
Particle-in-cell experiments examine 
electron diffusion by whistler-mode waves:  
2. Quasilinear and nonlinear dynamics 

Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Allanson, O., Watt, C. E. J., Ratcliffe, H., Allison, H. J., 
Meredith, N. P., Bentley, S. N., Ross, J. P. J. and Glauert, S. 
A. (2020) Particle-in-cell experiments examine electron 
diffusion by whistler-mode waves: 2. Quasilinear and nonlinear 
dynamics. Journal of Geophysical Research: Space Physics, 
125 (7). e2020JA027949. ISSN 2169-9402 doi: 
https://doi.org/10.1029/2020JA027949 Available at 
http://centaur.reading.ac.uk/91182/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1029/2020JA027949 

Publisher: American Geophysical Union 

All outputs in CentAUR are protected by Intellectual Property Rights law, 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf


including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 

Reading’s research outputs online

http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Particle‐in‐Cell Experiments Examine Electron Diffusion
by Whistler‐Mode Waves: 2. Quasi‐Linear
and Nonlinear Dynamics
O. Allanson1 , C. E. J. Watt1 , H. Ratcliffe2 , H. J. Allison3 , N. P. Meredith4 ,
S. N. Bentley1 , J. P. J. Ross4 , and S. A. Glauert4

1Department of Meteorology, University of Reading, Reading, UK, 2Centre for Fusion, Space and Astrophysics,
Department of Physics, University of Warwick, Coventry, UK, 3Helmholtz Centre Potsdam ‐ GFZ German Research
Centre for Geosciences, Potsdam, Germany, 4British Antarctic Survey, Natural Environment Research Council,
Cambridge, UK

Abstract Test particle codes indicate that electron dynamics due to interactions with low amplitude
incoherent whistler mode‐waves can be adequately described by quasi‐linear theory. However there is
significant evidence indicating that higher amplitude waves cause electron dynamics not adequately
described using quasi‐linear theory. Using the method that was introduced in Allanson et al. (2019,
https://doi.org/10.1029/2019JA027088), we track the dynamical response of electrons due to interactions
with incoherent whistler‐mode waves, across all energy and pitch angle space. We conduct five
experiments each with different values of the electromagnetic wave amplitude. We find that the electron
dynamics agree well with the quasi‐linear theory diffusion coefficients for low amplitude incoherent
waves with (Bw,rms/B0)

2≈ 3.7·10−10, over a time scale T of the order of 1,000 gyroperiods. However, the
resonant interactions with higher amplitude waves cause significant nondiffusive dynamics as well as
diffusive dynamics. When electron dynamics are extracted and analyzed over time scales shorter than T,
we are able to isolate both the diffusive and nondiffusive (advective) dynamics. Interestingly, when
considered over these appropriately shorter time scales (of the order of hundreds or tens of gyroperiods),
the diffusive component of the dynamics agrees well with the predictions of quasi‐linear theory, even for
wave amplitudes up to (Bw,rms/B0)

2≈ 5.8·10−6. Quasi‐linear theory is based on fundamentally diffusive
dynamics, but the evidence presented herein also indicates the existence of a distinct advective
component. Therefore, the proper description of electron dynamics in response to wave‐particle
interactions with higher amplitude whistler‐mode waves may require Fokker‐Planck equations that
incorporate diffusive and advective terms.

Plain Language Summary Electromagnetic waves interact strongly with charged particles in the
Earth's inner magnetosphere. It is important to be able to model the evolution of these particles,
since we rely on the many satellites that orbit within this hazardous radiation environment. Particle
dynamics within the Earth's outer radiation belt are usually modelled using a long‐established theory
fundamentally based on diffusive dynamics. We effectively benchmark this treatment for some individual
cases in which one would expect agreement, that is, lower amplitude waves. We then utilize our novel
method to probe cases for which the application of the standard diffusive model is questionable. We find that
the resonant interactions with higher amplitude waves result in advective dynamics as well as expected
diffusive behavior. When the problem is properly considered, the diffusive component of the dynamics does
in fact agree well with the predictions of quasi‐linear theory. However, this is only one component of the
dynamics, and one should also consider the advective component. This work motivates the use of model
equations that incorporate both diffusive and other nondiffusive terms.

1. Introduction

Whistler‐mode waves play a significant role in the acceleration and loss of electrons within the Earth's radia-
tion belts (Horne et al., 2005; Thorne, 2010). Physics‐based models most typically use the long‐established
quasi‐linear diffusion theory (Kennel & Engelmann, 1966; Lerche, 1968; Lyons, 1974; Summers, 2005) to
model particle dynamics due to interactions with whistler‐mode waves (e.g., see Albert & Bortnik, 2009;
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Beutier & Boscher, 1995; Glauert et al., 2014; Su et al., 2010; Subbotin et al., 2010). Observations of
whistler‐modewaves in the innermagnetosphere (e.g., see Breneman et al., 2011; Cattell et al., 2008; Li et al.,
2011; Tyler et al., 2019) have demonstrated not only that very high wave amplitudes (with electric compo-
nent) ≥100mV/m exist, but that they are not uncommon (Cully et al., 2008; Kellogg et al., 2011; Watt et al.,
2017, 2019; Wilson III et al., 2011; Zhang et al., 2019). Theoretical calculations and numerical experiments
have demonstrated that such large‐amplitude waves should cause electron dynamics to evolve in a manner
quite different from that dictated by quasi‐linear theory (e.g., see Albert, 2002; Bortnik et al., 2008; Bell,
1986; Karpman et al., 1974; Mourenas et al., 2018; Nunn, 1971; Omura et al., 2007). Indeed, recent observa-
tions have also shown that the electron‐whistler‐mode wave interaction can deviate significantly from that
expected by the use of quasi‐linear diffusion theory: (i) estimates using data from the THEMIS and the Van
Allen Probes satellites suggest that 10–15% of chorus whistler‐mode wave packets have wave amplitudes suf-
ficiently high so as to interact nonlinearly with relativistic electrons (Zhang et al., 2018); (ii) using data from
the Arase satellite, Kurita et al. (2018) showed that deformations in the electron distribution function due to
wave‐particle interactions occur at a rate that is faster than that expected from quasi‐linear theory, such as
may be found in Tao, Thorne, et al. (2011).

Much theoretical work on the applicability (or otherwise) of linear and quasi‐linear theory has focused on
electron interactions with (quasi‐)monochromatic whistler‐mode wave packets. Inan et al. (1978) studied
electron pitch angle diffusion and precipitation due to field‐aligned coherent VLF waves at L=4 (the 5
kHz Siple transmitter, Antarctica) using a test particle code and compared the results to a linear analysis
of the equations of motion. In their case, it was found that the the linear theory used broke down for wave
amplitudes above the relatively low threshold of 3 pT. In particular, they developed a quantitative criterion
(based upon an “inhomogeneity parameter”) that determined the applicability of linear theory: based upon
the conclusion that nonlinear effects should be included if time spent in resonance is greater than the trap-
ping period. This theory was developed by, for example, Bell (1984), to include nonzero wave‐normal angles,
and further by Solov'ev and Shklyar (1986); by Albert (1993) using a Hamiltonian analysis in a slab magnetic
field model; by Omura et al. (2008) to include the effect of time‐varying frequency; and by Nunn and Omura
(2015) to consider the self‐consistent nonlinear interaction in oblique whistlers for any order of resonance. A
review of many other relevant works that consider inhomogeneities of the plasma and ambient magnetic
field is given in Shklyar and Matsumoto (2009). Test particle numerical experiments conducted by Tao,
Bortnik, et al. (2011) have indicated that electron dynamics due to interactions with low amplitude and inco-
herent field‐aligned whistler‐mode waves in a uniform background magnetic field can be adequately
described by quasi‐linear diffusion theory in certain cases. Building on their previous work, Tao, Bortnik,
Thorne, et al. (2012) indicated that the quasi‐linear diffusion theory may overestimate the value of diffusion
coefficients for sufficiently large whistler‐mode wave amplitudes (in the case of bounce‐averaged diffusion
coefficients). We note that there has been much recent work on electron interactions with whistler‐mode
chorus waves (Omura et al., 2008), in particular, the nonlinear electron interactions that can be difficult
or impossible to describe using the standard quasi‐linear theory (e.g., see Artemyev et al., 2018; Gan et al.,
2020; Mourenas et al., 2018; Vainchtein et al., 2018; Zhang et al., 2018, 2012). A number of these work dis-
cuss dimensionless parameters (e.g., the inhomogeneity parameter or a related parameter) that can predict
the dominance of either nonlinear or quasi‐linear dynamics, for a given situation (e.g., see a simplified ver-
sion in Bortnik et al., 2008).

Most of the works that consider numerical experiments of nonlinear wave‐particle interactions consider
(i) the (in some respects) more physically realistic scenario of background magnetic fields with curvature
(or at least spatial gradients) and hence bounce motion and bounce averaging (e.g., see Gan et al., 2020;
Silva et al., 2017; Tao, Bortnik, Albert, et al., 2012); (ii) test particle codes for which the wave spectrum is
exactly specified (e.g., see Mourenas et al., 2018; Silva et al., 2018; Tao, Bortnik, et al. 2011); and (iii)
interactions with chorus wave packets (e.g., see Artemyev et al., 2018; Vainchtein et al., 2018). In this
work we intentionally study a scenario that may be considered more basic in some respects. That is,
we study field‐aligned broadband and incoherent whistler‐mode waves in a uniform field (equatorial)
approximation and with a cold plasma. These conditions are in principle very much like the basic
assumptions employed in the derivation of quasi‐linear theory as applied to the radiation belts.
Therefore, we are able to isolate the effect of increasing the wave amplitude on electron dynamics and
compare the results to the fundamental quasi‐linear theory. Furthermore, we use a particle‐in‐cell
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method to accurately capture as much kinetic physics as possible such as is relevant for the
fundamentally kinetic wave‐particle interaction mechanism.

This paper is organized as follows. Section 2 describes the numerical experiments and electromagnetic wave
power spectra. Section 3 includes the analysis of electron dynamics, dynamical components, and associated
time scales, as well as the extraction of diffusion coefficients and their comparison to the theoretical predic-
tion. Sections 4 contains discussion and summary.

2. Outline of the Numerical Experiments

In a recent work, Allanson et al. (2019) benchmarked a boundary value problem particle‐in‐cell method to
analyze electron dynamics due to interactions with whistler‐modewave spectra. In particular, Allanson et al.
(2019) (hereafter referred to as “Paper 1”) presented novel experimental and analysis techniques (using the
EPOCH particle‐in‐cell code) to (a) excite electromagnetic whistler‐mode waves within the interior of the
domain, by perturbing a boundary; (b) extract diffusive characteristics of electrons across all energies and
pitch angles, through the use of a distribution of noninteracting test particles embedded within the experi-
ment. In this paper we use the method established in Paper 1 to examine the dependence of the electron
response to incoherent whistler‐mode waves on the electromagnetic wave amplitude. In particular, we
intend to compare the dynamics and directly extracted diffusion coefficients with those obtained from
quasi‐linear theory. In contrast to some other works (e.g., see Silva et al., 2018; Tao, Bortnik, Albert, et al.,
2012) that invoke the spatial gradient of the background magnetic field, we consider a uniform background
field approximation appropriate for the magnetic equator, in a similar way to Tao, Bortnik, et al. (2011). In
particular, the conditions used in this paper are chosen to isolate the effect of increasing wave amplitude on
electron dynamics, with all other conditions chosen to be appropriate for testing the basic quasi‐linear the-
ory (which is formulated for a cold plasma with uniform background magnetic field).

In this paper we use version 4.17 of EPOCH to conduct our numerical experiments. In particular we use the
one‐dimensional version (EPOCH1D), which only has spatial gradients (and hence electromagnetic wave
propagation) in the x‐direction. All particle and field quantities do have y and z components however.

The five runs to be discussed are listed in Table 1. All runs use nx= 3,587 grid points with spacing Δx≈ 235
m, giving a total domain length of Lx≈ 843 km. These values of (Δx, nx, Lx) are the same as that used and jus-
tified in Paper 1. As described fully therein, we utilize an electromagnetic source at the left‐hand boundary
(with root‐mean‐squared value of the magnetic wave component as listed in column 2 of Table 1) to excite a
propagating and incoherent spectrum of right‐hand polarized electromagnetic whistler‐mode waves within
the computational domain. These electromagnetic waves have the overwhelming majority of their power
situated in the frequency range 0.2fce < f < 0.4fce, for fce the ordinary electron gyrofrequency. These
wave‐amplitude spectral profiles are similar to those used in Tao, Bortnik, et al. (2011) and Paper 1, for
example. Whistler‐mode waves are natural eigenmodes of the cold plasma bulk (Stix, 1992) and propagate
through the domain with negligible damping.

The Fourier transforms of the Ey and By components for all five runs are plotted in Figure 1. These amplitude
spectra are averaged over all run time and space, and we see that electromagnetic wave power remains
well‐localized to the 0.2fce < f < 0.4fce range (more than 96% of the total magnetic wave power in all cases).

Table 1
The Five Numerical Experiments That Are Presented in This Paper

Bw,rms: rms amplitude
rms amplitude of magnetic of magnetic component of EM

Name of component of EM wave waves within domain (averaged
experiment source at boundary (a constant) over 0 < t < T≈ 1,008tce) (Bw,rms/B0)

2

Run 1 1 pT ≈ 2.87 pT ≈ 3.7·10−10

Run 2 ≈ 3.16 pT ≈ 8.54 pT ≈ 3.7·10−9

Run 3 10 pT ≈ 28.7 pT ≈ 4.2·10−8

Run 4 ≈ 31.6 pT ≈ 85.7 pT ≈ 3.7·10−7

Run 5 100 pT ≈ 336.6 pT ≈ 5.8·10−6
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Each pair of red and blue curves marks the By and Ey power spectrum for
each run, in ascending order (Run 1 is the “lowest” pair and Run 5 is the
“highest” pair). Note that we get near‐identical results for the spectra of
the Bz and Ez components, as should be the case with circularly polarized
waves that propagate in the x‐direction only. The vertical black lines mark
0.2 and 0.4 of the electron gyrofrequency (which is the vertical green line).
Each pair of horizontal red and blue lines marks the average of the By and
Ey power within the 0.2fce < f < 0.4fce range. For all runs, dominant power
for Ey, Ez, By, Bz is localized to the whistler‐mode dispersion curve (Stix,
1992), as in Figure 4 of Paper 1. Further note that the electromagneticwave
amplitude measured within the domain is not equal to that of the electro-
magnetic source at the left‐hand boundary. The reason for this effect is dis-
cussed in detail in Section 2.2 of Paper 1 and is due to the coupling
mechanism of the electromagnetic source to the bulk plasma. We mainly
discuss themagnetic components in the following text for the sake of brev-
ity (and as is customary when discussing quasi‐linear theory). However,
note that the electromagnetic waves discussed here have self‐consistent
electric wave field components following |Ew|≈ (c/η)|Bw| (for η= η(ω)
the frequency dependent refractive index), and the phase relationship as
necessary for right‐hand polarized whistler‐mode waves (Stix, 1992). The

squared ratio of magnetic wave power to background magnetic field amplitude, (Bw,rms/B0)
2, is listed in col-

umn 4 of Table 1. These values span the wave amplitude threshold discussed by Tao, Bortnik, Albert, et al.
(2012) that marked a transition from validity to invalidity of the quasi‐linear diffusion coefficients (for
bounce‐averaged diffusion coefficients). For example, Tao, Bortnik, Albert, et al. (2012) found this wave
amplitude threshold to be (Bw,rms/B0)

2≥ 2 × 10−7 for 10 keV electrons, and approximately (Bw,rms/B0)
2≥

5 × 10−7 for 215.4 keV electrons (see Section 3.2 and Figure 3 of that paper, respectively).

The domain length Lx corresponds to approximately 40–65 wavelengths, depending on the frequency of
interest. All experiments allow for wave‐particle interactions to occur for T≈ 1,008tce≈ 0.26 s. This corre-
sponds to roughly 200–400 wave periods, once again depending on the frequency of interest. All runs are per-
formed at 500 particles per cell per species. We use electron and ion species each with a number density of
ne ¼ ni ¼ 107 m−3; the correct mass ratio of mi/me= 1,836.2; and isotropic Maxwellian distributions at 0.1
eV. There is a uniform background magnetic field of B0 = (B0x,0,0) = (140 nT, 0, 0). These parameters are
chosen to represent conditions in the magnetosphere close to L≈ 6, except for the absence of a minority
warm electron component. The evolution of wave‐particle interactions in the presence of a warm anisotropic
component that prevents wave damping will be studied in future works. These parameters give the ratio of
electron plasma frequency to gyrofrequency as fpe/fce≈ 7.2. Each run required approximately 25,000–
35,000 cpu hours (depending on the number of nodes used), and these were performed using the Science
and Technology Facilities Council “DiRAC” HPC Facility (www.dirac.ac.uk). We also ran smaller test runs
on the Reading Academic Computing Cluster at the University of Reading and the Natural Environment
Research Council “ARCHER” HPC facility (www.archer.ac.uk).

3. Electron Dynamics Extracted from Particle‐in‐Cell Numerical Experiments

For all runs, the electron dynamics are extracted from the experiments using the specific techniques intro-
duced in Paper 1, and so, we only give a limited description here. At the beginning of the wave‐particle inter-
action, all Ntotal≈ 108 electrons to be considered are binned in (relativistic kinetic) energy and pitch angle
space. We use 125 bins in energy space spanning the resonant energies from approximately 3
keV < E < 300 keV and 45 bins in pitch angle space spanning 0°≤ α≤ 90°. Each of these individual 5,625
bins contains Nbin= 17,777 electrons. Electron data are dumped roughly every 11 or 22 gyroperiods. Each
electron remains identified with its “initial” bin for the duration of the experiment; that is, electrons are
not re‐binned at each data dump.

In Paper 1 it was shown that in some regions of (E,α) space, the diffusion can proceed at a rate that is not
constant in time (sometimes known as anomalous diffusion Bouchaud & Georges, 1990; del

Figure 1. Fourier amplitude of the By (red) and Ey components (blue) of
the waves within the PiC domain for each of the five runs. Each pair of
red/blue curves marks the By/Ey power spectrum for each run, in
ascending order (Run 1 is the “lowest” pair and Run 5 is the “highest” pair).
Each pair of horizontal red and blue lines marks the average of the
By and Ey power within the 0.2fce < f < 0.4fce range. Vertical black lines
mark the lower and upper bounds of the driven wave spectrum.
The vertical green line marks fce. Red and blue curves have scales/units
defined by the left‐hand and right‐hand axes, respectively.
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Castillo‐Negrete et al., 2004; Metzler & Klafter, 2000; Perrone et al., 2013; Zaslavsky, 2002; Zimbardo et al.,
2015), according to

⟨ðfαlg−α0Þ2⟩ ∝ ta; (1)

in the case of pitch angle diffusion (for example), for a≠1 and {αl} the set of pitch angle values of the
l= 1,2,…,Nbin electrons at time t, identified with a given bin α0. To be clear, these are the electrons with
α≈ α0 at t= 0 and ⟨…⟩ the ensemble average. In order not to overburden the notation, we shall omit the
{…} set brackets for the rest of the paper and take the subscript l on αl or El to imply the full set of
values of the l= 1,2,…,Nbin electrons in a given bin.

However, it was also shown that this anomalous diffusion usually appears as an initial transient feature,
such that a≈ 1 after some short time has passed, tanom.. Figure 2 shows the evolution of ⟨(αl−α)

2
⟩ for all five

runs (asterisks) for electrons initially in a given bin (E0,α0)≈ (7 keV,30°). As the run number (and hence the
wave power) is increased, visual inspection of the plots suggests that the time spent in the anomalous diffu-
sion phase decreases, and so tanom. decreases. This feature is common across (E, α) space. As such, we con-
sider linear fits (solid black line) to the data for each run once tanom. has passed, as follows: (a) 250tce < t < T;
(b) 200tce < t < T; (c) 150tce < t < T; (d) 100tce < t < T; and (e) 50tce < t < T (T≈ 1,008tce for all plots). The
gradient of this line can be used to determine a value for the “PiC diffusion coefficient” in a given bin,
(E,α)≈ (7 keV,30°), using Equation A3. To be exact, we extract the gradients of straight line fits to the curves
(after tanom. has passed) defined by the right hand sides of the following equations:

⟨ðαl−αÞ2⟩ ¼ 2Dαα;PiCt; (2)

1
E2 ⟨ðEl−EÞ2⟩ ¼ 2DEE;PiCt; (3)

1
E
⟨ðαl − αÞðEl − EÞ⟩ ¼ 2DEα;PiCt; (4)

for (El,αl) the electrons in bin (E,α). The gradient of the dashed black line corresponds to the evolution of
⟨(αl−α)

2
⟩ as is predicted using the PADIE code (Glauert & Horne, 2005) based upon quasi‐linear theory

and obtained using the values of (Bw,rms/B0)
2 as listed in Table 1 and the wave‐power spectrum as shown

in Figure 1. The midpoint of the dashed black line is shifted so that it coincides with the solid black line, in
order to allow a comparison. Figures 2a–2d show very good agreement between the quasi‐linear diffusion
theory and the diffusion coefficient extracted from the PiC experiments, for this bin. However, Figure 2e
shows a less good agreement between the theory and the PiC data. This feature will be further discussed in
the following subsection.

3.1. Effective Extraction of Particle Dynamics—The Localization Problem

Paper 1 stressed the point that one can only extract a meaningful diffusion coefficient (from particle data) for
particular values E0 = ⟨El(t= 0)⟩, α0 = ⟨αl(t= 0)⟩, and then describe it as a function of (E0,α0), while the given
subset of Nbin particles remain well “localized” to (E0,α0). One clear test of “localization” is to count the
number of particles that leave their given initial bin. We can simply consider the number of particles,
#out,α or #out,E, that have left the pitch angle or energy bin that they were initially identified with.
Figure 3 presents

PαðE; αÞ ¼ out;α=Nbin; (5)

PEðE; αÞ ¼ out;E=Nbin; (6)

for all five runs, calculated over the time 0 < t < T≈ 1,008tce: (a) and (b) describe Run 1; (c) and (d)
describe Run 2; (e) and (f) describe Run 3; (g) and (h) describe Run 4; and (i) and (j) describe Run 5. A
value of Pα > 0.5 or PE > 0.5 indicates that more than half of the particles initially identified with a given
bin (E0,α0) at t= 0 are now located “outside” of the bin at t= T. In such cases, it would be inappropriate to
describe the dynamics of those particles as a function of (E0,α0). The overplotted black curves mark the
values of energy and pitch angle that are in “n=−1 resonance” (see Allanson et al., 2019) with waves
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Figure 2. Evolution of ⟨(αl−α)
2
⟩ for all five runs (asterisks) for electrons initially in a given bin (E,α)≈ (7 keV,30°). The

solid black line is a linear fit applied to the data over (a) 250tce < t < T; (b) 200tce < t < T; (c) 150tce < t < T; (d)
100tce < t < T; (e) 50tce < t < T (T≈ 1,008tce for all plots). The gradient of the dashed black line corresponds to the
evolution of ⟨(αl−α)

2
⟩ as predicted using the PADIE code. The dashed red line is the evolution of ⟨ΔE⟩, and the dotted red

line is the evolution of ⟨Δα⟩. Black and red quantities are defined by the left‐hand and right‐hand axes, respectively. The
left‐hand y‐axes have scales as defined by the quantity in brackets and are formally in units of deg2.
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of frequency 0.2fce (“dash”), 0.3fce (“solid”), and 0.4fce (“dash‐dot”). We can observe the following: (i) runs
with higher amplitude waves give higher values of Pα and PE; (ii) Pα > 0.5 is observed for Runs 3–5 and
PE > 0.5 is observed for Runs 4–5; (iii) significant values of Pα and PE are largely confined to the
resonant regions, except for Run 5, which also interestingly includes drift in nonresonant regions; and

Figure 3. All plots present either Pα (left‐hand column) or PE (right‐hand column) calculated over 0 < t < T≈ 1,008tce for all plots. In particular, (a) and (b)
describe Run 1; (c) and (d) describe Run 2; (e) and (f) describe Run 3; (g) and (h) describe Run 4; (i) and (j) describe Run 5. The overplotted black curves
mark the values of energy and pitch angle that are in “n=−1 resonance” (see Allanson et al., 2019) with waves of frequency 0.2fce (“dash”), 0.3fce (“solid”), and
0.4fce (“dash‐dot”).
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(iv) higher values of Pα are more common than PE, indicating that pitch angle drift is more significant
than energy drift in this case.

Further helpful quantities that characterize electron dynamics are given by

⟨Δα⟩ðE; αÞ¼⟨αlðt¼TÞ⟩−α0; (7)

⟨Δα⟩ðE; αÞ¼⟨Δα⟩=ðαbin;max − αbin;minÞ; (8)

Figure 4. All plots present either ⟨Δα⟩ (left‐hand column) or ⟨ΔE⟩ (right‐hand column) calculated over 0 < t < T≈ 1,008tce. In particular, (a) and (b) describe Run
1; (c) and (d) describe Run 2; (e) and (f) describe Run 3; (g) and (h) describe Run 4; (i) and (j) describe Run 5. The overplotted black curves mark the values of
energy and pitch angle that are in “n=−1 resonance” (see Allanson et al., 2019) with waves of frequency 0.2fce (“dash”), 0.3fce (“solid”), and 0.4fce (“dash‐dot”).
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where αbin,max and αbin,min represent the upper and lower bounds of the
given pitch angle bin. Equation 7 states that ⟨Δα⟩=⟨Δα⟩(E,α) is equal to
the change over time 0 < t < T≈ 1,008tce in the mean value of pitch
angle of the l=1,2,…,Nbin electrons initially identified with bin (E0,α0).
Equation 8 then normalizes this quantity by the size of that pitch angle

bin, to give the dimensionless quantity ⟨Δα⟩. If j⟨Δα⟩ðE; αÞj exceeds 0.5,
then the mean value of the electron pitch angles has changed by more
than half of the initial bin width, and so, ⟨αl⟩ no longer remains within
the initial bin (with pitch angle value α0). One can construct similar

quantities ⟨ΔE⟩ and ⟨ΔE⟩ in order to track the dynamics in energy space.

The dashed red line in Figures 2a–2e is the evolution of ⟨ΔE⟩, and the

dotted red line is the evolution of ⟨Δα⟩. We see that these values remain

very small in Figures 2a–2d. However, in Figure 2e, ⟨αl⟩ is seen to rapidly
grow beyond 0.5. Therefore, the behavior of those particular electrons
cannot fairly be described as a function of the bin (E0,α0)≈ (7 keV,30°),
over the entire time frame 0 < t < T≈ 1,008tce. We argue that this is a

significant cause of the poor agreement shown between the theoretical and obtained diffusion coefficients
in Figure 2e.

Figure 4 presents ⟨Δα⟩ and ⟨ΔE⟩ for all five runs: (a) and (b) describe Run 1; (c) and (d) describe Run 2; (e)

and (f) describe Run 3; (g) and (h) describe Run 4; and (i) and (j) describe Run 5. The magnitude of ⟨Δα⟩ is

typically seen to be larger than ⟨ΔE⟩, with the magnitude of both increasing with run number, that is, wave
amplitude. Furthermore, it is clear that the dominant changes are observed within the region outlined by the
resonance curves. Therefore, we can deduce that these ⟨Δα⟩, ⟨ΔE⟩ dynamics are due to resonant

wave‐particle interactions. j⟨Δα⟩j can exceed 0.5 for Run 3, while both j⟨Δα⟩j and j⟨ΔE⟩j can exceed 0.5
for both Runs 4 and 5.

3.2. Interpreting the Electron Dynamics: Advection and Diffusion

At first glance, the nonzero values of ⟨Δα⟩ and ⟨ΔE⟩ would seem to indicate the existence of an “advective”
component to the electron dynamics, in energy and pitch angle space (see the appendix for more discussion
of the statistical treatment of both diffusive and advective processes). However, as we shortly discuss, it is not
straightforward to disentangle the advective and diffusive components of the dynamics, when analyzing
experimental data. Therefore, we term these nonzero values of ⟨Δα⟩ and ⟨ΔE⟩ as “apparently advective” at
present, pending further investigation. Furthermore, the common features observed between Figures 3
and 4 suggest that these “apparently advective” dynamics play a significant role in the de‐localization of
electrons from their initial bins.

At this point it is worth discussing the mathematical tools most commonly used in this field. A statistical
description of radiation belt electron dynamics is most usually considered by using a Fokker‐Planck
equation of the form in Equation A7 (e.g., see Glauert & Horne, 2005, Schulz & Lanzerotti, 1974). Such
equations fundamentally describe diffusive dynamics, characterized by the diffusion matrix Dij. However,
while the underlying dynamics that are consistent with Equation A7 are diffusive in nature, it does not
necessarily mean that one might not observe “apparently advective” dynamics, such as in our experiments.
One can have, for example, net acceleration/energization of a given particle subpopulation. In Equation A7,
such “apparently advective” dynamics originate from nonzero gradients in the diffusion matrix, that is,
terms of the form

∂Dij

∂Ji
∂F
∂Jj

; (9)

for F the electron distribution function and Ji the action integrals (Roederer & Zhang, 2013) (see the
appendix for more detail). Therefore, it is important for us to try and better understand the nature of
any dynamics that appear to be nondiffusive, that is, nonzero values of ⟨Δα⟩ and ⟨ΔE⟩. Do these

Figure 5. The pitch angle diffusion coefficient Dαα calculated from
numerical experiment Run 1 (R1) over the time duration
250tce < t < T≈ 1,008tce (as also considered for a particular bin in
Figure 2a). The overplotted black curves mark wave‐particle resonance
curves as in Figure 4.
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nonzero values have their origin in fundamentally diffusive dynamics, in a manner as per Equation 9,
and/or are they due to fundamentally advective dynamics (e.g., see Mourenas et al., 2018; Gan et al.,
2020; Vainchtein et al., 2018; Zhang et al., 2018), that are likely nonlinear in origin? We will now
analyze the results from our numerical experiments in order to (i) try to answer these questions and (ii)
extract meaningful diffusion coefficients and then compare with those predicted using the standard
quasi‐linear formalism.

Figure 6. All plots present the quantity Dαα,ratio=Dαα,PiC/Dαα,PADIE: (a), (b), (d), (f), and (h) show for Runs 1–5 (R1) over the time duration tanom.
< t < T≈ 1,008tce; (c) shows for Run 2 over the time duration tanom. < t < 664tce; (e) shows for Run 3 over the time duration tanom. < t < 321tce; (g) shows
for Run 4 over the time duration 0 < t < 46tce; (i) shows for Run 5 over the time duration 0 < t < 46tce. The overplotted black curves mark wave‐particle resonance
curves as in Figure 4.
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3.3. Diffusion Coefficients

First, we use the method outlined above and in Paper 1 to construct pitch angle, energy, and mixed diffusion
coefficients from all five runs over the full‐time tanom. < t < T≈ 1,008tce, in each of the 125 × 45 = 5,625 (E,α)
bins. In Figure 5 we plot Dαα,PiC obtained for Run 1 as an example. The overplotted resonance curves indeed
outline the regions of (E,α) space in which we see the dominant effects, as should be expected for resonant
interactions. Empty (or white) regions of the plot indicate regions for which there was negligible diffusion, as
defined in Paper 1. In Figure 6 we present comparisons of Dαα,PiC with the diffusion coefficient obtained
using the PADIE code by plotting

Dαα;ratio ¼ Dαα;PiC=Dαα;PADIE: (10)

For reasons that will be justified shortly, we present the calculation of Dαα,PiC over a variety of time scales.
Figures 6a–6i present Dαα,ratio as follows: (a), (b), (d), (f), and (h) show Dαα,ratio for Runs 1–5 over the time
duration tanom. < t < T≈ 1,008tce; (c) shows Dαα,ratio for Run 2 over the time duration tanom. < t < 664tce;
(e) shows Dαα,ratio for Run 3 over the time duration tanom. < t < 321tce; (g) shows Dαα,ratio for Run 4 over
the time duration 0 < t < 46tce; (i) shows Dαα,ratio for Run 5 over the time duration 0 < t < 46tce. When pos-
sible, the anomalous diffusion time scales that are used are the same as for Figure 2, that is, tanom.∈{250t-
ce,200tce,150tce,100tce,50tce} for Runs 1–5, respectively. However, the diffusion coefficients that are plotted
in Figures 6g and 6i do not allow for the treatment of these anomalous diffusion time scales, since they
are calculated over a total time 46tce, which is less than the smallest anomalous time scale. All plots are satu-
rated to highlight the level

0:5 ≤ Dαα;ratio<2: (11)

We consider that there is good agreement between the PiC and PADIE diffusion coefficients only for regions
in (E,α) space for which this (fairly standard) “factor‐of‐two” condition is satisfied. We remind that only

Runs 1 and 2 allow for both ⟨E⟩; ⟨α⟩<0:5 and Pα,PE < 0.5 across all considered (E,P) space over all
0 < t < T≈ 1,008tce. The different timeframes considered in Figures 6c, 6e, 6g, and 6i present alternate cal-
culations of Dαα,PiC, as performed over 0 < t < Tend, for Tend < T, and Tend a different value in each case. In
particular, the timeframes considered in Figures 6e and 6g (for Runs 3 and 4, respectively) are chosen since

they are the maximum possible timeframes that allow for both ⟨E⟩; ⟨α⟩<0:5, and Pα,PE < 0.5 across all con-
sidered (E,α) space. Therefore, we can confidently describe electron dynamics as a function of the “initial
bin,” (E0,α0), over those timeframes. For Run 5 it is not possible to both satisfy these localization conditions
and have enough data points in time to extract a diffusion coefficient. However, we present Figure 6i as a
best possible estimate.

When considered over the “entire” time tanom. < t < T≈ 1,008tce (i.e., Figures 6a, 6b, 6d, 6f, and 6h), we can
make the following observations:

1. We see excellent agreement for the lowest amplitude case (Run 1), with almost the entire region satisfy-
ing Equation 11.

2. Runs 2,3, and 4 show a mixture of very good and less good agreement, with different regions of energy
and pitch angle space not satisfying Equation 11.

3. There is a mixture of very good, less good, and poor agreement for Run 5, with significant regions of (E,α)
space such that Dαα,ratio < 0.5 and even < 0.25 and < 0.125.

4. If there is not good agreement between the PiC and PADIE diffusion coefficients, then this is almost
always due to Dαα,PiC < 0.5Dαα,PADIE. Tao, Bortnik, Albert, et al. (2012) also observed the feature that dif-
fusion coefficients extracted from numerical experiments tended to be smaller than those obtained from
quasi‐linear theory (see Figure 2in that paper), although they studied bounce averaged diffusion coeffi-
cients with a test particle code

The important and interesting point is that when considered over these appropriately shorter time scales
(i.e., Figures 6c, 6e, 6g, and 6i), the agreement with the quasi‐linear theory is markedly improved. These
alternate calculations of the diffusion coefficient show very good agreement with PADIE across the vast
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majority of resonant (E,α) space. This result might be considered as unexpected, since we see good
agreement in particular for values of (Bw,rms/B0)

2 from 3.73·10−10 to 1.77·10−6. This range spans values
for which one might typically expect the inclusion of nonlinear dynamics to prevent diffusive dynamics
from being accurately described by quasi‐linear theory. Note that while the time scale considered for
Figure 6b does not break the de‐localization constraints (described in Section 3.1), we present an
alternate calculation in Figure 6c over a shorter timeframe, and we see a better agreement between the

Figure 7. All plots present the quantity DEα,ratio=DEα,PiC/DEα,PADIE: (a), (b), (d), (f), and (h) show for Runs 1–5 (R1) over the time duration tanom.
< t < T≈ 1,008tce; (c) shows for Run 2 over the time duration tanom. < t < 664tce; (e) shows for Run 3 over the time duration tanom. < t < 321tce; (g) shows
for Run 4 over the time duration 0 < t < 46tce; (i) shows for Run 5 over the time duration 0 < t < 46tce. The overplotted black curves mark wave‐particle resonance
curves as in Figure 4.
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PiC and PADIE diffusion coefficients. This further highlights that improvements can be obtained when
considering dynamics over shorter time scales. Figures 7 and 8 present DEα,ratio and DEE,ratio,
respectively (defined analogously to Equation 10, for completeness). These plots are saturated as in
Figure 6, and the comparisons yield very similar conclusions to those made for the pitch angle
diffusion coefficients.

Figure 8. All plots present the quantity DEE,ratio=DEE,PiC/DEE,PADIE: (a), (b), (d), (f), and (h) show for Runs 1–5 (R1) over the time duration tanom.
< t < T≈ 1,008tce; (c) shows for Run 2 over the time duration tanom. < t < 664tce; (e) shows for Run 3 over the time duration tanom. < t < 321tce; (g) shows
for Run 4 over the time duration 0 < t < 46tce; (i) shows for Run 5 over the time duration 0 < t < 46tce. The overplotted black curves mark wave‐particle resonance
curves as in Figure 4.
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Table 2 presents some important quantities that we have extracted from our numerical experiments, over the
reduced time scales 0 < t < Tend, with Tend≤ T and Tend different in each case. For each run, we list the max-
imum obtained value of Dαα,PiC, DEE,PiC, as well as the maximum value of the following quantities

μα;max ¼ max
E; α

⟨Δα⟩=Tend; (12)

μE;max ¼ max
E; α

⟨ΔE⟩=ðETendÞ; (13)

for Tend the end time of the analysis in each case. μα,max and μE,max characterize the maximum values of
nondiffusive dynamics across the (E,α) domain. The final column in Table 2 lists the shortest dynamical
time scale present in the five runs, defined by

τmin ¼ min
1

Dαα;PiC
;

1
DEE;PiC

;
1

μα;max
;

1
μE;max

 !
:

In all cases the shortest dynamical time scale is defined by 1/DααPiC. However, it is clear from Table 2 that
1/μα,max also defines a short time scale and therefore is an important component of electron dynamics.
Figure 9presents the limiting time scales defined by each of the quantities considered above, as a function
of the magnetic wave power (listed for each run in Table 2). We see that there is a clear separation between
the time scales defined by dynamics in pitch angle (blue) and energy space (red), with pitch angle dynamics
clearly the dominant feature, and as is expected for the plasma conditions that we consider, fpe≫fce
(Summers, 2005). Pitch angle diffusion (blue asterisks) seems to dominate over pitch angle advection (blue
triangles). However, it is interesting to see that energy advection (red triangles) seems to dominate over

energy diffusion (red asterisks). Furthermore, it is evident that all time scales appear to scale as ∝ 1=

B2
w;rms . This is an expected feature for the diffusive component of the

dynamics, at least for the standard quasi‐linear theory (Kennel &
Engelmann, 1966).

It is known that in general the time scales associated with electron
dynamics are also significantly influenced by the background magnetic
field inhomogeneity. Coherent large amplitude (chorus‐type) waves in
the presence of a nonuniform backgroundmagneticfield have been shown

to cause advective energy dynamics, ⟨ΔE⟩, to be proportional to ðB2
w;rmsÞ1=4

(e.g., see Albert et al., 2013; Mourenas et al., 2018; Zhang et al., 2018), that

is, a time scale that is proportional to 1=B1=2
w;rms. Furthermore, the diffusive

energy dynamics, ⟨(ΔE)2⟩, in such intense wave cases have been shown to
alter such that they have associated time scales proportional to 1/Bw,rms.
Figure 9 does not display these trends, rather it shows the nonlinear beha-
vior and time scales associated purely with the presence of large amplitude
waves, that is, the relaxation of the quasi‐linear assumption. Future work
will determine the additional changes to the wave‐particle interaction in
the presence of magnetic field inhomogeneities.

Table 2
Important Quantities for the Five Experiments Presented in This Paper (All to Three Significant Figures)

Tend: end maxðDααÞ maxðDEEÞ μαmax μEmax τmin: Limiting (Bw,rms/B0)
2

of analysis time scale averaged over
(tce) (s−1) (s−1) (s−1) (s−1) (s) 0 < t < Tend

Run 1 1,008 1.04·10−1 4.20 ·1 0−5 5.53·10−2 1.13 · 10−4 9.61 3.73 · 10−10

Run 2 664 9.85·10−1 3.01 · 10−4 4.71·10−1 7.79 · 10−4 1.02 3.73 · 10−9

Run 3 321 9.85 1.86 · 10−3 4.59 6.41 · 10−3 1.01·10−1 3.34 · 10−8

Run 4 46 48.8 5.84 · 10−3 19.5 2.51 · 10−2 2.05·10−2 1.77 · 10−7

Run 5 46 475 5.39 · 10−2 105 1.30 · 10−1 2.10·10−3 1.77 · 10−6

Figure 9. The limiting time scales for Runs 1–5, as a function of the root‐
mean‐square magnetic wave power: blue quantities define time scales
defined by pitch angle dynamics, whereas red quantities are defined by
energy dynamics. Asterisks label diffusive time scales, and triangles denote
nondiffusive time scales.
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4. Summary and Discussion

In this paper we have used the novel experimental and analysis methods established in Allanson et al. (2019)
to analyze electron dynamics due to wave‐particle interactions with broadband and incoherent
whistler‐mode waves, as a function of root‐mean‐square wave amplitude. Our findings are intended to pro-
vide a better understanding of the applicability of quasi‐linear diffusion under the usual hypotheses of suffi-
ciently low wave amplitude and broad wave spectrum, and in the simple case of a constant background
magnetic field, for which the theory is actually derived (Kennel & Engelmann, 1966). It is the focus of this
work to isolate these circumstances and explore the applicability of quasi‐linear theory specifically for the
case of increasing wave amplitude. In terms of direct physical applications, the results may be considered
relevant to energy and pitch angle diffusion over short time scales at (or close to) the magnetic equator
(i.e., not considering bounce motion or bounce averaging), and the results are likely to change when more
complicated configurations are included.

Before proceeding, we note that in an inhomogeneous ambient magnetic field (and with plasma conditions
consistent with the outer radiation belt), the main nonlinear effects appear to be phase trapping and phase
bunching (e.g., see Albert, 2002; Artemyev et al., 2018; Bortnik et al., 2008; Inan et al., 1978; Omura et al.,
2008) that can stronglymodify particle energy within a very short time scale. We do not consider these effects
and instead focus on the advective processes that are solely due to the large amplitude waves. We also note
that in general the value of any nonlinear wave amplitude threshold is determined by a combination of the
properties of the wave spectrum (we consider incoherent waves) and by the gradients of the background
magnetic field (e.g., see Albert, 1993; Karpman, 1974). We have described why we ignored the magnetic field
inhomogeneity, but it should be expected that any wave amplitude thresholds obtained here would be dif-
ferent for systems with background magnetic field gradients (e.g., see Solov'ev & Shklyar, 1986).

The main conclusions of this paper are as follows:

1. For the lowest amplitude waves, we see excellent agreement between the electron dynamics extracted
from the numerical experiment (over the full experimental time 0 < t < T≈ 1,008tce≈ 0.26 s) and the
theoretical prediction of quasi‐linear theory.

2. In particular, we observe minimal nondiffusive dynamics for the lowest amplitude case and therefore
would consider a Fokker‐Planck equation containing only diffusive terms (Schulz & Lanzerotti, 1974)
as an appropriate model to describe the observed dynamics.

3. As the wave amplitude is increased, we observe that the diffusive component of the electron dynamics
agrees less well with the quasi‐linear theory. This less good agreement occurs when we naively extract
dynamics over 0 < t < T≈ 1,008tce.

4. We argue that the apparent less good agreement is in fact due to a naive treatment of the dynamics, in
which electron dynamics are not able to be meaningfully ascribed to the intended region of energy and
pitch angle space. Specifically, as the wave power is increased, a variety of dynamics can result in elec-
trons no longer being “localized” to the region of energy and pitch angle space that they were originally
identified with.

5. We observe that this de‐localization correlates well with increasing wave amplitude. As the wave ampli-
tude is increased, we observe that there is a significant component to the dynamics that appears to be
advective in nature, as well as enhanced diffusion.

6. The separation of “fundamentally diffusive” and “fundamentally advective” processes is very difficult,
since gradients in the (theoretical) diffusion coefficient can lead to “apparently advective” dynamics,
that is, nonzero movement of the mean pitch angle or energy of a given electron subpopulation, in
energy and/or pitch angle space.

7. When we constrain the time scale over which we extract electron dynamics to 0 < t < Tend, with Tend≤
T and different in each case (such that electrons remain “localized”), we see much better agreement
between the diffusive component of the electron dynamics and the theoretical prediction of
quasi‐linear theory. These reduced time scales are of the order of tens or hundreds of gyroperiods.

8. However, we still observe nonzero and sometimes rather significant contributions to the electron
dynamics that are of a nondiffusive nature, even over these shorter time scales.

9. These results suggest that nondiffusive (i.e., advective) processes may be important to include when
modeling electron dynamics due to wave‐particle interactions with higher amplitude whistler‐mode
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waves. The inclusion of truly advective dynamics could require a more complete version of the
Fokker‐Planck equation, such as that discussed in the Appendix A (following the treatment discussed
in Zheng et al., 2019, as applied to EMIC waves).

10. Furthermore, even if “only” considering diffusive dynamics, we suggest that it may be necessary to
further investigate the (formal) limiting time scales imposed by large values of the diffusion coefficients,
when using numerical Fokker‐Planck models of electron dynamics in the radiation belts.

One of the most interesting (and perhaps unexpected) results is that the quasi‐linear theory can describe the
diffusive component of the dynamics surprisingly well even when in the regime for which one might expect
nonlinear effects, given the results found for nonuniform background fields (Tao, Bortnik, Albert, et al.,
2012a), but crucially only when one carefully considers important time scales. Of course, a complete descrip-
tion of the dynamics would also require any nondiffusive (i.e., advective) components of the electron motion
included. Without including both the diffusive and advective components, one would have only a partial
description.

In order to make conclusions about the relative importance of the nonlinear wave‐particle interaction for
incoherent and broadband waves in radiation belt dynamics over longer time scales than considered herein,
the fundamental effect of the background magnetic field inhomogeneity should be properly considered. The
work presented here provides very helpful insight into the fundamental nature of electron dynamics in
energy and pitch angle space due to the wave‐particle interaction under the uniform background‐field
assumption, used in the basic quasi‐linear theory. In particular, the work presented here has allowed us
to study the changing importance of advection (which may be described using a Fokker‐Planck equation)
as a fundamental process when increasing the wave amplitude to nonlinear levels, in the absence of other
types of nonlinear dynamics (phase trapping and phase bunching), which may not be described using a stan-
dard Fokker‐Planck equation (e.g., see Artemyev et al., 2018; Mourenas et al., 2018; Omura et al., 2015;
Vainchtein et al., 2018; and references therein).

This study motivates a variety of future numerical experiments and theoretical investigations on the applic-
ability (or otherwise) of quasi‐linear diffusion theory to electron dynamics in the Earth's radiation belts,
using the particle‐in‐cell method established in Allanson et al. (2019).

Appendix A: Markov Processes and the Fokker‐Planck Equation
Consider a particle variable (e.g., an action integral), X, with a “dynamical history” Hn−1 of values X1, …, Xn

−1 at times t1, …, tn−1: Hn−1=(X1, …, Xn−1;t1, …, tn−1). For a given history, Hn−1, a Markov process is defined
by the following: the conditional probability, Pn(Hn−1|Xn,tn), that X lies within (Xn,Xn+dXn) at time tn only
depends on the “current” and “previous” states, that is, (Xn,tn) and (Xn−1,tn−1) (Wang & Uhlenbeck, 1945).
This statement can be summarized as

PnðHn−1jXn; tnÞ ¼ P2ðXn−1; tn−1jXn; tnÞ:

If these stochastic changes in X for a Markov process are “sufficiently small” (e.g., see Reif, 2009; Wang &
Uhlenbeck, 1945; Zheng et al., 2019), then the time evolution of the distribution function that describes
the ensemble of particles is found to satisfy the Fokker‐Planck equation,

∂F
∂t

¼ −
∂
∂X

hX Fð Þ þ ∂
∂X

DXX
∂F
∂X

� �
: (A1)

Particle dynamics under the influence of resonant interactions with waves are commonly treated as Markov
processes. If we consider that a particle may be described by a collection of action integrals Ji (i=1,2,3), then
Equation A1 can be generalized to have the form

∂F
∂t

¼ −∑
3

i¼1

∂
∂Ji

hi Fð Þ þ ∑
3

i¼1
∑
3

j¼1

∂
Ji

Dij
∂F
∂Jj

� �
; (A2)

with the underlying advective processes in “direction” Ji governed by components of the vector hi and dif-
fusion described by the symmetric matrix Dij. A particularly clear and thorough presentation of the phy-
sical constraints and mathematical background is given in the recent work by Zheng et al. (2019) based
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upon the derivations in (Reif, 2009; Wang & Uhlenbeck, 1945). The diffusion coefficients and “advection
coefficients” in Equation A2 are formally defined according to

Dij ¼ lim
Δt→0

1
2Δt

⟨ðJ ′i − JiÞðJ ′j − JjÞ⟩; (A3)

hi ¼ μi − ∑
3

j¼1

∂ ̸
∂ ̸Jj

Dij; (A4)

μi ¼ lim
Δt→0

1
Δt

⟨J ′i − Ji⟩; (A5)

where ⟨…⟩ stands for the ensemble average over the primed coordinates. Note that Zheng et al. (2019) use
the letter B instead of μ. For small stochastic changes, the expression in Equation A3 reduces to the
slightly different expression that is perhaps more well known in the literature,

Dij ¼ lim
Δt→0

1
2Δt

⟨ðJ ′i − ⟨Ji⟩ÞðJ ′j − ⟨Jj⟩Þ⟩; (A6)

such as was used in Tao, Bortnik, et al. (2011), for example.

Due to the manner in which it is constructed, quasi‐linear diffusion theory as applied to the Earth's radiation
belts is based upon a specific variant of the Fokker‐Planck equation (Equation A2), but with hi identically set
to zero,

∂F
∂t
¼∑

3

i¼1
∑
3

j¼1

∂
∂Ji

Dij
∂
∂Jj

F

� �
: (A7)

Data Availability Statement

The supporting information provides: (S1) basic instructions on how to run the same experiments that are
presented in the main article. Furthermore, data is provided at https://doi.org/10.6084/m9.fig-
share.12355964. This data file provides: (D1) the contents of the input text files, used for the numerical
experiments that are presented in the main article, as further discussed in S1. Therefore, a combination of
the information provided in S1 and D1 will enable readers to locally generate the same experimental data
as was considered in the main article.
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