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Abstract: The severe acute respiratory syndrome coronavirus 2 (Sars-CoV-2) global pandemic is
a devastating event that is causing thousands of victims every day around the world. One of
the main reasons of the great impact of coronavirus disease 2019 (COVID-19) on society is its
unexpected spread, which has not allowed an adequate preparation. The scientific community is
fighting against time for the production of a vaccine, but it is difficult to place a safe and effective
product on the market as fast as the virus is spreading. Similarly, for drugs that can directly interfere
with viral pathways, their production times are long, despite the great efforts made. For these
reasons, we analyzed the possible role of non-pharmacological substances such as supplements,
probiotics, and nutraceuticals in reducing the risk of Sars-CoV-2 infection or mitigating the symptoms
of COVID-19. These substances could have numerous advantages in the current circumstances,
are generally easily available, and have negligible side effects if administered at the already used and
tested dosages. Large scientific evidence supports the benefits that some bacterial and molecular
products may exert on the immune response to respiratory viruses. These could also have a
regulatory role in systemic inflammation or endothelial damage, which are two crucial aspects of
COVID-19. However, there are no specific data available, and rigorous clinical trials should be
conducted to confirm the putative benefits of diet supplementation, probiotics, and nutraceuticals in
the current pandemic.
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1. Introduction

Since its first detection in Wuhan, China, December 2019, the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) has had a dramatic worldwide diffusion [1]. Accordingly, the World
Health Organization (WHO) declared a pandemic on 11 March 2020. The clinical severity spectrum of
SARS-CoV-2 may range from asymptomatic cases to severe pneumonia resulting in acute respiratory
distress syndrome and sometimes leading to multi organ failure (MOF). More recently, new insights
concerning the disease course are emerging. Some patients are initially characterized by dyspnea
and hypoxemia, which can rapidly progress to a mild respiratory syndrome needing O2 therapy.
In contrast, other patients rapidly progress to acute respiratory distress syndrome (ARDS), sometimes
evolving in septic shock, metabolic acidosis, coagulation dysfunction with disseminated intravascular
coagulation (DIC), and multiple organ dysfunction syndrome (MODS). Thus, COVID-19 has emerged
as a multifaceted, multi-system, multi-organ disorder which produces its pathogenic effects through a
quite ubiquitous target at the level of multiple organs. Notably, all age groups are susceptible to the
virus, and elderly patients with comorbidities are more likely to experience a severe illness. As of 29
May 2020, over 5,800,000 confirmed cases have caused more than 360,000 deaths [2].

Scientific research efforts are focused on producing a vaccine quickly, because it would be the best
way to halt the pandemic. However, despite several groups working on it, it is difficult to guarantee
the marketing of a safe product in a short time. Other efforts are actually trying to understand the
pathogenesis of COVID-19, which would be extremely useful to identify a specific and more efficient
therapy. Although there is no clear clinical evidence for effective antiviral drugs, several antivirals
targeting the molecular pathways of SAR-CoV-2 have been used worldwide [3], but only remdesivir
has shown to be effective in shortening the time to recovery of hospitalized COVID-19 patients [4]. Also,
a short-term use of corticosteroids to inhibit the cytokine cascade and to prevent disease progression
toward a severe form could be considered for patients with severe COVID-19 pneumonia [5]. The widely
used treatment with chloroquine and hydroxychloroquine (often in association with macrolides) has
shown mixed benefits in the available studies and may even be harmful according to some authors,
due to cardiac toxicity [6,7]. Taking into account these results, the WHO firstly suspended the studies
launched on chloroquine and hydroxychloroquine [8]. Nevertheless, there would seem to be a need
for general clarification. Indeed, since several concerns were raised with respect to data and analyses
performed at the moment we are proofreading our manuscript the article was retracted and the WHO
resumed the studies concerning chloroquine and hydroxychloroquine. In reason of a disproportionate
and aberrant immune response able to drive COVID-19 to the related ARDS and, in some patients, to
fibrosis and widespread lung damage, tocilizumab, a humanized anti-interleukin-6-receptor (IL-6R)
monoclonal antibody that inhibits interleukin-6 (IL-6) signaling, is currently under investigation in
several clinical trials [9].

Preliminary data have created interest in anti-cytokine therapy to counteract the inappropriate
immune responses as a beneficial therapeutic strategy, and accordingly, the Italian Drug Agency (AIFA,
Agenzia Italiana del Farmaco) has also recently approved a clinical trial (Sobi.IMMUNO-101) in which
a combination of emapalumab (a monoclonal antibody toward IFN-γ) and anakinra (a recombinant
human interleukin-1 receptor antagonist) will be synergistically administrated to COVID-19 patients
with the hope to induce a rapid serologic and subsequent clinical improvement.

Besides a pharmacological therapy, many people during this period are wondering if some
non-pharmacological substances used to “strengthen their defenses” against common winter infections
can be useful.

The pharmacological properties of natural compounds have gained increasing attention in
the field of alternative and coadjutant therapeutic approaches to several diseases. Accordingly,
the food industry is focused on bioactive substances contained in foods or natural products termed
nutraceuticals, which can bring health benefits, besides their intrinsic nutritional values, especially in
the treatment of chronic diseases. Moreover, these compounds are characterized by negligible side
effects in comparison with traditional pharmacological therapies, so that consumers lean towards their
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use for health promotion. Regarding the usefulness of non-pharmacological substances, no specific
clinical studies for Sars-CoV-2 infection are available yet. However, we will review the possible role of
probiotics, nutraceuticals, and diet supplementation in SARS-CoV-2 viral infection.

2. Methods and Design

This scoping review was designed in keeping with the best reviewing practices. Specifically, we
searched PubMed for articles on diet supplementation, probiotics, or nutraceuticals for the prevention
or treatment of SARS-CoV-2 infection or COVID-19. Specifically, the following string was last run on
16 April 2020: (sars-cov-2 OR covid-19 OR “coronavirus-associated disease 2019”) AND (probiotic* OR
nutraceutic* OR diet* OR supplement*). Studies were selected if reporting on original in vitro, in vivo,
or human studies, and key study subjects, interventions, and outcomes were systematically collected.
All reviewing tasks were performed by two independent reviewers (M. Mancone and P. Severino),
with divergences solved after consensus.

3. Probiotics

Since the first US case of COVID-19 showing atypical symptoms, diarrhea and other gastrointestinal
(GI) manifestations have attracted more attention in the scientific community [10].

SARS-CoV-2 infects human cells through the binding of its spike proteins (S) to
Angiotensin-Converting-Enzyme-2 (ACE2) [11]. ACE2 is highly expressed in AT2 lung cells but
also in esophagus epithelial cells and enterocytes in the ileum and colon [12]. TMPRSS2, a protein
responsible for the priming of the viral S protein (necessary for entry into the host cell) is also highly
expressed in absorbent enterocytes [13].

SARS-CoV-2 RNA has been detected in the stool of COVID-19 patients [10,14]. A histological
study by Fei Xiao et al. performed on the intestinal mucosa of a patient with stool positivity reported
infiltrating plasma cells and lymphocytes with interstitial edema in the epithelium of stomach,
duodenum, and rectum. Furthermore, the presence of the viral host receptor ACE2 was demonstrated
in the cytoplasm of gastrointestinal epithelial cells, while the viral nucleocapsid protein was visualized
in the cytoplasm of rectum, duodenal, and gastric epithelial cells [15].

In this last study, GI colonization appeared to be tardive with respect to respiratory infection,
and in more than 20% of infected patients, viral RNA was present in stool even after negativization in
the respiratory tract. However, this partially contrasts with the report of Wang et al. that showed how
the less common GI symptoms like diarrhea, nausea, vomiting, and abdominal discomfort had an
early and mild onset compared to the respiratory symptoms [16].

Similar evidence from studies on the 2003 first SARS coronavirus epidemic indicated
gastrointestinal tropism, since the virus was found in gastrointestinal biopsies and stool, even
in healed patients, which may partially justify the intestinal symptoms, reappearance, and transmission
of the disease [17].

An experimental study on mutant mice with ACE2 deficiency demonstrated the role of this
receptor in the regulation of innate immunity, preservation of the gut microbiome, regulation of
the intestinal amino acid balance, and production of antimicrobial peptides. These functions were
independent from the renin angiotensin system, and transplantation of the altered microbiota from
ACE2 mutant mice into germ-free wild-type hosts could increase the propensity for serious colitis [18].

Therefore, most of the data suggest that SARS-Cov-2 is more likely transmitted via the respiratory
route, but many findings suggest that the intestine could have a relevant role both in the disease
pathogenetic evolution and as a possible route of infection.

Based on the intestinal findings, it is possible to assume that viral replication in the intestine
determines an exponential increase in the viral load in the digestive mucosa. This mechanism could lead
to a loss of barrier integrity with an imbalance of the microbial flora and its metabolites, determining
important consequences on the immune system, which could lead to a strong production of cytokines.
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This may in part justify the appearance of ARDS and MOF following interstitial pneumonia
(Figure 1).

Figure 1. Hypothesis on the mechanism of intestinal involvement in coronavirus disease 2019
(COVID-19).

Classically, viral infections have been considered a bidirectional process involving, exclusively,
the host cell and the virus, with no participating external factors other than the host immune system.
In the last decade, thanks to the wide knowledge provided by metagenomic analysis, viral infections,
like many other medical occurrences, have been associated with the so-called “microbiota revolution”,
which is the tendency to link many pathologic conditions to the intestinal microbiota and its alteration.
The term “microbiota” refers to the complex community of microorganisms that stably colonize the
mucosal surfaces of the human body. Such microbes constitute a key factor in health and disease,
because of their essential metabolic and immunomodulatory functions, as well as for their protection
against pathogens [19–21]. Particularly, commensal bacteria have resulted to play an essential role
in shaping the host immune systems as well as in triggering its responses in both health and disease
conditions [22,23]. The presence of an intimate relationship between the host immune system and the
microbiota has been primarily evidenced in the gastrointestinal tract by the determination, in germ-free
mice, of many immunological defects such as small Peyer’s patches and mesenteric lymph nodes,
reduced amount of T helper 17 (Th17) cells, and deficiency in regulatory T cells [24]. These defects
reverse, within weeks, after the acquisition of intestinal bacteria from normally colonized mice [25].
Further evidence has shown that the gastrointestinal tract microbiota is able to modulate neutrophils
migration and function [26] as well as to influence the differentiation of T cells into Th1, Th2, Th17
helper cells, or T regulatory (Treg) cells [27], which may be linked in turn to tolerance or immune
reactions against different luminal bacteria. Compared to the study of the intestinal microbiota,
that of the lung microbiota is still at the beginning, but some observations support the role played
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by commensal bacteria in the lung in immune tolerance maintained by subpopulations of alveolar
macrophages and dendritic cells [28]. Such cell types, by inducing the generation of Tregs [29] and
releasing prostaglandin E2 (PGE2), tumor growth factor-beta (TGF-β), and interleukin-10 (IL-10) [28],
exert immunomodulatory functions.

In murine models, the presence of specific bacterial taxa as well as a general increase of bacterial
biomass in the lungs has been associated with the development of Treg cells two weeks after birth [30],
while the introduction of commensal bacteria in germ-free mice has been shown to reduce the strong
immune response induced by the intranasal administration of ovalbumin (OVA) [31]. In human
lungs, bacteria belonging to the phylum Bacteroidetes have been associated with the decrease of lung
inflammation [32], while the bacterial genera Prevotella and Veillonella have been implicated in Th17
cell-mediated immune responses [33].

A synergistic interplay between the microbiota and the human host occurs when the microbial
communities are characterized by a balanced state, known as eubiosis. Perturbations of such a
condition, called dysbiosis, could lead to the loss and/or the dysregulation of the normal functions
provided by the microbiota and constitute a pivotal driver for both infectious and non-infectious
diseases [34]. To date, a wide range of local and systemic diseases, comprising inflammatory bowel
disease, obesity, allergic disorders, atopic dermatitis, autism, colorectal cancer, and diseases affecting
both the higher and the lower respiratory tracts, have been associated with microbial dysbiosis [35–39].
In particular, in recent years, the interaction between the intestine and the respiratory system, both for
homeostasis maintenance and in disease pathways, has been individuated, and the term “gut–lung
axis” was coined to refer to this mutual interaction [40].

Although dysbiosis is often characterized by a multifactorial etiology, one of its main causes is
represented by infections carried out by invading pathogens, most commonly by viruses. Studies
investigating the interaction between viruses and the microbiota have shown that commensal
bacteria, through different mechanisms, are able to regulate or are regulated by invading viruses,
thereby leading to harmful or beneficial effects on the host [41–45]. Consensus has been reached that
viral infections, including those sustained by influenza viruses, alter the commensal microbiota in
both the gastrointestinal and the airway tracts of the host, causing alterations of the microbiota–host
relationship, which is a key element in determining infection-related disease. Different studies
have evidenced that, in the upper respiratory tract, the influenza virus infection is associated with
decreased colonization by health-promoting bacteria as well as with enrichment in potentially harmful
microbes. For example, it has been reported that the nasopharyngeal microbiota of patients with viral
respiratory tract infections is significantly enriched in bacterial pathogens such as Haemophilus influenzae,
Staphylococcus aureus, Streptococcus pneumoniae, and Moraxella catarrhalis, [46] while the colonization
of the health-associated genus Prevotella results to be decreased [46,47]. Although contradictory
findings are reported in the current literature for the gut microbiota, resulting from differences in
experimental conditions, concerning virus subtypes and doses, experimental animal models, age, diet,
and lifestyle of the investigated subjects, a general decrease in the richness of bacteria belonging to
the phylum Firmicutes, mainly Lactobacilli, has been associated with viral infections and, in particular,
with influenza viruses [48–50]. One of the postulated mechanisms leading to influenza-associated
commensal microbiota dysregulation involves the altered delivery of IFN-γ (a type II IFN) by a subset of
lung-derived T cells expressing CC chemokine receptor 9 in the intestine and the subsequent stimulation
of epithelial cells to produce IL-15, which induces a Th17-mediated immune response [51]. Although
no direct evidence is currently available about the association between SARS-CoV-2 infections and
microbial dysbiosis in both the gut and the respiratory tract, the presence of symptoms like diarrhea,
nausea, vomiting, and abdominal discomfort, as well as the determined tropism of SARS-CoV-2
for enterocytes [14,15,52], suggests that interactions between this new β-coronavirus and the gut
microbiota are possible.

To date, while effective therapies or vaccines to prevent and fight respiratory virus infections
are available for influenza and adenoviruses, no effective therapies are available for other respiratory
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viruses such as those responsible for common cold and the new β-coronavirus SARS-CoV-2. The need
to rapidly contrast respiratory viral infections together with the large amount of time and money
necessary for the development of vaccines challenge the development of alternative and safe therapies
able to reduce the risk of such infections. In this context, the use of probiotics could represent a
promising tool in the field of clinical research. Probiotics consist of alive organisms that, when
administered in sufficient amounts, confer positive benefits to patients, and their potential clinical
utilization has been proposed in numerous pathologic conditions [53]. Although solid evidence is
still lacking, many experimental and clinical studies support the possible role of different probiotic
microorganisms in protecting the host against viral infections, comprising those responsible for colds
and flu [54–59].

A recent Cochrane meta-analysis, including 12 randomized controlled trials (RCT) with a total of
3720 subjects, demonstrated that probiotics were able to reduce the number of acute upper respiratory
tract infections, the mean duration of disease, antibiotic administration, and cold-related school
absences compared to a placebo, although the quality of evidence was low [60].

The exact mechanism(s) of the antiviral activity of probiotics is not completely clear and it
likely involves multiple concomitant steps. In particular, the potential therapeutic effect of probiotic
bacteria against viral infections could be exerted at three different levels implicating a direct interaction
with the virus: (1) by reinforcing the mucosal innate immune response; (2) by reducing intestinal
permeability; and (3) by affecting the systemic acquired immune response through a regulatory and
anti-inflammatory effect.

Virus attachment to a host cell represent an essential step in viral infection, so probiotic bacteria
may inhibit it by directly binding the virus, thus inhibiting the infectious process. It has been reported
that lactobacilli are able to bind and inactivate viruses through adsorptive and/or trapping mechanisms.
Bacterial strains of Lactobacillus paracasei, Lactobacillus rhamnosus, as well as Lactobacillus plantarum
can interact with the envelop of vesicular stomatitis virus (VSV), directly trapping the virus [61].
An inhibiting mechanism involving a direct interaction between bacterial cell wall components and
herpes simplex virus type 2 has been also suggested for Lactobacillus brevis CD2 strain [62]. Furthermore,
exopolysaccharides from Lactobacillus species were demonstrated to completely suppress the production
of adenovirus-5 in vitro [63].

Lactobacilli, as well as other probiotics, have been reported to possess an immunomodulatory
ability and protect from virus infections by enhancing cytokine antiviral responses in respiratory and
immune cells and in the intestinal mucosa [63–67]. Oral administration of L. brevis in mice protected the
animals from influenza infection through the enhancement of antiviral IFN-α as well as an augmented
production of specific-IgA antibodies against the virus [68]. L. plantarum significantly reduced the
titers of human H1N1 and avian influenza H7N9 viruses in mouse lungs after a lethal viral challenge
and increased the mean number of days and rates of survival of the infected mice [69].

Interestingly, intranasal administration of lactobacilli showed to be protective against virus
respiratory infections, encouraging innate immune responses directly in the airway epithelium [70].
In addition, L. paracasei-fed mice showed a lower incidence of influenza A H3N2 infection, associated
with a reduced infiltration of inflammatory cells in the lungs and a faster virus elimination [71].
Bacteria belonging to the Bifidobacteria group exert protective effects against influenza virus infection.
After lethal influenza A (H1N1) infection, a strong stimulation of humoral and cellular immunity,
associated with lower levels of proinflammatory IL-6 production and an increase in survival rate
of mice receiving Bifidobacterium bifidum, with respect to the control group, was observed [72].
Another important preventive action of probiotics against the progression of viral infections could
be mediated by the enhancement of the mucosal intestinal barrier that in turn may prevent virus
spreading in the sub-mucosal compartment and in the systemic circulation. A multi-strain probiotic
mixture has demonstrated a preventive effect on intestinal inflammation onset in a mouse model of
spontaneous ileitis, mediated by the stimulation of TNF release from epithelial cells and decreased
permeability [73,74]. L. rhamnosus GG has shown a beneficial effect in the treatment of infections by
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enhancing intestinal permeability, with the stimulation of mucin expression and the regulation of
proliferation/apoptosis of epithelial cells, both in experimental models and in clinical studies [75,76].

An interesting antiviral activity exerted by probiotics is related to their ability to modulate the
immune system towards anti-inflammatory pathways. Lactobacillus gasseri exhibits antiviral activity
against respiratory syncytial virus (RSV); in fact, oral administration of this probiotic in mice causes
a reduction of the RSV titer in the lungs. Moreover, the expression of pro-inflammatory mediators
in the lungs due to RSV infection decreased, while interferon-stimulated genes were upregulated by
L. gasseri treatment [77]. A reduction of virus-induced inflammation was also exerted by a strain of
L. plantarum in mice after acute infection by pneumonia virus (PMV), a rodent pathogen that induces
inflammation and is related to the respiratory syncytial virus [78]. Bifidobacterium animalis subspecies
lactis Bl-04, in an experimental rhinovirus infection, showed to reduce the levels of the pro-inflammatory
cytokine IL-6, as well as to reduce the nasal lavage virus titer [79]. Similarly, the administration of
this probiotic in the respiratory tract of mice infected with PVM, increased mice survival and reduced
the levels of IL-6, whose suppression was demonstrated to be a critical feature of the protective
mechanism. It was recently reported that COVID-19, similarly to SARS-CoV, is characterized by
a dramatic inflammatory response induced by a cytokine storm associated with increased disease
severity [80,81]. Patients needing intensive care present higher plasma levels of many cytokines such as
IL-6, IL-1, IP-10, MCP-1, MIP-1A, and TNFα [82] with respect to non- intensive care unit (ICU) subjects,
suggesting the likely involvement of a highly pro-inflammatory condition in the disease progression
and severity. Furthermore, a large infiltration of inflammatory cells has been observed in the lungs
of severe COVID-19 patients [83,84]. These aberrant pathogenic cells, together with inflammatory
monocytes, may reach the lungs, causing an immune injury with consequent respiratory disability and
increased mortality. The modulation of the cytokine cascade exerted by probiotics may represent a
therapeutic approach for severe infections, making it licit to hypothesize that probiotics administration
could influence the immune response in patients affected by COVID-19, thus preventing or mitigating
the exacerbated inflammatory processes that lead to death.

Although solid evidence for probiotics utilization in the treatment of COVID-19 is still lacking,
their complementary use may be proposed, as already stated by China’s National Health Commission
and National Administration of Traditional Chinese Medicine in the “Diagnostic and therapeutic
guidance for 2019 novel coronavirus disease (version5)” [85]. In particular, probiotic supplementation
was suggested as a complementary treatment of gastrointestinal symptoms such as diarrhea and to
reduce the risk of secondary infections due to microbial translocation in severe COVID-19 cases [86].
Despite the fact that direct evidence of the possible effect of probiotics on SARS-CoV-2 infection is not
available [87], a number of suggestions indicate that this resource could represent a complementary
tool to decrease SARS-CoV-2-related inflammation and favor the recovery of intestinal mucosa damage
by modulating the gut microbiota. In fact, recent studies suggest that SARS-CoV-2 induces an acute
intestinal inflammatory response via ACE2 and transmembrane serine protease 2, characterized by
mucosal infiltration of macrophages, neutrophils, and T-cells. [88]. For these reasons, probiotic use
could have a beneficial role in patients with COVID-related gastro-intestinal symptoms and in those
with mild–moderate systemic symptoms without respiratory impairment and help prevent disease
progression. As speculated, it is possible that probiotics may play a role in preventing the cytokine
storm and related ARDS or MOF in high-risk individuals with established SARS-CoV-2 infection,
but the opposite may also be true, and the lack of sufficient available evidence should be considered.
Similarly, in patients with severe disease and in critically ill patients, probiotic administration needs to
be cautiously evaluated, and important safety concerns need to be considered when administering
bacterial supplements [89]. In fact, it is not known whether the administration of micro-organisms
to patients with critical disease conditions could lead to any type of injury, such as an exacerbation
of inflammation. A final possible setting is disease prevention, especially for high-risk patients
(immunosuppressed and elderly patients with comorbidities), “strategic” people (i.e., health care
professionals, workers with extensive public contact), or subjects with suspected COVID-19 waiting
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for a clear diagnosis and/or who came in contact with a COVID-19-positive subject. The rationale for
the possible prophylactic use of probiotics in SARS-CoV2 infection is linked to its ability to preserve a
healthy status in the gut-associated lymphoid tissue (GALT) as well as eubiosis, which is necessary to
actively fight the entry of the virus into gut cells [90]. The enhancement of the innate defenses may be
probably useful in COVID-19 prevention or in the very early phase of the infection. However, it is
not known whether the administration of various types of microorganisms to healthy individuals can
increase the risk of contracting SARS-CoV-2 infection. Large clinical trials are needed to elucidate these
hot topics and identify the most useful and safe setting for probiotics administration. Actually, three
registered trials to evaluate probiotics administration to COVID-19 patients are ongoing (Table 1).

Table 1. Registered trials evaluating the possible benefits of probiotics administration in
COVID-19 patients.

Study Title Study Type and
Design Study Design Outcomes Reference

Evaluation of the
Probiotic
Lactobacillus
coryniformis K8 on
COVID-19
Prevention in
Healthcare
Workers
NCT04366180

Interventional,
Randomized
Active, recruiting

“To evaluate the effects of
Lactobacillus coryniformis K8
consumption on the incidence and
severity of Covid-19 in health
workers exposed to the virus. This
is a preventive study. Estimated
enrolment: 314 participants”

• Incidence of SARS CoV-2 infection in
healthcare workers

• Incidence of hospital admissions caused
by SARS-CoV-2 infection

• Incidence of intensive care unit (ICU)
admissions caused by
SARS-CoV-2 infection

• Incidence of oxygen support
requirement caused by
SARS-CoV-2 infection

• Incidence of gastrointestinal symptoms
caused by SARS-CoV-2 infection

• Days with body temperature >37.5 ◦C
• Days with cough
• Days with fatigue
• Medical treatment

[91]

Bacteriotherapy in
the Treatment of
COVID-19
(BACT-ovid)
NCT04368351

Observational,
Retrospective
Active, not
recruiting

“Observational, retrospective,
non-profit study on the adjuvant
use of bacteriotherapy in the early
control of disease progression in
patients affected by COVID-19
and treated with the current
standard of care on the basis of the
ad interim Italian guidelines.
Estimated enrolment: 70
participants”

• Delta of time of disappearance of
acute diarrhea

• Delta in the number of patients
requiring orotracheal intubation
despite treatment

• Delta of crude mortality
• Delta of length of stay for patients

in hospital

[92]

Oxygen–Ozone as
Adjuvant
Treatment in Early
Control of
COVID-19
Progression and
Modulation of the
Gut Microbial Flora
(PROBIOZOVID)
NCT04366089

Interventional,
Randomized
Active, recruiting

“Interventional,
non-pharmacological, open,
randomized, prospective,
non-profit study on the adjuvant
use of oxygen–ozone therapy plus
probiotic supplementation in the
early control of disease
progression in patients with
COVID-19. Contextually, all
patients are treated with the
current standard of care on the
basis of the interim Italian
guidelines. The main purpose of
the study is to evaluate the
effectiveness of an ozone
therapy-based intervention
(accompanied by
supplementation with probiotics)
in containing the progression of
COVID-19 and in preventing the
need for hospitalization in
intensive care units.”

• Delta in the number of patients
requiring orotracheal intubation
despite treatment

• Delta of crude mortality
• Delta of length of stay for patients

in hospital
• Delta in the value of interleukin (IL)-1
• Delta in the value of IL-6
• Delta in the value of IL-10
• Delta in the value of tumor necrosis

factor (TNF)-alpha
• Delta in the value of cluster

of differentiation
• (CD)4+ CD38/human leukocyte

antigen-DR isotype (HLA-DR)
• Delta in the value of CD8+

CD38/HLA-DR
• Delta in the value of faecal calprotectin
• Delta in the value of lipopolysaccharide

(LPS)
• Delta in the value of zonulin
• Delta in the value of alpha1-antitrypsin

[93]
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4. Nutraceuticals

Chronic respiratory diseases are associated with the development of systemic inflammation and
oxygen stress resulting in endothelial dysfunction together with increased platelet aggregation and
enhanced coagulation. All these factors are involved in the pathophysiology of respiratory diseases,
leading to irreversible endothelial dysfunction [94].

It has been previously demonstrated that patients with community-acquired pneumonia (CAP),
the most common infection-related cause of death in developed countries, display increased platelet
activation mediated by the activation of NOX2, the main enzymatic source of cellular reactive oxygen
species (ROS) production, with consequent decrease of flow-mediated dilation (FMD) and NO
bioavailability [94–96]. Moreover, these patients disclose an ongoing pro-thrombotic state, as suggested
by increased plasma levels of F1+2, a marker of thrombin generation, and lower levels of protein C
(PC) and activated PC (aPC) [94,95].

In severe forms of COVID-19, it has been proposed that a severe widespread alveolar and
interstitial inflammation extends to the pulmonary vasculature. Intra-pulmonary inflammation might
negatively modulate a severe local vascular dysfunction including micro-thrombosis and hemorrhage,
resulting in pulmonary intravascular coagulopathy (PIC).

Accordingly, the reduced endothelial function, that is an early subclinical stage of vascular
alteration, could favor the development of a severe form of this pathology, contributing to increased
pulmonary, cardiovascular, and renal complications.

The immune system is the second system most affected by COVID-19 after the respiratory system.
An increase in systemic interleukins, chemokines, and tumor necrosis factor-α (TNF-α) has been
observed during the rapid progression phase of COVID-19 [80]. These changes correspond to the
characteristics of a cytokine release syndrome (CRS) in which IL-6 contributes to many of the key
symptoms. The role of IL-6 in COVID-19 patients has been highlighted in a recent retrospective
multicenter study [97] showing that circulating IL-6 levels were higher in COVID-19 deceased
patients compared to discharged subjects. These results suggest that the “cytokine storm syndrome”,
activated by the virus could be a clinical predictor of fatal outcome in these patients. The activation
of endothelial cells and the ensuing vascular dysfunction are other typical features of severe CRS.
Indeed, typical markers of endothelial activation are often elevated in the serum of patients with CRS.
This indicates that the endothelium plays an important role in the pathophysiology of CRS, both by
amplifying the inflammatory response and by contributing to clotting and eventually to a thrombotic
disease, both in the venous and in the arterial circulations [98].

In addition to the inflammatory process, the mechanisms accounting for clotting and vascular
changes may also include oxidative stress. In particular, NOX2-derived ROS are implicated in
clotting and platelet activation, promoting thrombin generation and platelet aggregation or impairing
artery dilatation.

Thus, oxidative stress and inflammation are closely interrelated and form a vicious feed-forward
cycle during atherogenetic plaque progress. Indeed, according to the oxidative stress theory of
atherosclerosis, the progression of the atherosclerotic plaque, with plaque rupture, clotting, and ensuing
atherothrombosis, is dependent upon artery inflammation [99].

Based on these considerations, nutraceuticals, defined as substances that may include isolated
nutrients, dietary supplements, diets, and herbal products, could play a role in preventing the
phenomena of the inflammatory cascade and hypercoagulation by exerting their anti-inflammatory and
antioxidant activities. Among nutraceuticals, vitamin E, vitamin C, carotenoids, and some minerals
(Zn, Mn, Cu, Se) and polyphenols (flavonoids, phenolic acids, stilbenes, lignans) provide medical or
health benefits by a synergistic effect, maintaining a proper redox homeostasis (Figure 2)
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Figure 2. Hypothesis on the mechanisms of endothelial involvement in COVID-19.

In particular, a diet rich in polyphenols is able to reduce and prevent cardiovascular disease. [100].
Moreover, the protective effect of polyphenols includes the reduction of oxidative stress resulting
from the downregulation of NADPH oxidase or from an antiplatelet and anticoagulant function, as
indicated by the reduction of platelet aggregation and the suppression of the activity of thrombin and
the production of factor Xa [101,102]. Moreover, flavonoids could increase endogenous platelet-derived
nitric oxide and decrease superoxide production [103] and might enhance the endothelial synthesis
of NO, induce NO-dependent relaxation in isolated arteries, and activate NO signaling pathways
in endothelial cells, thus improving the endothelial function. Finally, some polyphenols exert
anti-inflammatory activities by modulating cytokine production and by promoting the expression of
pro-inflammatory genes [104], and an antiviral effect that has been already reported against several
viruses [105].

Given this premise, it is reasonable to consider oxidative stress- and inflammation-mediated
endothelial dysfunction as a therapeutic target for Covid-19. Among polyphenols, curcumin could
be a potential treatment option for patients with Covid-19. Utomo et al. conducted a study using
molecular docking with target receptors including SARS-CoV-2 protease, the receptor binding domain
(RBD) of spike glycoprotein, and the protease domain (PD) of ACE2 which are believed to participate
in virus infection [106]. They demonstrated that curcumin could bind to the target receptors of
SARS-CoV-2, supporting the use of this molecule for preventive or prophylaxis treatments of virus
infections, including SARS-CoV-2. Moreover, a combination of three (phyto-) nutrients such as vitamin
C, curcumin, and glycyrrhizic acid promotes interferons production and regulates the inflammatory
response, suggesting that the combination of these molecules may be helpful in regulating the immune
response to combat SARS-CoV-2 infections [107].

Finally, Runfeng et al. tested in vitro the antiviral activity of Lianhuaqingwen (LH), a Chinese
patent nutraceutical composed of 13 herbs [108], and they found that LH is able to inhibit SARS-CoV-2
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virus replication and markedly reduce the mRNA levels of pro-inflammatory cytokines including
TNF-α, IL-6, CCL-2/MCP-1, and CXCL-10/IP-10).

In conclusion, since accumulating evidence suggests that nutraceuticals exert beneficial effects
against vascular diseases counteracting oxidative stress and inflammation, it is reasonable to speculate
their possible use in the setting of COVID-19.

Regarding the illustrated inflammatory hypothesis, new recent considerations on TNF blockers
deserve a mention. Further promising and potentially effective therapies for COVID-19 are the anti-TNF
antibodies infliximab and adalimumab, which have also shown a good safety profile [109]. The rationale
of their use is related to the demonstrated presence of TNF in the serum and in some tissues of COVID-19
patients, where it promotes a phlogistic response [110]. For several inflammatory diseases, anti-TNF
therapies are approved by the FDA and commonly used (e.g., rheumatoid arthritis or psoriasis). Studies
on rheumatoid arthritis have shown that blocking TNF stops the cytokine cascade, decreasing the
levels of adhesion molecules and vascular endothelial growth factor (VEGF) involved in the pathways
of augmented vascular permeability [111,112]. Also, some preclinical studies on RSV and influenza
virus in mice suggest a positive response to anti-TNF therapies [113]. Some authors suggested that
infliximab or adalimumab administration could be preferentially destinated to COVID-19 patients with
moderate disease but at high risk to develop a severe and advanced illness [109,114]. Actually, a single
registered RCT evaluating adalimumab for COVID-19 treatment is in progress (ChiCTR2000030089).
Main nutraceuticals and supplements with potential role in countering COVID-19 are listed in Table 2.

5. Supplementation

5.1. Vitamin C

Vitamin C is a water-soluble vitamin able to provide electrons, acting as antioxidant and as a
cofactor for regulatory enzymes. In particular, it facilitates the production of cortisol, catecholamines,
and vasopressin. Vitamin C is fundamental for both the innate and the adaptive immune system.
Vitamin C has a role in the epithelial as well as endothelial barrier function, maintains vasodilation,
and reduces proinflammatory modulators [115]. Vitamin C has crucial roles in the improvement of
phagocytosis, chemotaxis, and production of ROS, decreasing necrosis and tissue damage [116].

The role of ascorbic acid in modulating the immune system has been studied extensively since
the second half of the last century. As early as 1978, a study by J.G. Atherton et al. showed increased
resistance of chicken respiratory epithelium cultures to infection by a Coronavirus (avian infectious
bronchitis virus) after exposure to Vitamin C. However, this animal virus does not share the receptor
and pathway with SARS-Cov-2, for which there is no specific evidence regarding potential Vitamin C
benefits [117].

In humans, supplementation of vitamin C improves the immune system, preserving the redox
integrity of cells as well as protecting from ROS. Vitamin C reduces the risk, the severity, and the
duration of different infectious diseases [118,119].

Vitamin C deficiency was historically associated with pneumonia [120,121]. On the other hand,
randomized trials demonstrated that supplementation of vitamin C has positive effects on symptoms
and on the duration of respiratory tract infections. Additionally, several data suggest that vitamin C
can prevent pneumonia and improve its outcome, as well as other infections [122–125].

Moreover, it has been shown that intravenous vitamin C may reduce inflammation and diminish
vascular injury associated with sepsis and ARDS [126,127]. Studies on lung injury induced by sepsis
showed that vitamin C reduces the proinflammatory and procoagulant changes that lead to lung
damage [126]. Moreover, during infection, vitamin C levels can decrease; therefore, high doses of
intravenous Vitamin C administration are required in severe cases, in order to compensate for the high
turnover of the vitamin [128].
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Table 2. Main nutraceuticals and supplements with potential role in countering COVID-19 pathways.

Main Nutraceuticals and
Supplements Pathway Hypothesized Against COVID-19 Supporting Literature

Vitamin E, Vitamin C, Carotenoids,
Minerals (Zn, Mn, Cu, Se)

Polyphenols

Inflammatory cascade and hypercoagulation by
anti-inflammatory and antioxidant activities (in
COVID-19 pathways, the endothelium target could
be relevant)

[85,86,98]

Polyphenols (flavonoids, phenolic
acids, stilbenes, lignans)

Platelet aggregation and pro-thrombotic activity by
suppression of thrombin and factor Xa; endogenous
platelet-derived NO and superoxide production;
endothelial synthesis of NO, NO signaling pathways in
endothelial cells improving endothelial function and
NO-dependent relaxation; modulates production of
cytokines and expression of pro-inflammatory genes
Antiviral effect for several viruses (not proved for
SARS-CoV-2).

[95–97,99,100]

Curcumin Binds to the target receptors of SARS-CoV-2 [106]

Combination of vitamin C,
curcumin, and glycyrrhizic acid

Interferons production with effects on
inflammatory response. [107]

Lianhuaqingwen (Chinese patent
medicine composed of 13 herbs)

SARS-CoV-2 replication; pro-inflammatory cytokines
(TNF-α, IL-6, CCL-2/MCP-1, and CXCL-10/IP-10). [108]

Vitamin C

Fundamental for the structural organization of the
epithelial and endothelial barriers; fundamental for
phagocytosis and chemotaxis; protection from ROS
injury; intravenous administration against inflammation
and vascular injury in sepsis and ARDS; susceptibility
and outcome of low respiratory tract infections.

[98,99,105–110,122,124]

Vitamin D

Macrophagic production of catelicidine; regulation of
NF-kB activity levels of IL-6, IL1-β, TNF-α and
production of GM-CSF, IL-4, IL-5, VCAM-1, ICAM-1,
E-selectin; daily or weekly dose showed protective
effects against acute respiratory infections.

[127–131]

However, studies on the usefulness of vitamin C for patients with severe pneumonia are
limited [129]. A retrospective before–after clinical study showed that a combination of vitamin
C, hydrocortisone, and thiamine prevented organ dysfunction and reduced the mortality rate in
patients with sepsis [130]. Treatment with the same combination was associated with significantly
lower mortality in patients with severe pneumonia and significantly improved their radiologic
chest findings [131]. Vitamin C and corticosteroids play in a synergistic way: vitamin C restores
glucocorticoid receptor function, and corticosteroids increase the expression of sodium–vitamin C
transporter-2 [132,133] Moreover, an experimental study showed that vitamin C and hydrocortisone
administered together preserved endothelial integrity [134]. In a recent randomized trial, evaluating
patients with sepsis and ARDS, a beneficial effect of high-dose intravenous vitamin C on mortality
has been suggested, although no improvement of organ dysfunction scores or change in markers of
inflammation and vascular injury were observed [135–137]. Moreover, recently, a new clinical trial
to investigate the effects of vitamin C infusion for the treatment of severe COVID-19 pneumonia has
started [138]. In fact, in the absence of a specific therapy for COVID-19, vitamin C may have effects
on this severe viral respiratory tract infection [139]. Moreover, vitamin C increased the resistance
to coronavirus and may affect the susceptibility to lower respiratory tract infections under certain
conditions [117,139–141].

5.2. Vitamin D

The biosignaling role of vitamin D in bone metabolism is well known, but over the years,
this metabolite has been linked to the risk of developing various pathologies, such as cancer, depression,
and infectious diseases. After binding its nuclear receptor, the active metabolite of vitamin D
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(1,25(OH)2D3 or calcitriol) influences gene transcription, exerting several effects also on the immune
and inflammatory response. As recently summarized in a review by Grant et al., Vitamin D would act
against respiratory infections through many pathways [142]. The receptor for vitamin D is expressed in
respiratory epithelial cells and in macrophages of the respiratory system; furthermore, the 25- hydrolase,
which converts vitamin D into its active metabolite, is constitutively expressed in the respiratory
epithelium [143]. The in vitro study of Philip et al. showed that in the presence of 1,25(OH)2D3,
macrophagic production of catelicidine (like LL-37) is increased. By binding the envelope of influenza A
and respiratory syncytial viruses, catelicidins are capable to damage its structure and prevent infection
of human cells [144].

Much evidence has also suggested that other biosignaling pathways linked to vitamin D may
modulate the inflammatory response depending on both the innate and specific systems. In fact,
1,25(OH)2D3 modulates nuclear factor κB (NF-kB) activity via upregulation of the NF-κB inhibitory
protein (IκBα). NF-kB induces the production of many molecules which amplify the inflammatory
response (IL-6, IL1-β, TNF-α), stimulate the production, mobilization, and adhesion of inflammatory
cells (GM-CSF, IL-4, IL-5, VCAM-1, ICAM-1, E-selectin), and finally influence the production of
enzymes such as iNOS, COX-2, PLA2 and determine the production of free radicals causing tissue
damage [145,146].

There are many other molecular mechanisms through which vitamin D would be able to stimulate
the immune response, reduce the risk of infections, and balance the inflammatory reaction probably in
a favorable way for the body. The study of the clinical effects of vitamin D administration in patients
with and without demonstrated vitamin D deficiency could be very interesting today in the setting of
COVID-19; however, specific data are not yet available.

In the analysis of Monlezun et al. evaluating 14,108 subjects (>16 years of age), after adjusting for
confounding factors like season or demographic and clinical data, vitamin D levels <30 ng/mL were
associated with 58% higher odds of acute respiratory infection compared to levels ≥30 ng/mL [147].

A meta-analysis of data of 10,933 participants from 25 randomized controlled trials showed that
vitamin D administration reduces the risk of acute respiratory tract infections (OR 0.88, 0.81 to 0.96;
P for heterogeneity <0.001). In subgroup analysis, protective effects were obtained for participants
assuming daily or weekly doses with no supplemental bolus (OR 0.81, 0.72 to 0.91) but not for subjects
assuming one or more boli (OR 0.97, 0.86 to 1.10; P for interaction = 0.05). Regarding the daily or
weekly administration of vitamin D, benefits were more evident in participants with low calcifediol
levels (<25 nmol/L) at baseline (OR 0.30, 0.17 to 0.53) than in subjects with initial levels ≥25 nmol/L
(OR 0.75, 0.60 to 0.95; P for interaction = 0.006). Finally, the administration of vitamin D was safe [148].

The hypothesis that vitamin D supplementation can reduce the risk of COVID-19 incidence or
mortality should be investigated through large-scale randomized trials. Currently, no data are available
on the dosage, method of administration (daily or bolus), and safety in the setting of COVID-19;
however, for the moment it is reasonable to focus on the identification and treatment of deficiencies
in asymptomatic subjects as well as in patients affected by COVID-19. An Italian study group has
proposed a nutritional protocol for patients with COVID-19, which also includes the supplementation
of 25-hydroxyvitamin D in the presence of a deficit [149].

6. Conclusions

Although orally administered probiotics are not currently an integral part of a specific protocol
for the treatment of respiratory viral infections, many studies suggest their potential modulation of
the systemic immune system that can improve the response to viruses and balance the inflammatory
response. SARS-CoV-2 infects the gastrointestinal tract, causing inflammation of the absorbent mucosa
and sometimes diarrhea. Dysbiosis could participate in this scenario, exacerbating the immune
response and the production of systemic inflammation mediators. Based on the revised evidence,
oral probiotics could therefore play a role in the intestinal and systemic effects of COVID-19. Moreover,
inhaled microorganisms could have a more direct action on the respiratory epithelium and on the
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immune system cells that populate it. In some circumstances, they have been shown to reduce the
accumulation of inflammatory cells and facilitate virus clearance. Several nutrients have shown utility
in preserving endothelial integrity thanks to the maintenance of oxidative–reductive homeostasis.
COVID-19 can induce pulmonary vascular damage and systemic hypercoagulability. During the
pandemic, as in all other circumstances, it is reasonable to recommend a proper nutrition rich in
antioxidant nutrients. Vitamin C and D play a well-proven role in the immune system. However,
it is not known whether a supplemental dose of these vitamins administered to patients without
their deficiency would result in a benefit. Specific clinical studies are underway on the intra-venous
administration of vitamin C in hospitalized COVID-19 patients. Vitamin D deficiency has been
associated with increased susceptibility to respiratory infections, therefore it is reasonable, even in the
absence of specific data, to administer vitamin D to healthy individuals and COVID-19 patients.

While diet, nutritional supplements, and similar interventions show great promise for preventing
and managing COVID-19, it is also true that strong clinical research data are required to support any
such claim. Otherwise, we risk the emergence of gurus or other more or less well-meaning experts
aiming at speculating on the appeal of these interventions for laypersons [150].

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. WHO COVID-19 Dashboard. Available online: https://who.sprinklr.com/ (accessed on 13 April 2020).
2. COVID-19 Map Johns Hopkins Coronavirus Resource Center. Available online: https://coronavirus.jhu.edu/

map.html (accessed on 19 April 2020).
3. Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; et al. A Trial of

Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19. New. Engl. J. Med. 2020. [CrossRef]
[PubMed]

4. Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.;
Luetkemeyer, A.; Kline, S.; et al. Remdesivir for the Treatment of Covid-19—Preliminary Report. New. Engl.
J. Med. 2020. [CrossRef]

5. Russell, B.; Moss, C.; Rigg, A.; Van Hemelrijck, M. COVID-19 and treatment with NSAIDs and corticosteroids:
Should we be limiting their use in the clinical setting? Ecancermedicalscience 2020, 14. [CrossRef]

6. Funck-Brentano, C.; Salem, J.-E. Comment Chloroquine or hydroxychloroquine for COVID-19: Why might
they be hazardous? Lancet 2020. [CrossRef]

7. Mehra, M.R.; Desai, S.S.; Ruschitzka, F.; Patel, A.N. Articles Hydroxychloroquine or chloroquine with or
without a macrolide for treatment of COVID-19: A multinational registry analysis. Lancet 2020. [CrossRef]

8. Coronavirus: WHO halts trials of hydroxychloroquine over safety fears—BBC News. Available online:
https://www.bbc.com/news/health-52799120 (accessed on 28 May 2020).

9. Tocilizumab in COVID-19 Pneumonia (TOCIVID-19)—Full Text View—ClinicalTrials.gov. Available online:
https://clinicaltrials.gov/ct2/show/NCT04317092 (accessed on 13 April 2020).

10. Holshue, M.L.; DeBolt, C.; Lindquist, S.; Lofy, K.H.; Wiesman, J.; Bruce, H.; Spitters, C.; Ericson, K.;
Wilkerson, S.; Tural, A.; et al. First Case of 2019 Novel Coronavirus in the United States. New. Engl. J. Med.
2020, 382, 929–936. [CrossRef]

11. Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.;
Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a
Clinically Proven Protease Inhibitor. Cell 2020. [CrossRef]

12. Zhang, H.; Kang, Z.; Gong, H.; Xu, D.; Wang, J.; Li, Z.; Cui, X.; Xiao, J.; Meng, T.; Zhou, W.; et al.
The digestive system is a potential route of 2019-nCov infection: A bioinformatics analysis based on
single-cell transcriptomes. bioRxiv 2020. [CrossRef]

13. Bertram, S.; Heurich, A.; Lavender, H.; Gierer, S.; Danisch, S.; Perin, P.; Lucas, J.M.; Nelson, P.S.; Pöhlmann, S.;
Soilleux, E.J. Influenza and SARS-Coronavirus Activating Proteases TMPRSS2 and HAT Are Expressed at
Multiple Sites in Human Respiratory and Gastrointestinal Tracts. PLoS ONE 2012, 7, e35876. [CrossRef]

https://who.sprinklr.com/
https://coronavirus.jhu.edu/map.html
https://coronavirus.jhu.edu/map.html
http://dx.doi.org/10.1056/NEJMoa2001282
http://www.ncbi.nlm.nih.gov/pubmed/32187464
http://dx.doi.org/10.1056/NEJMoa2007764
http://dx.doi.org/10.3332/ecancer.2020.1023
http://dx.doi.org/10.1016/S0140-6736(20)31174-0
http://dx.doi.org/10.1016/S0140-6736(20)31180-6
https://www.bbc.com/news/health-52799120
https://clinicaltrials.gov/ct2/show/NCT04317092
http://dx.doi.org/10.1056/NEJMoa2001191
http://dx.doi.org/10.1016/j.cell.2020.02.052
http://dx.doi.org/10.1101/2020.01.30.927806
http://dx.doi.org/10.1371/journal.pone.0035876


Nutrients 2020, 12, 1718 15 of 21

14. Gu, J.; Han, B.; Wang, J. COVID-19: Gastrointestinal manifestations and potential fecal-oral transmission.
Gastroenterology 2020. [CrossRef]

15. Xiao, F.; Tang, M.; Zheng, X.; Li, C.; He, J.; Hong, Z.; Huang, S.; Zhang, Z.; Lin, X.; Fang, Z.; et al. Evidence
for gastrointestinal infection of SARS-CoV-2. medRxiv 2020. [CrossRef] [PubMed]

16. Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical
Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan,
China. JAMA J. Am. Med. Assoc. 2020, 323, 1061–1069. [CrossRef] [PubMed]

17. Leung, W.K.; To, K.; Chan, P.K.S.; Chan, H.L.Y.; Wu, A.K.L.; Lee, N.; Yuen, K.Y.; Sung, J.J.Y. Enteric
involvement of severe acute respiratory syndrome-associated coronavirus infection. Gastroenterology 2003,
125, 1011–1017. [CrossRef] [PubMed]

18. Hashimoto, T.; Perlot, T.; Rehman, A.; Trichereau, J.; Ishiguro, H.; Paolino, M.; Sigl, V.; Hanada, T.; Hanada, R.;
Lipinski, S. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammatio. Nature.
[CrossRef]

19. Lloyd-Price, J.; Abu-Ali, G.; Huttenhower, C. The healthy human microbiome. Genome Med. 2016, 8, 1–11.
[CrossRef]

20. Huttenhower, C.; Gevers, D.; Knight, R.; Abubucker, S.; Badger, J.H.; Chinwalla, A.T.; Creasy, H.H.; Earl, A.M.;
Fitzgerald, M.G.; Fulton, R.S.; et al. Structure, function and diversity of the healthy human microbiome.
Nature 2012, 486, 207–214. [CrossRef]

21. Methé, B.A.; Nelson, K.E.; Pop, M.; Creasy, H.H.; Giglio, M.G.; Huttenhower, C.; Gevers, D.; Petrosino, J.F.;
Abubucker, S.; Badger, J.H.; et al. A framework for human microbiome research. Nature 2012, 486, 215–221.
[CrossRef]

22. Hooper, L.V.; Gordon, J.I. Commensal host-bacterial relationships in the gut. Science 2001, 292, 1115–1118.
[CrossRef]

23. Chervonsky, A. Innate receptors and microbes in induction of autoimmunity. Curr. Opin. Immunol. 2009, 21,
641–647. [CrossRef]

24. Round, J.L.; Mazmanian, S.K. The gut microbiota shapes intestinal immune responses during health and
disease. Nat. Rev. Immunol. 2009, 9, 313–323. [CrossRef]

25. Macpherson, A.J.; Harris, N.L. Interactions between commensal intestinal bacteria and the immune system.
Nat. Rev. Immunol. 2004, 4, 478–485. [CrossRef] [PubMed]

26. Owaga, E.; Hsieh, R.H.; Mugendi, B.; Masuku, S.; Shih, C.K.; Chang, J.S. Th17 cells as potential probiotic
therapeutic targets in inflammatory bowel diseases. Int. J. Mol. Sci. 2015, 16, 20841–20858. [CrossRef]
[PubMed]

27. Francino, M.P. Early development of the gut microbiota and immune health. Pathogens 2014, 3, 769–790.
[CrossRef] [PubMed]

28. Hussell, T.; Bell, T.J. Alveolar macrophages: Plasticity in a tissue-specific context. Nat. Rev. Immunol. 2014,
14, 81–93. [CrossRef]

29. Soroosh, P.; Doherty, T.A.; Duan, W.; Mehta, A.K.; Choi, H.; Adams, Y.F.; Mikulski, Z.; Khorram, N.;
Rosenthal, P.; Broide, D.H.; et al. Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and
promote airway tolerance. J. Exp. Med. 2013, 210, 775–788. [CrossRef]

30. Gollwitzer, E.S.; Saglani, S.; Trompette, A.; Yadava, K.; Sherburn, R.; McCoy, K.D.; Nicod, L.P.; Lloyd, C.M.;
Marsland, B.J. Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat. Med. 2014, 20,
642–647. [CrossRef]

31. Herbst, T.; Sichelstiel, A.; Schär, C.; Yadava, K.; Bürki, K.; Cahenzli, J.; McCoy, K.; Marsland, B.J.; Harris, N.L.
Dysregulation of allergic airway inflammation in the absence of microbial colonization. Am. J. Respir. Crit.
Care Med. 2011, 184, 198–205. [CrossRef]

32. Larsen, J.M.; Musavian, H.S.; Butt, T.M.; Ingvorsen, C.; Thysen, A.H.; Brix, S. Chronic obstructive pulmonary
disease and asthma-associated Proteobacteria, but not commensal Prevotella spp., promote Toll-like receptor
2-independent lung inflammation and pathology. Immunology 2015, 144, 333–342. [CrossRef]

33. Segal, L.N.; Clemente, J.C.; Tsay, J.C.J.; Koralov, S.B.; Keller, B.C.; Wu, B.G.; Li, Y.; Shen, N.; Ghedin, E.;
Morris, A.; et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a
Th17 phenotype. Nat. Microbiol. 2016, 1. [CrossRef]

34. Clemente, J.C.; Ursell, L.K.; Parfrey, L.W.; Knight, R. The impact of the gut microbiota on human health:
An integrative view. Cell 2012, 148, 1258–1270. [CrossRef] [PubMed]

http://dx.doi.org/10.1053/j.gastro.2020.02.054
http://dx.doi.org/10.1053/j.gastro.2020.02.055
http://www.ncbi.nlm.nih.gov/pubmed/32142773
http://dx.doi.org/10.1001/jama.2020.1585
http://www.ncbi.nlm.nih.gov/pubmed/32031570
http://dx.doi.org/10.1016/j.gastro.2003.08.001
http://www.ncbi.nlm.nih.gov/pubmed/14517783
http://dx.doi.org/10.1038/nature11228
http://dx.doi.org/10.1186/s13073-016-0307-y
http://dx.doi.org/10.1038/nature11234
http://dx.doi.org/10.1038/nature11209
http://dx.doi.org/10.1126/science.1058709
http://dx.doi.org/10.1016/j.coi.2009.08.003
http://dx.doi.org/10.1038/nri2515
http://dx.doi.org/10.1038/nri1373
http://www.ncbi.nlm.nih.gov/pubmed/15173836
http://dx.doi.org/10.3390/ijms160920841
http://www.ncbi.nlm.nih.gov/pubmed/26340622
http://dx.doi.org/10.3390/pathogens3030769
http://www.ncbi.nlm.nih.gov/pubmed/25438024
http://dx.doi.org/10.1038/nri3600
http://dx.doi.org/10.1084/jem.20121849
http://dx.doi.org/10.1038/nm.3568
http://dx.doi.org/10.1164/rccm.201010-1574OC
http://dx.doi.org/10.1111/imm.12376
http://dx.doi.org/10.1038/nmicrobiol.2016.31
http://dx.doi.org/10.1016/j.cell.2012.01.035
http://www.ncbi.nlm.nih.gov/pubmed/22424233


Nutrients 2020, 12, 1718 16 of 21

35. Degruttola, A.K.; Low, D.; Mizoguchi, A.; Mizoguchi, E. Current understanding of dysbiosis in disease in
human and animal models. Inflamm. Bowel Dis. 2016, 22, 1137–1150. [CrossRef]

36. Pothmann, A.; Illing, T.; Wiegand, C.; Hartmann, A.A.; Elsner, P. The Microbiome and Atopic Dermatitis:
A Review. Am. J. Clin. Dermatol. 2019, 20, 749–761. [CrossRef] [PubMed]

37. Pulikkan, J.; Mazumder, A.; Grace, T. Role of the Gut Microbiome in Autism Spectrum Disorders. In Advances
in Experimental Medicine and Biology; Springer New York LLC: New York, NY, USA, 2019; Volume 1118,
pp. 253–269.

38. Kumpitsch, C.; Koskinen, K.; Schöpf, V.; Moissl-Eichinger, C. The microbiome of the upper respiratory tract
in health and disease. BMC Biol. 2019, 17, 87. [CrossRef] [PubMed]

39. Li, K.J.; Chen, Z.L.; Huang, Y.; Zhang, R.; Luan, X.Q.; Lei, T.T.; Chen, L. Dysbiosis of lower respiratory
tract microbiome are associated with inflammation and microbial function variety. Respir. Res. 2019, 20.
[CrossRef]

40. Dang, A.T.; Marsland, B.J. Microbes, metabolites, and the gut–lung axis. Mucosal Immunol. 2019, 12, 843–850.
[CrossRef] [PubMed]

41. Karst, S.M. The influence of commensal bacteria on infection with enteric viruses. Nat. Rev. Microbiol. 2016,
14, 197–204. [CrossRef] [PubMed]

42. Berger, A.K.; Mainou, B.A. Interactions between enteric bacteria and eukaryotic viruses impact the outcome
of infection. Viruses 2018, 10, 19. [CrossRef]

43. Pfeiffer, J.K.; Virgin, H.W. Viral immunity. Transkingdom control of viral infection and immunity in the
mammalian intestine. Science 2016, 351. [CrossRef]

44. Sullender, M.E.; Baldridge, M.T. Norovirus interactions with the commensal microbiota. PLoS Pathog. 2018,
14, e1007183. [CrossRef]

45. Robinson, C.M.; Pfeiffer, J.K. Viruses and the Microbiota. Annu. Rev. Virol. 2014, 1, 55–69. [CrossRef]
46. Edouard, S.; Million, M.; Bachar, D.; Dubourg, G.; Michelle, C.; Ninove, L.; Charrel, R.; Raoult, D.

The nasopharyngeal microbiota in patients with viral respiratory tract infections is enriched in bacterial
pathogens. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 1725–1733. [CrossRef] [PubMed]

47. Li, Y.; Ding, J.; Xiao, Y.; Xu, B.; He, W.; Yang, Y.; Yang, L.; Su, M.; Hao, X.; Ma, Y. 16S rDNA sequencing
analysis of upper respiratory tract flora in patients with influenza H1N1 virus infection. Front. Lab. Med.
2017, 1, 16–26. [CrossRef]

48. Zhao, N.; Wang, S.; Li, H.; Liu, S.; Li, M.; Luo, J.; Su, W.; He, H. Influence of novel highly pathogenic avian
influenza A (H5N1) virus infection on migrating whooper swans fecal microbiota. Front. Cell. Infect. Microbiol.
2018, 8. [CrossRef]

49. Groves, H.T.; Cuthbertson, L.; James, P.; Moffatt, M.F.; Cox, M.J.; Tregoning, J.S. Respiratory disease following
viral lung infection alters the murine gut microbiota. Front. Immunol. 2018, 9. [CrossRef] [PubMed]

50. Yildiz, S.; Mazel-Sanchez, B.; Kandasamy, M.; Manicassamy, B.; Schmolke, M. Influenza A virus infection
impacts systemic microbiota dynamics and causes quantitative enteric dysbiosis. Microbiome 2018, 6.
[CrossRef]

51. Wang, J.; Li, F.; Wei, H.; Lian, Z.X.; Sun, R.; Tian, Z. Respiratory influenza virus infection induces intestinal
immune injury via microbiotamediated Th17 cell-dependent inflammation. J. Exp. Med. 2014, 211, 2397–2410.
[CrossRef] [PubMed]

52. Wu, Y.; Guo, C.; Tang, L.; Hong, Z.; Zhou, J.; Dong, X.; Yin, H.; Xiao, Q.; Tang, Y.; Qu, X.; et al. Prolonged
presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol. Hepatol. 2020, 5, 434–435.
[CrossRef]

53. Marchesi, J.R.; Adams, D.H.; Fava, F.; Hermes, G.D.A.; Hirschfield, G.M.; Hold, G.; Quraishi, M.N.; Kinross, J.;
Smidt, H.; Tuohy, K.M.; et al. The gut microbiota and host health: A new clinical frontier. Gut 2016, 65,
330–339. [CrossRef]

54. Anuradha, S.; Rajeshwari, K. Probiotics in Health and Disease. J. Indian Acad. Clin. Med. 2005, 6, 67–72.
55. Leyer, G.J.; Li, S.; Mubasher, M.E.; Reifer, C.; Ouwehand, A.C. Probiotic effects on cold and influenza-like

symptom incidence and duration in children. Pediatrics 2009, 124, e172–e179. [CrossRef]
56. Rautava, S.; Salminen, S.; Isolauri, E. Specific probiotics in reducing the risk of acute infections in infancy—

A randomised, double-blind, placebo-controlled study. Br. J. Nutr. 2009, 101, 1722–1726. [CrossRef]
[PubMed]

http://dx.doi.org/10.1097/MIB.0000000000000750
http://dx.doi.org/10.1007/s40257-019-00467-1
http://www.ncbi.nlm.nih.gov/pubmed/31444782
http://dx.doi.org/10.1186/s12915-019-0703-z
http://www.ncbi.nlm.nih.gov/pubmed/31699101
http://dx.doi.org/10.1186/s12931-019-1246-0
http://dx.doi.org/10.1038/s41385-019-0160-6
http://www.ncbi.nlm.nih.gov/pubmed/30976087
http://dx.doi.org/10.1038/nrmicro.2015.25
http://www.ncbi.nlm.nih.gov/pubmed/26853118
http://dx.doi.org/10.3390/v10010019
http://dx.doi.org/10.1126/science.aad5872
http://dx.doi.org/10.1371/journal.ppat.1007183
http://dx.doi.org/10.1146/annurev-virology-031413-085550
http://dx.doi.org/10.1007/s10096-018-3305-8
http://www.ncbi.nlm.nih.gov/pubmed/30033505
http://dx.doi.org/10.1016/j.flm.2017.02.005
http://dx.doi.org/10.3389/fcimb.2018.00046
http://dx.doi.org/10.3389/fimmu.2018.00182
http://www.ncbi.nlm.nih.gov/pubmed/29483910
http://dx.doi.org/10.1186/s40168-017-0386-z
http://dx.doi.org/10.1084/jem.20140625
http://www.ncbi.nlm.nih.gov/pubmed/25366965
http://dx.doi.org/10.1016/S2468-1253(20)30083-2
http://dx.doi.org/10.1136/gutjnl-2015-309990
http://dx.doi.org/10.1542/peds.2008-2666
http://dx.doi.org/10.1017/S0007114508116282
http://www.ncbi.nlm.nih.gov/pubmed/18986600


Nutrients 2020, 12, 1718 17 of 21

57. Hatakka, K.; Savilahti, E.; Pönkä, A.; Meurman, J.H.; Poussa, T.; Näse, L.; Saxelin, M.; Korpela, R. Effect of
long term consumption of probiotic milk on infections in children attending day care centres: Double blind,
randomised trial. Br. Med. J. 2001, 322, 1327–1329. [CrossRef] [PubMed]

58. Sanders, M.E.; Merenstein, D.J.; Reid, G.; Gibson, G.R.; Rastall, R.A. Probiotics and prebiotics in intestinal
health and disease: From biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 605–616. [CrossRef]
[PubMed]

59. Sanders, M.E.; Guarner, F.; Guerrant, R.; Holt, P.R.; Quigley, E.M.M.; Sartor, R.B.; Sherman, P.M.; Mayer, E.A.
An update on the use and investigation of probiotics in health and disease. Gut 2013, 62, 787–796. [CrossRef]
[PubMed]

60. Hao, Q.; Lu, Z.; Dong, B.R.; Huang, C.Q.; Wu, T. Probiotics for preventing acute upper respiratory tract
infections. Cochrane Database Syst. Rev. 2011, CD006895. [CrossRef]
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