) the copula family for each pairwise 

link; 3) the parameters in each pairwise copula. Generally, there are three types of vine copulas, 

namely C-vine, D-vine, and R-vine, depending on how the nodes and edges in the tree of a vine 

copula are connected. The C-vine copula is in a "star" structure with one central node 

connecting with all other nodes in all levels of trees, which is suitable for a case where there is 

 
5 The modeling of both the left tail and the right tail dependence among electricity markets can also measure the 

probability of simultaneous extreme events due to extreme weather conditions and price shocks in the global coal 

markets.  
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a dominating variable affecting others. D-vine copula has a "path" structure, and no node is 

connected to more than two other nodes in each tree. Both C-vine and D-vine are sub-classes 

of a general class named R-vine, which has a flexible structure such that the nodes in each tree 

are connected through the edges, and each node comes from a specific edge in the previous 

tree. The only restriction in R-vine construction is the proximity condition that two nodes in 

each tree are connected by an edge if they share a common node in the previous tree. The 

general density formula for R-vine copula specification is expressed as: 

 𝑓1,…,𝑛(𝒙) =∏𝑓𝑘(𝑥𝑘)∏∏𝐶𝐶𝑒,𝑎,𝐶𝑒,𝑏|𝐷𝑒 (𝐹𝐶𝑒,𝑎|𝐷𝑒(𝑥𝐶𝑒,𝑎|𝒙𝐷𝑒), 𝐹𝐶𝑒,𝑏|𝐷𝑒(𝑥𝐶𝑒,𝑏|𝒙𝐷𝑒))

𝑒∈𝐸𝑖

𝑛−1

𝑖=1

𝑛

𝑘=1

 (8) 

  where 𝑭 = (𝐹1, … , 𝐹𝑛) is a vector of continuous invertible distribution functions, 𝑓𝑖 is 

the density of 𝐹𝑖, 𝒙 = (𝑥𝟏, … , 𝑥𝑛), the edge 𝑒 = {𝑎, 𝑏}, 𝐸𝑖 stands for the edge set in the 𝑖th tree, 

and 𝒙𝐷𝑒 denotes the conditional variables that are in 𝐷𝑒. The density for C-vine and D-vine can 

be written in a more simplified way (Aas et al., 2009). 

 As a result of the restriction in the PCC of C-vine and D-vine, their estimation can be 

facilitated by the maximum likelihood method. The consequence of the loose restriction in R-

vine is an enormous number of possible R-vine tree structures, and the maximum likelihood 

method is often infeasible and is implementable if the dimension is large. To tackle this 

problem, Dißmann et al. (2013) developed a sequential and heuristic approach for the R-vine 

copula inference, which is summarized below. The full R-vine copula specification can be 

divided into three separate tasks: 

a) The determination of an appropriate R-vine tree structure. 

b) The choice of a bivariate copula family for each pair. 

c) The estimation of parameters for each bivariate copula. 

  To fulfill task a), the principle is to select the structure of the first spanning tree that can 

maximize the sum of absolute empirical Kendall's taus, 



15 

 

 max ∑ |𝜏̂𝑗,𝑘|

𝑒={𝑖,𝑘}in spanning tree

 (9) 

For trees at a higher level, the maximization concerns all conditional variable pairs {𝑗, 𝑘|𝐷}. 

Regarding Task b), the best bivariate copula family is selected by the information criteria, AIC. 

In this study, the following copula families were considered: Gaussian, Student's t, Clayton, 

Gumbel, Frank, Joe, and their survival counterparts. The independent copula is used if the 

independence test of Genest and Favre (2007) cannot be rejected. Regarding Task c), the 

bivariate copula parameters are estimated by the maximum likelihood method. In this study, 

our implementation was based on an R package "Vine Copula" (Nagler et al., 2019). 

 

4. Data 

The analysis utilized the daily average spot price ($/MWh) per region, spanning the period July 

1, 2008, to June 30, 2019. The sample consisted of five states: Queensland (QLD), New South 

Wales (NSW), Victoria (VIC), South Australia (SA), and Tasmania (TAS). Our data was 

downloaded from the AEMO website6. The date of commencement was chosen because the 

Snowy region7 was eliminated as a region on July 1, 2008, and was divided into NSW and VIC. 

During our sample period, there were 4017 observations in each state.  

We decided to use the daily frequency, rather than weekly or monthly frequencies 

because aggregation removes a lot of the tail behavior that may be particularly interesting to 

market participants. Since a large scale of electricity cannot be stored at a low-cost, the 

dependence between the prices would be much more relevant for market participants, but not 

the (log) returns typically used in financial studies. Unlike some literature that may take the 

 
6 https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Data-dashboard#aggregated-data. 
7 For details, visit https://en.wikipedia.org/wiki/Snowy_Mountains_Scheme (Accessed on November 13, 2019). 

https://en.wikipedia.org/wiki/Snowy_Mountains_Scheme
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logarithm of the electricity price to scale down, we decided to use the original price without 

logarithm because the prices in NEM could go negative.  

Figure 1 shows the time series plot of electricity prices in the five states. As can be 

observed, the spot price has high volatility, and among the most paramount features are large 

spikes, which can shoot up to several dozen times the average price for short periods. The 

spikes can be explained by the rigid demand curve of electricity (Higgs and Worthington, 2008). 

Another noticeable feature is that the spot price can even go contrary. The National Electricity 

Rules set a minimum spot price at -1,000 per MWh (market floor price). The economic 

rationale behind the adverse market floor price is mainly to allow generators to stay online 

when the cost of shutting down and restarting their plants could be higher than the cost of 

staying online. 

Additionally, renewable generators may cost less if they choose to stay online because 

they have support mechanisms, such as the Renewable Energy Target Scheme. It is worthwhile 

to point out the abnormal price in TAS from December 2015 to April 2016, in which the 

Basslink (the only interconnector between VIC and TAS) experienced a significant outage and 

caused an energy crisis in TAS. The price increased steadily and did not return to the average 

level until the first stage of the repairs was completed in April 2016. 

Table 1 presents the descriptive statistics of the spot price in the five states. Firstly, we 

placed focus on the first four moments. Except for SA, there was no significant difference in 

the mean level across the other four states. Additionally, volatility (measured by the standard 

deviation) in SA was prominently higher compared to the other states. Due to the existence of 

large spikes, the distributions of prices in five regions were all right-skewed and had 

substantially high kurtosis. Secondly, we analyzed the summative distribution information. 

Apart from NSW, the minimum price in the other four states can go negative. The maximum 

amount caused by the spikes can be indeed several dozen times higher than its median value. 
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Even for the 90% quantile values, they are still at a reasonable level, approximately two times 

higher than the median level. This evidence has encouraged us to report the frequency of price 

anomalies. We defined the defect of positive spikes as the price more substantial than the 

quantity of the local mean plus three times the local standard deviation.8 The anomaly of 

negative prices is the price of less than zero. According to our definition, it can be observed 

that spikes empirically occur around 1% frequency, but negative prices rarely take place. 

Thirdly, we present the estimated coefficients for both Pearson's linear correlation (above the 

main diagonal) and Kendall's tau (below the main diagonal) in Table 2. Although Pearson's 

linear correlation showed slight or medium linear dependence, Kendall's tau, as a rank 

correlation, indicated a specific strength of dependency in the electricity prices across five 

states. For example, the linear correlation between VIC and QLD was only 0.11, while 

Kendall's tau was 0.62. The evidence here implies the existence of a nonlinear relationship and 

provides strong motivation for using the copula method to capture such a non-trivial 

dependence structure. 

 

5. Empirical Results on the Dependence Structure 

5.1 Results from Marginal Models 

After removing the deterministic component (estimated results are presented in Table A1 of 

Appendix A), we used ARMA(𝑝, 𝑞)-GARCH(1,1) to model the stochastic part of the electricity 

price. The lag length was capped at seven, i.e., 𝑝, 𝑞 ≤ 7, and the best lag length was selected 

by BIC. Table 3 presents the estimated parameters for the marginal models9. For instance, a 

relatively large model, ARMA(7,2)-GARCH(1,1), was chosen for NSW, while the best model 

 
8 Local mean and local standard deviation at time 𝑡 are calculated based on the range [min(0, 𝑡 − 182) ,max (𝑡 +
182, 𝑇)], i.e., a centralized window minus or plus 182 calendar days (truncated at 0 and 𝑇).  
9 We noted that the estimated alpha and beta in the GARCH equation might have their summation close to one. 

This evidence is due to the substantial volatility caused by positive spikes. Thus, we have also tried the IGARCH 

model, which is a strictly stationary process without the second moment. Still, we found little difference in the 

results of the marginal model and the subsequent analysis. 
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of QLD was a parsimonious model of ARMA(2,1)-GARCH(1,1). The estimated shape and 

skewness parameters of the error distribution reflect the right-skewed and heavy-tail features 

revealed in Section 4.2. 

  The crucial issue in this step of marginal modeling is the residuals diagnostics because 

the copula analysis requires i.i.d. observations. If the standardized residuals are subject to 

autocorrelation and heteroskedasticity, then the conclusion from the copula analysis may not 

be valid. In this study, three weighted diagnostic tests developed by Fisher and Gallagher (2012) 

were applied, and Table 4 presents their 𝑝-values. In our case, the standardized residuals from 

the chosen marginal models of all five states cannot reject the null hypothesis at 5% 

significance level; thus, it exhibited no serial autocorrelation and heteroskedasticity.  

5.2 Results from Quantile Dependence 

After verifying the i.i.d. assumption, the empirical PIT described in Equation (4) was used to 

obtain the PIT variables in the domain [0,1].  Figure 2 shows the pairwise scatter plots of the 

PIT variables and their Kendall's tau. After the ARMA-GARCH filtering, it was found that 

Kendall's tau of standardized residuals are less than those of the original data.  

As a preliminary exploration of the dependence structure, we computed the quantile 

dependence, based on Equation (6) with 𝑞 ∈ [0.025,0.975], for all ten possible pairs of states, 

and the results are presented in Figure 3. It can be observed that most pairs have symmetric 

dependence structures. When moving from the center (𝑞 = 0.5) to the left tail (𝑞 near 0) or 

right tail (𝑞 near 1), there is a mixing conclusion on which tail has a larger dependence, but 

their differences are not noticeable.10 

 

 

 
10 The time series stationary bootstrap procedure is explained in detail by Patton (2013). This method can be 

implemented to show the confidence interval of the difference in quantile dependence. Again, due to space 

constraints, we decided not to report the difference in quantile dependence.    
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5.3 Results from Structural Breaks in Dependence 

In 2011, the Gillard Labor Government introduced the carbon pricing scheme11 in Australia, 

commonly known as the carbon tax, with a legislation named Clean Energy 2011, which took 

effect on July 1, 2012. Although there was a decline in carbon emissions after the imposition 

of the carbon tax, the net result was a deadweight cost to the economy because it indirectly 

increased electricity costs for households and industries (Apergis et al., 2019). The Abbott 

Government repealed the carbon tax on July 1, 2014, and replaced it with the Emission 

Reduction Fund.   

Apergis et al. (2019) showed that carbon tax is associated with common market 

characteristics across different states because of "a greater degree of interconnectedness via 

greater transfer capacity on interstate interconnectors, linking QLD, NSW, and VIC relative to 

the interconnectors linking TAS and SA to VIC." We suspected that the dependence structure 

might also have structural breaks due to this policy change. Therefore, we considered the dates 

when the carbon tax was adopted and abolished as the known break dates and applied the 

structural break test described in Section 3.3.  

  Table 5 presents the 𝑝-values of the structural break test. We found strong evidence of 

structural breaks in the dependence of most state pairs on the dates of adopting and abolishing 

the carbon tax. Thus, the whole sample was divided into three periods: pre-carbon (Period 1: 

July 2008-June 2012), carbon tax (Period 2: July 2012 – June 2014), and post-carbon (Period 

3: July 2014 – June 2019), and vine copula analysis was performed separately for the three 

periods.  

 
11 The carbon price was 23.00 Australian dollars per ton of emitted CO2 in the fiscal year 2012-13 and increased 

to 24.15 in the fiscal year  2013-14.  
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5.4 Results from Vine Copula 

Table 6 presents all results of the vine copula method12 described in Section 3.4 for the three 

periods, including the estimated parameters for the vine copula on the edges of all trees, as well 

as their corresponding Kendall's tau, lower tail dependence (LTD), and upper tail dependence 

(UTD). To more intuitively illustrate the dependence structure, Figure 4 displays Tree 1 of the 

best vine copula structure across all five states. 

  In the pre-carbon period, the best-selected tree structure was D-vine, according to the 

rule of maximizing the sum of absolute empirical Kendall's taus suggested by Dißmann et al. 

(2013). Based on this structure, we were able to derive several insightful observations. Firstly, 

the states in D-vine are connected in a way that is not necessarily based on the connectedness 

of their physical transmission lines in this period. In Tree 1, SA and VIC (in the southern NEM) 

are directly linked by the Student's t copula (with Kendall's tau of 0.58), and the electricity 

grids in the two states are physically connected by the Heywood Interconnector13. Additionally, 

the networks of QLD and NSW (in the northern NEM) are directly connected by the QNI14, 

and their copula is in the Gumbel family (with Kendall's tau of 0.37), which only has UTD but 

no LTD. Other edges in Tree 1 are not backed by physical interconnectors. Secondly, it should 

be highlighted that the UTD in the pairs of SA/VIC and QLD/NSW are 0.52 and 0.46, 

respectively. The high values of UTD indicate that both pairs tend to have positive spikes 

together. The other couples have either zero or minimal amounts of tail dependence. Thirdly, 

we observed that Kendall's taus in Trees 2-4 are close to zero. This evidence is consistent with 

 
12 The order of states in vine copula analysis is as follows: QLD, NSW, VIC, SA, and TAS. We observed that it 

is typical to have the simplifying assumption that copulas of conditional distributions do not depend on the values 

of the conditioning variables to keep the PCC method tractable for inference (Stöeber et al., 2013), and the 

simplifying assumption implies that the order of variables is irrelevant.  
13 The Heywood interconnector (275 KV) was commissioned in 1998 with the primary goal of moving low-cost 

coal-generated electricity from VIC to SA. Recently, it is also increasingly used to transmit wind-powered 

electricity from SA to VIC. 
14 The Queensland-New South Wales Interconnector (330 KV) started its services in 2001. 
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Dißmann et al. (2013), believing that "the copula families specified in the first tree of the R-

vine often have the greatest influence on the model fit."15 

In the carbon tax period, the best-selected tree structure remained the same as the D-

vine. Besides, the pairwise Kendall's taus are close to the values in the previous period. The 

obvious observation is about the pair QLD/NSW. Its copula family changed from Gumbel to 

Frank, and thus the UTD shrank from 0.46 to 0, which implies that these pairs tend to have 

much less joint positive spikes in the carbon tax period than before. Moreover, there was a 

slight decrease in the tail dependence of SA/VIC. Similar to the pre-carbon period, the higher 

trees play much fewer roles, with several independent copulae identified by the test of Genest 

and Favre (2007) in Trees 2 and 4. 

In the post-carbon period, the best-selected tree structure becomes a general R-vine. 

There are three insightful observations. Firstly, the tree structure presented in Figure 4 (lower 

panel) exactly matches the geographical presence of the national electricity transmission lines 

across Australia (shown in Figure 5). This evidence implies that the dependence structure for 

the electricity markets reflects the infrastructure connectedness of transmission wires in the 

recent period. Secondly, we observed that the best copula in all pairs of adjacent states, namely 

NSW/QLD, VIC/NSW, VIC/SA, and TAS/VIC, is the Student's t copula, which indicates the 

symmetric upper and lower tail dependences. This evidence implies the fact that they tend to 

have enormous positive/negative electricity prices simultaneously, which is a sign of more 

integrated NEM in terms of tail dependence, compared with the fact that most pairs have zero 

tail dependence in the carbon tax period. Thirdly, Tree 3 has two independent copulas, and we 

observed that the truncation test developed by Brechmann et al. (2012) could be used to 

determine whether the R-vine, in this case, be truncated at Tree 3 (i.e., setting all copulas in 

Trees 3 and 4 as independent copula). 

 
15Note that D-vine is a subclass of R-vine.  
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5.5 Results from the Joint Probability in the Tails 

Since electricity cannot be stored, the Value-at-Risk (VaR), which is a risk measure typically 

calculated for financial returns, becomes less relevant in our context. From the perspective of 

retail buyers in NEM and the hedgers participating in the Australian Securities Exchange (ASX) 

energy contracts, their primary concern is whether the spot prices will simultaneously go to 

extremely high levels. Thus, we used the Monte Carlo simulation to investigate the joint 

probability of multiple states in upper tails. The repetition time was set as 1,000,000. For 

comparison, the multivariate Student's t copula was used as the benchmark.  

  Table 7 presents the results of joint probability in the upper tails with quantiles more 

than 0.90, 0.95, and 0.99 for the empirical data, the vine copula, and the multivariate Student's 

t copula, respectively. As can be observed, the joint probabilities generated by the vine copula 

method are close to the empirical likelihood. Thus, the framework based on the R-vine copula 

illustrates the accuracy of fitting the empirical joint probability of positive price spikes in 

multiple states. While the multivariate Student's t copula can also produce a satisfactory result, 

it slightly deviates from the empirical ones when compared with the vine copula, with evidence 

of the average absolute difference16 of 0.38% in the multivariate Student's t copula and 0.29% 

in the vine copula. Additionally, the vine copula has the advantage of being a parsimonious 

model with fewer parameters than the multivariate Student's t copula. Overall, this model offers 

a risk-management tool based on the R-vine copula. At the same time, it provides valuable 

insights into the tail risks of unfavorable price movements for market participants in the 

Australian NEM, especially for those exposed to multiple states.  

 

 

 
16The average absolute difference is calculated as 

1

𝑀
∑ |𝑝ℓ

𝑒 − 𝑝ℓ
𝑐|𝑀

ℓ=1 , where 𝑀 is the total number of considered 

joint probability,  𝑝ℓ
𝑒 is the empirical joint probability, and 𝑝ℓ

𝑐 is the simulated joint probability from either vine 

copula or multivariate Student’s t copula.   
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6. Discussion of the Results and Implications 

Based on the empirical results revealed by the R-vine copula method, we observed that the 

dependence structure and tail dependence in the NEM has evolved over the three periods, 

namely the pre-carbon period, the carbon tax period, and the post-carbon period. In this section, 

we briefly discussed the possible causes of such change and its implications.  

During the pre-carbon period, the interconnectedness was relatively limited across the 

whole NEM. Roughly speaking, the NEM could be split into two major parts, a northern part 

represented by NSW/QLD and a southern part consisting of VIC/SA.17 Thus, the extreme price 

movements mainly stayed within either the northern or southern parts and were rarely 

synchronized across them. This evidence partially explains that we can observe the tail 

dependence in the VIC/SA and QLD/NSW pairs, but no tail dependence between VIC and 

QLD.  

Over the carbon tax period, the dependence structure across different states remained 

the same, but the tail dependences (both UTD and LTD) decreased, especially for QLD/NSW 

and SA/VIC. There are potentially several factors contributing to such observation. Firstly, 

according to Nelson et al. (2010) in a survey of Australian carbon pass-through rates, state 

emission factors, including the contribution of wind generation, generated a variable set of 

outcomes, with VIC and NSW having the most significant emissions intensity factors of 1.23 

and 0.90, respectively. While the NSW black coal fleet is of older vintage, marginally more 

expensive, and has slightly higher carbon-emission intensity rates. Secondly, the policy of 

carbon tax has led to a higher average price, which further results in higher revenues for all 

generators. 

Conversely, the cost of CO2 emission was partially offset by generous structural 

adjustment payments to the most affected coal generators, which can give them less incentive 

 
17We are grateful to the anonymous referee who pointed out such a split in the NEM during the pre-carbon period.  
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to withhold capacity. Thirdly, as a direct consequence of carbon tax, there is a noticeable surge 

in supply from green energy, such as gas generation and hydro production. These changes in 

plant dispatch patterns could also contribute to changes in the tail dependence of NEM.  

 In the post-carbon period, the dependence structure had a significant change and 

reflected the geographical presence of the national electricity transmission lines.  More 

importantly, there was a general increase in the tail dependences (both UTD and LTD), 

indicating that electricity prices in different states tended to have more extreme anomalies and 

occurred simultaneously. This resulted in a higher systemic risk associated with high contagion 

potential across electricity conditions in the Australian states. It is possible to explain this 

change by the pattern of generation. The carbon tax period witnessed the closure of a large 

number of coal plants (Simshauser, 2019). After the abolition of the carbon tax, the hydro 

output returned to the average level, and gas generators reduced their output and also needed 

to face sharply higher unit fuel costs after the commerce of LNG export. Such a change in the 

capacity and production of the plants seems to have reduced the amount of excess capacity in 

certain regions. Additionally, the loss of a few significant plants, especially during 2016 and 

2017, tightened the supply-demand mixture. The change in the pattern of generation reduced 

transmission congestion, and thus we can see the joint spikes more frequently.  

Overall, the findings have substantial implications for risk management in the NEM 

electricity market. The presence of higher tail dependence, following the carbon tax regime, 

indicates a much higher risk for electricity market investments. Furthermore, the range of tail 

dependence is vital to risk-averse investors, who dislike risk and prefer to stay away from high-

risk investments in their portfolios. Based on the fact that tail dependence can be treated as a 

tool for measuring the symmetric risk under extreme market situations, investors in the new 

era for NEM should consider tail dependence in asset pricing models, as well as in their 

investment decision process. The results stated in this paper can help understand the 
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dependence structure across Australian state electricity markets, which is of great interest to 

policymakers and market participants. Moreover, the findings give a clear picture in relevance 

to the development of risk management and hedging strategies for electricity market 

participants, mainly for those operating in the considered markets across States. The findings 

could also be of substantial importance to policymakers planning to develop new guidelines 

for market mechanisms or to potential investors planning to construct new interconnectors. 

 

7. Conclusion 

This study used the R-vine copula methodological approach to investigate the dependence 

structure of electricity prices in five Australian states and aimed at shedding further light on 

the implication of risk management in the NEM. Through a structural break test, the analysis 

found strong evidence of breaks in the dependence of most state pairs due to the adoption and 

abolition of the carbon tax. More specifically, the analysis employed R-vine copula to 

investigate the dependence structure in three periods related to the adoption and abolition of 

the carbon tax. In the pre-carbon period, we found evidence of tail dependence separately in 

the northern and southern NEM, but not across them. During the carbon period, the joint spike 

in the northern NEM disappeared, and the tail dependence in the southern NEM decreased. In 

the post-carbon period, the best dependence structure turned out to be a flexible structure of 

the regular vine, which exactly matched the geographical infrastructure connectedness of 

transmission wires. Besides, both upper and lower tail dependences were found in all adjacent 

states after the abolition of the carbon tax, suggesting a more integrated market regarding tail 

dependence. From the market participants' perspective, this framework, based on the R-vine 

copula, can be used as a risk management tool, especially for identifying the tail risks of 

unfavorable price movements in multiple states. Future research on this subject can focus on 
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the data at a high frequency to examine the dependence structure and system security across 

the electricity markets in the Australian states. 
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Appendix. A. 

Table A1. Estimation of Deterministic Component in Electricity Price.  

 QLD NSW VIC SA TAS 

 Para Est. p-value Para Est. p-value Para Est. p-value Para Est. p-value Para Est. p-value 

(Intercept) 64.20 0.00% 43.30 0.00% 70.89 0.00% 97.74 0.00% 63.41 0.00% 

day_Tuesday -0.60 87.73% 1.06 74.90% -0.27 95.37% -1.60 80.64% 0.80 73.43% 

day_Wednesday 3.38 38.80% 0.24 94.19% 1.73 70.49% -0.17 97.93% 0.10 96.53% 

day_Thursday 6.48 9.80% 2.30 48.65% 13.38 0.34% 11.11 8.85% 0.44 85.27% 

day_Friday 1.05 78.89% 6.04 6.79% 0.61 89.35% -4.58 48.25% -0.12 95.79% 

day_Saturday -6.02 12.47% -7.52 2.30% -9.20 4.40% -20.05 0.21% -4.45 5.94% 

day_Sunday -9.60 1.43% -10.11 0.22% -12.06 0.83% -23.22 0.04% -4.67 4.79% 

month_Feb -3.13 54.72% 12.94 0.33% -24.51 0.01% -31.35 0.03% -0.10 97.38% 

month_Mar -26.02 0.00% -9.61 2.52% -30.24 0.00% -49.35 0.00% 7.81 1.07% 

month_Apr -36.13 0.00% -4.25 32.58% -25.60 0.00% -47.66 0.00% 10.90 0.04% 

month_May -36.40 0.00% -5.57 19.41% -27.99 0.00% -43.99 0.00% -2.74 37.48% 

month_Jun -31.44 0.00% 1.45 73.74% -21.78 0.03% -35.63 0.00% 9.36 0.26% 

month_Jul -37.51 0.00% -5.97 16.45% -28.57 0.00% -28.71 0.07% -10.02 0.12% 

month_Aug -39.32 0.00% -6.79 11.34% -33.82 0.00% -51.47 0.00% -12.90 0.00% 

month_Sep -39.57 0.00% -8.12 6.07% -35.62 0.00% -55.65 0.00% -16.25 0.00% 

month_Oct -39.79 0.00% -6.31 14.17% -38.09 0.00% -58.02 0.00% -12.86 0.00% 

month_Nov -31.35 0.00% 0.19 96.56% -33.46 0.00% -40.09 0.00% -5.14 9.86% 

month_Dec -30.70 0.00% -6.08 15.68% -39.03 0.00% -52.84 0.00% -12.93 0.00% 

year_2009 -0.71 88.45% 5.34 19.80% -5.54 33.34% 4.33 59.62% -29.10 0.00% 

year_2010 -3.05 53.41% -2.11 61.02% -14.76 0.99% -18.44 2.42% -29.03 0.00% 

year_2011 -4.99 30.92% -9.22 2.61% -14.52 1.11% -20.68 1.14% -25.89 0.00% 

year_2012 33.04 0.00% 16.28 0.01% 15.66 0.63% 18.83 2.13% -10.17 0.06% 

year_2013 24.42 0.00% 13.40 0.12% 9.67 9.11% 10.73 18.92% -16.50 0.00% 

year_2014 18.52 0.02% -3.68 37.47% -11.47 4.52% -11.69 15.29% -21.32 0.00% 

year_2015 25.88 0.00% 12.70 0.22% 4.27 45.55% 10.62 19.38% 7.41 2.65% 
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year_2016 59.12 0.00% 42.36 0.00% 24.76 0.00% 57.69 0.00% 16.93 0.00% 

year_2017 38.88 0.00% 43.44 0.00% 50.54 0.00% 47.17 0.00% 28.51 0.00% 

year_2018 46.32 0.00% 49.74 0.00% 68.03 0.00% 58.88 0.00% 31.55 0.00% 

outage         108.65 0.00% 

No of Obs. 4017  4017  4017  4017  4017  

Adj. R2 11.93%  12.09%  11.54%  7.81%  38.96%  

F-stat 21.15  21.46  20.41  13.60  92.55  
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Figure 1. Electricity Price in NEM (the Y-axis is Limited between -50 and 300). 
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Figure 2. Pairwise Plots of PIT Variables and their Kendall's tau. 
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Figure 3. Quantile Dependence for All Pairs. 
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Period 1: July 2008 - June 2012 

 

Period 2: July 2012 - June 2014 

 

Period 3: July 2014 - June 2019 

 

Figure 4. Tree 1 of R-vine Copula in Three Periods. 
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Source: Geoscience Australia, 2015 

Figure 5. Australian National Electricity Transmission Lines 
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Table 1 

Descriptive Statistics 

 QLD NSW VIC SA TAS 

Moments 

Mean 55.44 53.36 52.93 66.71 57.45 

SD 75.77 58.60 80.77 127.18 50.07 

Skewness 13.20 13.87 25.03 12.92 5.06 

Kurtosis 239.28 265.72 879.37 226.46 53.79 

Distribution 

Min -13.98 16.80 -8.94 -103.16 -181.69 

10% Quantile 22.18 24.33 21.79 22.99 23.42 

30% Quantile 28.74 30.71 28.87 31.71 33.16 

Median 45.03 44.12 40.55 45.20 42.44 

70% Quantile 59.96 55.71 53.32 64.52 61.53 

90% Quantile 88.25 88.95 96.84 109.51 105.20 

Max 1885.92 1394.18 3377.97 3359.82 835.16 

Frequency of Price Anomalies 

Fq. of Positive Spikes 1.41% 1.02% 0.74% 1.45% 1.33% 

Fq. of Negative Prices 0.02% 0.00% 0.07% 0.38% 0.33% 

 

 

 

Table 2 

Correlation and Dependence 

  Pearson's Correlation 

  QLD NSW VIC SA TAS 

K
en

d
a
ll
′s

 t
a
u

 

QLD  0.38 0.11 0.08 0.15 

NSW 0.77  0.21 0.17 0.19 

VIC 0.62 0.76  0.63 0.25 

SA 0.57 0.68 0.77  0.15 

TAS 0.46 0.49 0.55 0.49  
Note: Pearson correlation is shown with underscore above the main diagonal. 

Kendall's tau is shown in bold and Italic font below the main diagonal.   
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Table 3 

Parameter Estimation in Marginal Model 

  QLD NSW VIC SA TAS 

  Para Est. p-value Para Est. p-value Para Est. p-value Para Est. p-value Para Est. p-value 

Conditional mean 

ar1 1.44 0.00% 0.36 0.00% -0.12 6.17% 1.17 0.00% 0.99 0.00% 

ar2 -0.45 0.00% -0.26 0.00% -0.13 0.01% -0.69 0.00%   

ar3   0.39 0.00% 0.53 0.00% 0.30 0.00%   

ar4   0.04 1.83% 0.53 0.00% -0.03 22.15%   

ar5   0.02 13.88% 0.09 1.29% -0.02 32.84%   

ar6   0.06 0.00%   0.16 0.00%   

ar7   0.24 0.00%       

ma1 -0.79 0.00% 0.31 0.00% 0.78 0.00% -0.63 0.00% -0.34 0.00% 

ma2   0.36 0.00% 0.57 0.00% 0.30 0.00% -0.18 0.00% 

ma3     -0.12 0.00%   -0.04 0.14% 

ma4     -0.54 0.00%     

ma5     -0.38 0.00%     

ma6     -0.21 0.00%     

Conditional variance 

omega 51.89 0.00% 15.35 0.00% 36.59 0.00% 180.24 0.00% 14.74 0.00% 

alpha 0.70 0.00% 0.45 0.00% 0.38 0.00% 0.48 0.00% 0.50 0.00% 

aeta 0.30 0.00% 0.55 0.00% 0.60 0.00% 0.52 0.00% 0.49 0.00% 

Error distribution - skewed t 

shape 2.90 0.00% 3.04 0.00% 2.90 0.00% 2.67 0.00% 2.98 0.00% 

skew 1.34 0.00% 1.34 0.00% 1.05 0.00% 1.19 0.00% 1.15 0.00% 
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Table 4 

P-values of Three Diagnostic Tests on Standardized Residuals from Marginal Models 

 Weighted Ljung-Box Test on Standardized Residuals 

Lag Length Lag-1 Lag-2 Lag-3 

QLD 92.37% 18.83% 38.76% 

NSW 71.34% 6.32% 16.62% 

VIC 89.51% 8.58% 19.26% 

SA 63.49% 6.43% 8.78% 

TAS 32.41% 11.66% 8.71% 

 Weighted Ljung-Box Test on Standardized Squared Residuals 

Lag Length Lag-1 Lag-2 Lag-3 

QLD 99.94% 99.87% 100.00% 

NSW 99.97% 99.93% 100.00% 

VIC 99.89% 99.69% 99.99% 

SA 99.86% 99.65% 99.99% 

TAS 99.68% 99.19% 99.97% 

 Weighted ARCH LM Tests 

Lag Length 3 4 7 

QLD 99.94% 100.00% 100.00% 

NSW 99.97% 100.00% 100.00% 

VIC 99.89% 100.00% 100.00% 

SA 99.86% 100.00% 100.00% 

TAS 99.68% 99.98% 100.00% 
Note: Lag-1 is always 1, Lag-2 is 3 × (𝑝 + 𝑞) − 1, and Lag-3 is 5 × (𝑝 + 𝑞) − 1, where 𝑝 and 𝑞 are the orders in the 

marginal models of ARMA(𝑝, 𝑞)-GARCH(1,1). 
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Table 5 

Structural Break Test for Pairwise Dependence with Known Dates 

Break Date: July 1, 2012 July 1, 2014 

QLD/NSW 65.50% 4.10% 

QLD/VIC 0.00% 0.00% 

QLD/SA 0.00% 0.00% 

QLD/TAS 0.30% 0.10% 

NSW/VIC 0.60% 0.30% 

NSW/SA 60.10% 84.40% 

NSW/TAS 0.20% 0.00% 

VIC/SA 0.70% 1.30% 

VIC/TAS 22.50% 11.40% 

SA/TAS 92.50% 39.10% 
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Table 6 

Estimates of the Vine Copula Model 

Period 1: July 2008 - June 2012 

Tree Edge Copula Para1 std. error Para2 std. error Kendall's tau LTD UTD 

1 

NSW,TAS Student's t 0.38 (0.02) 5.5 (0.92) 0.25 0.13 0.13 

QLD,NSW Gumbel 1.6 (0.03)   0.37 0.46  

VIC,QLD Frank 4.95 (0.20)   0.45   

SA,VIC Student's t 0.79 (0.01) 3.21 (0.31) 0.58 0.52 0.52 

2 

QLD,TAS|NSW Survival Joe 1.07 (0.02)   0.04  0.09 

VIC,NSW|QLD Student's t 0.1 (0.03) 6.34 (1.16) 0.07 0.04 0.04 

SA,QLD|VIC Frank 1.54 (0.17)   0.17   

3 
VIC,TAS|QLD,NSW Frank 1.86 (0.17)   0.2   

SA,NSW|VIC,QLD Frank 0.76 (0.16)   0.08   

4 SA,TAS|VIC,QLD,NSW Independent     0.00   

Type: D-vine LogLik: 1612.15 AIC: -3200.31 BIC: -3136.86   

Period 2: July 2012 - June 2014 

Tree Edge Copula Para1 std. error Para2 std. error Kendall's tau LTD UTD 

1 

NSW,TAS Frank 2.66 (0.24)   0.28   

QLD,NSW Frank 3.33 (0.25)   0.34   

VIC,QLD Frank 3.39 (0.26)   0.34   

SA,VIC Student's t 0.76 (0.02) 3.53 (0.55) 0.55 0.47 0.47 

2 

QLD,TAS|NSW Independent     0.00   

VIC,NSW|QLD Student's t 0.26 (0.04) 5.52 (1.27) 0.17 0.10 0.10 

SA,QLD|VIC Independent        

3 
VIC,TAS|QLD,NSW Student's t 0.24 (0.04) 4.84 (0.90) 0.15 0.11 0.11 

SA,NSW|VIC,QLD Frank 1.36 (0.23)   0.15   

4 SA,TAS|VIC,QLD,NSW Independent     0.00   

Type: D-vine LogLik: 653.82 AIC: -1287.63 BIC: -1241.7   

Period 3: July 2014 - June 2019 

Tree Edge Copula Para1 std. error Para2 std. error Kendall's tau LTD UTD 

1 

NSW,QLD Student's t 0.59 (0.02) 3.32 (0.33) 0.4 0.34 0.34 

VIC,NSW Student's t 0.53 (0.02) 4.46 (0.57) 0.35 0.25 0.25 

VIC,SA Student's t 0.74 (0.01) 3.79 (0.42) 0.53 0.43 0.43 

TAS,VIC Student's t 0.42 (0.02) 4.73 (0.62) 0.28 0.18 0.18 

2 

VIC,QLD|NSW Frank 1.12 (0.15)   0.12   

SA,NSW|VIC Frank 0.52 (0.15)   0.06   

TAS,SA|VIC Gumbel 1.03 (0.01)   0.03 0.04  

3 
SA,QLD|VIC,NSW Independent     0.00   

TAS,NSW|SA,VIC Independent     0.00   

4 TAS,QLD|SA,VIC,NSW Frank -0.42 (0.15)   -0.05   

Type: R-vine LogLik: 1693.57 AIC: -3363.14 BIC: -3297.02   
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Table 7 

Joint Probability in Upper Tails 

  Empirical  Vine Copula  Multivariate Student's t Copula 

  Period 1 Period 2 Period 3  Period 1 Period 2 Period 3  Period 1 Period 2 Period 3 

> 0.90 

at least 2 12.80% 11.51% 12.54%  13.02% 12.40% 12.26%  12.71% 12.60% 12.53% 

at least 3 5.75% 3.97% 5.04%  5.79% 5.05% 5.53%  5.93% 5.54% 5.41% 

at least 4 2.26% 0.96% 2.30%  2.32% 1.54% 2.31%  2.50% 2.18% 2.10% 

5 together 0.82% 0.14% 0.44%  0.70% 0.22% 0.58%  0.75% 0.60% 0.56% 

> 0.95 

at least 2 5.54% 3.29% 5.42%  6.23% 5.22% 5.65%  5.89% 5.73% 5.73% 

at least 3 1.78% 1.23% 2.03%  2.15% 1.76% 2.29%  2.46% 2.25% 2.22% 

at least 4 0.62% 0.41% 0.44%  0.69% 0.37% 0.89%  0.95% 0.81% 0.78% 

5 together 0.21% 0.14% 0.05%  0.18% 0.03% 0.21%  0.27% 0.20% 0.19% 

> 0.99 

at least 2 0.96% 0.55% 0.55%  1.15% 0.73% 1.01%  1.02% 0.96% 0.96% 

at least 3 0.14% 0.14% 0.11%  0.21% 0.19% 0.35%  0.36% 0.32% 0.31% 

at least 4 0.14% 0.00% 0.05%  0.04% 0.01% 0.13%  0.13% 0.10% 0.09% 

5 together 0.00% 0.00% 0.00%  0.01% 0.00% 0.03%  0.04% 0.02% 0.02% 
 

     Average absolute difference: 0.29%  Average absolute difference: 0.38% 

 

 

 


