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Abstract — This work addresses the problem of target 

detection in coherent radar systems equipped with multiple 

polarimetric channels. In “Part I” of this two-part study, a multi-

channel auto-regressive model based polarimetric detection 

scheme has been developed and its performance has been studied 

against clutter with characteristics exactly matching the adopted 

parametric model. In this second part of the study, the 

performance assessment is extended, by means of theoretical and 

simulated analyses, to include the case of disturbance 

components with diverse spectral characteristics. Consequently, 

an appropriate modification is introduced to the detection 

scheme to make it robust to typical spectral mismatches 

occurring in practical situations. Finally, the effectiveness of the 

resulting detection scheme is proved against simulated and 

experimental data. 

Index Terms — polarimetric radar, adaptive signal detection, 

parametric approach, multi-channel auto-regressive process 

I. INTRODUCTION 

HIS work is divided into two parts [1] and is concerned 

with the problem of disturbance cancellation and target 

detection in coherent polarimetric radar systems. 

Traditional approaches to this problem are fully adaptive 

polarimetric detectors, such as the polarimetric generalized 

likelihood ratio test (GLRT) in [2]-[3] and the polarimetric 

adaptive matched filter (AMF) in [4]. Such methods 

adaptively exploit all the available degrees of freedom to 

perform disturbance cancellation in both the polarimetric and 

temporal domains. While being theoretically optimum under 

the assumption of a priori known disturbance characteristics, 

these approaches might be computationally intensive and 

might suffer of significant adaptivity loss in practical cases, 

especially when a limited number of training data is available.  

To overcome these issues, in the companion paper [1], we 

exploit a parametric method to develop a new adaptive 

polarimetric detector by modeling the disturbance as a multi-

channel auto-regressive (AR) process [5]-[11]. For the 

readers’ benefit, we summarize structures and characteristics  
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of the proposed AR model based polarimetric detection 

scheme in Section II of this paper. 

However, the reader is advised to refer to [1] and the 

references therein to gain a deep understanding of the 

algorithm and its analysis. Specifically, a throughout 

performance analysis is reported in [1] for the case of an input 

disturbance process that exactly matches the AR model 

exploited for the design of the proposed detection scheme. In 

such conditions, the proposed detector has been shown to 

provide remarkable advantages over the traditional fully-

adaptive approaches in terms of both target detection 

capability and computational complexity.  

In this second part of the study, the performance analysis 

of the proposed polarimetric detector is extended to include 

the more general case of spectral model mismatches, namely 

the case of input disturbance with spectral characteristics 

differing from the AR model adopted to design the detector. 

We observe here that this is a typical condition in real-world 

applications where no a priori information is available on the 

disturbance impairing the received data, which in turn could 

result from the combination of multiple interference sources 

(e.g. clutter, noise, jammers) with quite different spectral 

characteristics. Moreover, despite effective approaches could 

be exploited to identify a suitable AR model that approximates 

the actual disturbance characteristics [12], the resulting 

approximation might not be perfect thus yielding a residual 

spectral model mismatch. Therefore, it is of high practical 

interest to investigate the effect of such mismatches on the 

performance of the proposed detector, namely the price to be 

paid for having resorted to a parametric method.  

 To this purpose, we first provide theoretical expressions 

for the asymptotic detection performance achievable with the 

detector proposed in [1], for a generic spectral mismatch 

encoded in the disturbance covariance matrix. Then, these 

results are compared to numerical analyses performed for two 

different types of spectral mismatches, i.e. mismatches in the 

order for the adopted AR model and mismatches in the 

considered spectral model (a Gaussian power spectral density 

is considered in this latter case). 

The performed analysis allows to clearly identify the 

limitations of the polarimetric detector proposed in [1] when 

operated under mismatched conditions and this leads to the 

design of proper modifications to make it robust to limited 
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spectral mismatches. Specifically, a modified doubly adaptive 

scheme is proposed able to guarantee a good control of the 

false alarm rate in practical situations and to contain the 

detection loss. The addition of a further adaptive processing 

stage is shown to yield increased adaptivity loss with respect 

to the original detection scheme in [1] since this loss is traded 

for a reduced mismatch loss. Overall, the modified AR based 

polarimetric adaptive detector is demonstrated to maintain an 

advantage in term of target detection capability over the 

traditional fully adaptive approaches [2]-[4] in the presence of 

limited spectral model mismatches for the disturbance. Also, 

this advantage comes with a significantly reduced 

computational complexity. 

These conclusions have been further confirmed by means 

of application of the proposed detection scheme to different 

sets of experimental polarimetric radar data. The reported 

results clearly show that the modified AR based polarimetric 

adaptive detector represents an effective and reliable solution 

in practical applications.  
 

The remainder of this manuscript is organized as follows. 

In Section II we briefly recall the AR model based 

polarimetric detector introduced in [1] and provide theoretical 

expressions for its detection performance under spectral 

model mismatches. A numerical analysis is then reported in 

Section III for two different case studies. The modified AR 

model based polarimetric adaptive detector is presented in 

Section IV whereas its performance is assessed in Sections V 

and VI against simulated and real data, respectively. 

Eventually, we draw our conclusions in Section VII. 
 

II. THEORETICAL ASYMPTOTIC PERFORMANCE  

UNDER DISTURBANCE MODEL MISMATCH  

In the companion paper [1], the polarimetric detector Pol-

AR-MF has been derived for the case of a polarimetric radar 

system equipped with L polarimetric channels and operating 

over coherent processing intervals of M samples.  

Specifically, by assuming the target component to be 

partially structured (i.e. its returns are assumed to be known 

up to an unknown amplitude in the temporal domain but they 

involve unknown nonlinear signal parameters in the 

polarimetric domain) and by modeling the disturbance as an 

L–channel AR process with order Q – 1 and known 

coefficients matrices 𝐀  (L(Q – 1)×L) and  𝐑 (L×L), the 

clairvoyant Pol-AR-MF detector was obtained as  

𝑇𝑃𝑜𝑙−𝐴𝑅−𝑀𝐹 = 𝐱0
𝐻𝐁 𝐂 𝐂𝐻𝐁𝐻𝐱0

𝐻1

≷
𝐻0

𝜂𝐴𝑅−𝑀𝐹 (1) 

where 𝐱0  is the vector where we arrange the primary data 

samples collected at 𝑀  consecutive temporal observations 

from the L available polarimetric channels. Matrices B and C 

depend on the AR(Q – 1) parameters as well as on the target 

temporal steering vector; their definitions are detailed in [1]  

and are briefly summarized in Table I.  

In the companion paper [1], we addressed the ‘matched’ 

case, namely the case of an input disturbance that exactly 

matches the AR(Q – 1) model adopted for the design of the 

detection scheme and we provided analytical expressions of 

the asymptotic performance of the derived detector. More 

precisely, the 𝑃𝑓𝑎  expression to be used when setting the 

detection threshold is given by eq. (29) of [1] and it is reported 

here for ease of reference 

𝑃𝑓𝑎 =  ∑
 𝜂𝑙

 2𝑙  Γ(𝐿 − 𝑙)

𝐿−1

𝑙=0

𝑒− 
𝜂
2 (2) 

being 𝜂 the detection threshold, while eqs. (31) and (32) of [1] 

report the asymptotic detection probability 𝑃𝑑 expressions for 

the Swerling 0 and Swerling I target model [13]-[14], 

respectively. 

In the present work, we address the general case of an input 

disturbance that is not drawn from the assumed AR(Q-1) 

model. Still, we assume that matrices B and C in (1) are 

evaluated based on the parameters of a multichannel AR 

process of given order (Q – 1). In other words, we evaluate 

matrices 𝐀𝑚𝑖𝑠 (L(Q – 1)×L) and 𝐑𝑚𝑖𝑠  (L×L) starting from the 

actual data covariance matrix M, i.e. M = E{𝐱0𝐱0
𝐻}, via the 

following relations 

{
𝐀𝑚𝑖𝑠 =  �̅�00

−1�̅�01

𝐑𝑚𝑖𝑠 = �̅�11 − �̅�01
𝐻  �̅�00

−1�̅�01

 
 

(3) 

being �̅� = [
�̅�00 �̅�01

�̅�01
𝐻 �̅�11

] the first QL×QL block of matrix M, 

with �̅�00(L(Q–1)× L(Q–1)), �̅�01(L(Q–1)×L) and �̅�00(L× L). 

  

 

Table I 

SUMMARY OF DEFINED QUANTITIES 
 

Quantity Definition/meaning 

𝐁 [𝐁0 𝐁1 … 𝐁𝑀−𝑄] 

𝐂 (𝟏𝑀−𝑄+1×1 ⊗ 𝐖−
1
2) 

𝐁𝑚 [

𝟎𝐿𝑚×𝐿

𝐏𝚺(𝑚)
𝟎𝐿(𝑀−𝑄−𝑚)×𝐿

] 

𝐖 
1

2
∑ 𝚺𝐻(𝑚)𝐏 𝚺(𝑚)

𝑀−𝑄

𝑘=0

 

𝐏 [𝐇𝐻𝐑−1𝐇] 

𝐇 [−𝐀𝐻 𝐈𝐿] 

𝚺(𝑚) �̃�(𝑚) ⊗ 𝐈𝐿 

𝐈𝐿 L×L identity matrix 

�̃�(𝑚) 
Q–dimensional sub-vector of the temporal 

steering vector starting from the m-th sample 
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As a consequence, matrices 𝐀𝑚𝑖𝑠  and 𝐑𝑚𝑖𝑠  represent the 

parameters of an AR model that possibly approximates the 

actual spectral characteristics of the disturbance but does not 

exactly match them. Therefore, the filtering of the data via 

matrices B and C does not provide a perfect whitening in 

either the polarimetric and the temporal domain. In contrast, 

some residual correlation might appear. These residuals in 

turn depend on the actual characteristics of the input 

disturbance and are expected to degrade the performance of 

the detector both in terms of 𝑃𝑓𝑎 control and 𝑃𝑑. These effects 

are investigated in the following for the clairvoyant detector 

in (1). The reported analysis is also representative of the 

asymptotic performance, of the adaptive version of the 

proposed detector, the Pol-AR-AMF [1], under spectral model 

mismatch. Specifically, provided that a large number of 

training data P is available, we assume that the ML estimate 

of the covariance matrix �̂�  tends towards the actual 

disturbance covariance matrix 𝐌  and, consequently, the 

estimated AR parameters tend towards the clairvoyant, though 

mismatched, values in (3).   

In sub-section II-A, we focus on the probability of false 

alarm while corresponding expressions for the target detection 

probability are developed in sub-section II-B. 

A. Probability of false alarm 

Let us consider the test statistic of the clairvoyant detector 

in (1) and define the L–dimensional vector  �̆�0 = 𝐂𝐻𝐁𝐻𝐱0 , 

namely �̆�0  represents the data after both polarimetric and 

temporal disturbance cancellation, which then undergoes the 

non-coherent integration across the polarimetric channels.  

Under the 𝐻0  hypothesis, �̆�0  is a zero-mean complex 

Gaussian random vector with covariance matrix  𝐃0 =
𝐂𝐻𝐁𝐻 𝐌 𝐁𝐂  , being 𝐌  the actual covariance matrix of the 

input disturbance process, i.e. �̆�0|𝐻0
~𝒞𝒩(𝟎𝐿×1, 𝐃0).  

Depending on the form taken by the matrix 𝐌, the test 

statistic in (1), namely  𝑇𝑃𝑜𝑙−𝐴𝑅−𝑀𝐹 = ‖�̆�0‖2  might have 

different distributions.  

For the ‘matched’ case, we recall that 𝐃0 =  2IL (see 

Appendix C of the companion paper [1] for proof). In contrast, 

for the general case when the input disturbance process does 

not strictly follow the AR(Q – 1) model, some residual 

correlation might appear after the temporal cancellation stage 

so that 𝐃0 ≠ 2𝐈𝐿 and (2) is no longer valid.  

However, we can resort to the same approach reported in 

Appendix D of the companion paper to derive a closed form 

expression for the 𝑃𝑓𝑎 .  Let 𝜆0, … , 𝜆𝑁−1  denote the N≤L 

distinct non-zero eigenvalues of   𝐃0 , each with 

multiplicity 𝜇𝑛, n = 0, …, N - 1. By proceeding as in [16], we 

obtain the 𝑃𝑓𝑎 expression as follows  

𝑃𝑓𝑎 = ∑ ∑
−𝑒

− 
𝜂

𝜆𝑛  𝜂𝑘

Γ(𝑘 + 1)

 𝜇𝑛−1

𝑘=0

𝑁−1

𝑛=0

𝛿𝑘,𝑛 (4) 

where 𝜂 is the threshold, and the definition of the coefficients 

𝛿𝑘,𝑛  (k = 0, …,  𝜇𝑛 – 1, n = 0, …, N – 1), is detailed in the 

companion paper [1] (see eq. (56) of Appendix D). By 

inverting (4) the threshold 𝜂𝐴𝑅−𝑀𝐹  can be obtained for the 

clairvoyant detector in (1).  

In the special case when no eigenvalue is repeated, which 

is typically verified in practical cases under spectral 

mismatch, namely when N = L and 𝜇𝑛 = 1, n = 0, …, N – 1, 

eq. (4) can be simplified and the following 𝑃𝑓𝑎  is easily 

obtained 

𝑃𝑓𝑎 = ∑  

𝐿−1

𝑙=0

𝜆𝑙
𝐿−1

∏ (𝜆𝑙 − 𝜆𝑖)𝐿−1
𝑖=0
𝑖 ≠𝑙

e
−

𝜂
𝜆𝑙 (5) 

In the dual special case when matrix 𝐃0 has one unique 

eigenvalue 𝜆0  (N = 1) with multiplicity 𝜇0  = L, the test 

statistic turns into a Gamma distributed variable, i.e. 

𝑇𝑃𝑜𝑙−𝐴𝑅−𝑀𝐹  ~ Γ(𝐿, 𝜆0) (6) 

and the 𝑃𝑓𝑎 expression can be simplified as  

𝑃𝑓𝑎 =  ∑
(

𝜂
𝜆0

⁄ )
𝑘

𝑒
−

𝜂
𝜆0

Γ(𝑘 + 1)

𝐿−1

𝑘=0

  (7) 

Note that (7) is equivalent to (2), if the scale parameter 𝜆0= 

2, namely if a perfect whitening has been obtained in both the 

polarimetric and temporal domain. In the general case, we 

expect that the higher similarity exists between the adopted 

AR model and the actual correlation characteristics of the 

disturbance process, the better this is rejected and the closer 

(4) gets to (2). 

In contrast, in the general spectral mismatched case, the 

derived 𝑃𝑓𝑎  expressions, and hence the threshold 𝜂𝐴𝑅−𝑀𝐹  to 

be used, depend on the eigenvalues of the residual disturbance 

matrix 𝐃0 that are unknown in practical cases. Therefore, by 

recalling that the reported performance is representative of the 

performance of the adaptive polarimetric detector Pol-AR-

AMF for large number of training data, we conclude that it 

does not ensure the CFAR property even in the asymptotic 

regime if spectral model mismatches exists. The CFAR 

characteristic tends to be guaranteed only if the adopted model 

reasonably approximates the spectral characteristics of the 

disturbance.  

B. Probability of detection  

The disturbance residuals arising from the cancellation 

stage are also responsible of degradations in terms of target 

detection capability.  These are theoretically investigated in 

the following with reference to a Swerling 0 target model and 

a Swerling I target model, respectively.  

1) Non-fluctuating target model (Swerling 0) 

When a non-fluctuating target model (Swerling 0) is 

assumed [13]-[14], vector �̆�0 is a complex Gaussian random 

vector, with mean vector  𝛖 = 𝐂𝐻𝐁𝐻𝐬 , being 𝐬  the target 

component in the received primary data, and covariance 

matrix 𝐃0, i.e.  �̆�0|𝐻1
~𝒞𝒩(𝛖, 𝐃0). According to this model, 

the test statistic of the clairvoyant detector, 𝑇𝑃𝑜𝑙−𝐴𝑅−𝑀𝐹 =
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‖�̆�0‖2, is a non-central quadratic form and the 𝑃𝑑 cannot be 

written in a closed form for any 𝐃0. However, following the 

approach in [16], in the Appendix we develop an 

approximated expression for the asymptotic 𝑃𝑑  that can be 

written as: 

𝑃𝑑 ≈ 1 −
𝑒−𝑝0 𝜂

𝑝0√2𝜋
∑

1

1 − 𝑝0𝜆𝑙

𝐿−1

𝑙=0

 

 

×
𝑒

∑ |�̿�𝑙|2𝐿−1
𝑙=0 [

1
1−𝑝0𝜆𝑙

−1]

√|
1

𝑝0
2 − ∑ [

𝜆𝑙
2

(1 − 𝑝0𝜆𝑙)
2 (1 +

2|�̿�𝑙|
2

1 − 𝑝0𝜆𝑙
)]𝐿−1

𝑙=0 |

 
(8) 

where 𝜂 is the detection threshold evaluated from (4), 𝑝0 =
 −(𝑗𝜔0 + 𝛽) and the definitions of 𝜔0  and 𝛽 are detailed in 

the Appendix.  

2) Fluctuating target model (Swerling 1) 

Assuming a Swerling I model for the target [13]-[14], 

namely if the target complex amplitude is a zero-mean 

Gaussian random variable with covariance matrix  𝐌𝑡 =
𝐸{𝛂𝛂𝐻}, vector �̆�0  is a complex Gaussian random variable 

with zero-mean vector and covariance matrix  𝐃0
′ = 𝐃0 +

𝐂𝐻𝐁𝐻 (𝐭𝐭𝐻⨂𝐌t) 𝐁𝐂  , i.e.  �̆�0|𝐻1
~𝒞𝒩(𝟎𝐿×1, 𝐃0

′ ). 

Therefore, following the same procedure as for the 𝑃𝑓𝑎  in 

sub-section II-A, the 𝑃𝑑 is obtained as 

𝑃𝑑 = ∑ ∑
−𝑒

(−
𝜂

𝜆𝑛
′ )

 𝜂𝑘

Γ(𝑘 + 1)

𝜇𝑛
′ −1

𝑘=0

𝑁−1

𝑛=0

𝛿𝑘,𝑛
′  (9) 

 where 𝜂  is the detection threshold, 𝜆0
′ , … , 𝜆𝑁−1

′  denote the 

N≤L distinct eigenvalues of  𝐃0
′ , each with multiplicity 𝜇𝑛

′ , 

and the coefficients 𝛿𝑘,𝑛 
′ are evaluated using eq. (56) of 

Appendix D of the companion paper, by replacing 𝜆𝑛 with 𝜆𝑛
′ . 

III. ASYMPTOTIC PERFORMANCE ANALYSIS  

AGAINST SIMULATED DATA  

In this Section, we carry out an asymptotic performance 

analysis of the proposed detector via numerical examples. The 

purpose of this Section is twofold. First, we aim at verifying 

the validity of the theoretical performance expressions, then 

we aim at investigating the performance loss only due to the 

spectral model mismatch, neglecting the additional 

degradation introduced by the adaptivity that will be 

considered later in this paper.  

To this aim, we carried on extensive Monte Carlo (MC) 

simulations in two different case-studies, as detailed in the 

following. 

• Case study A. In the first case study we assume that the 

disturbance is a L–channel AR (3) process and we 

investigate the robustness of the proposed detector when a 

model order mismatch occurs, namely when the detector is 

build using Q ≠4. Specifically, the disturbance affecting 

the system is generated using the same parameters adopted 

in [1] with L = 3 (HH, VV, HV) polarimetric channels and 

M = 32. 

• Case study B. In the second case study we consider the 

model used in [3], where a Gaussian spectral shape is 

adopted for the disturbance, and we investigate the 

robustness of the proposed detector that is based on a multi-

channel AR model approximation. To this purpose, we 

generate a disturbance characterized by a disturbance 

covariance matrix 𝐌 that can be written as 𝐌 =  𝚷 ⊗ 𝚼 + 

σ𝑛
2 𝐈𝐿𝑀, denoting 𝚷 as the normalized temporal covariance 

matrix shared by all polarimetric channels, 𝚼  as the 

disturbance polarimetric covariance matrix and σ𝑛
2  as the 

noise power, defined with respect to the clutter power at 

HH and VV channels 𝜎𝑑
2  via the clutter-to-noise ratio 

(CNR) of 40dB. Specifically, we assume 𝚷 to be Gaussian 

shaped with one-lag correlation coefficient  𝜚  = 0.95, 

namely the generic element Π𝑚,𝑝 = 𝜚(𝑚−𝑝)2
, (m,p = 0, …, 

M - 1). We consider M = 32 and L = 3 (HH,VV,HV), and 

we assume that the HH and VV channel share the same 

disturbance power level, i.e. 𝜎𝑑,𝐻𝐻
2 = 𝜎𝑑,𝑉𝑉

2 = 𝜎𝑑
2  , 

deliberately set to 𝜎𝑑
2 = 1 , while the HV channel is 

generated with power level 20 dB lower than in HH and 

VV, i.e.  𝜎𝑑,𝐻𝑉
2 = 𝜉𝑑  𝜎𝑑

2,  with 𝜉𝑑 = 0.01. Furthermore, a 

correlation coefficient equal to 𝜌𝐻𝐻/𝑉𝑉 = 0.9 is set between 

the HH and VV channels, while the cross-polarized 

components are assumed independent from the co-

polarized ones, i.e. 𝜌𝐻𝑉/𝐻𝐻 = 𝜌𝐻𝑉/𝑉𝑉 = 0 thus resulting in 

null cross-spectra. The auto- and cross- spectra of the 

available polarimetric channels are reported in Fig. 1. 

Ultimately, the disturbance polarimetric covariance matrix 

can be written as follows 

𝚼 = 𝜎𝑑
2 [

1 𝜌𝐻𝐻/𝑉𝑉 0

𝜌𝐻𝐻/𝑉𝑉 1 0

0 0 𝜉𝑑

] (10) 

In Fig. 2(a), we plot the 𝑃𝑓𝑎 versus threshold obtained in 

case study A when employing the detector in (1) with a grid 

of Q values, encoded by different brown shades and line 

styles.  

  

 
Fig. 1 Power spectra of case study B. 
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Specifically, the reported curves have been obtained using 

the theoretical expression in (4), whereas the markers 

correspond to the results of MC simulations for the Pol-AR-

MF. On the same figure, we also report in green the 𝑃𝑓𝑎 

expression obtained from (2). This curve is representative of 

spectral ‘matched’ case, i.e. a perfect whitening is assumed for 

the disturbance in both temporal and polarization domains. 

Similarly, in Fig. 2(b) we report the results for case study B. 

Fig. 2 (a-b) show that:  

• if a spectral model mismatch occurs, the detection 

threshold must be properly adjusted to guarantee the 

nominal 𝑃𝑓𝑎  and the required modification is largely 

dependent on the mismatch extent. This confirms that the 

CFAR property is not ensured even under the asymptotic 

condition. 

• However, the higher the similarity between the AR process 

used to build the detection test and the true spectral 

characteristics of the disturbance, the closer gets the 

theoretical 𝑃𝑓𝑎  expression to (2), revealing that a better 

disturbance cancellation was performed.  

• Depending on the spectral characteristics of the input 

disturbance, the Q value that allows to have acceptable 

mismatch loss typically changes. As is expected, when the 

detector is fed with an AR disturbance process of order �̅� −
1 (case study A, Fig. 2 (a)), the mismatch loss increases 

when both underestimating or overestimating the model 

order with respect to the exact value Q = �̅� = 4. In contrast, 

when case study B is considered (Fig. 2 (b)), as Q increases, 

the brown curves tend to look alike and to resemble the 

green curve. For instance, in this case, Q ≥ 15 should be 

adopted to achieve an acceptable approximation of the 

Gaussian shaped power spectral density based on a multi-

channel AR model, since a reasonably high temporal 

correlation coefficient was assumed in this case study. 

For the performance evaluation under the H1 hypothesis, 

both Swerling 0 and Swerling I target models are considered, 

in Fig. 3 and Fig. 4, respectively.  The target normalized 

Doppler frequency was set to 𝑓𝑑 = 0.25 and the same set of 

parameters are adopted as in [1]. In particular, when a 

Swerling 0 target model is used (see Fig. 3), the deterministic 

target complex amplitudes vector is set as 𝛂 =

𝑎𝑡[1 e𝑗Δ𝜙𝐻𝐻/𝑉𝑉 √𝜉𝑡e𝑗Δ𝜙𝐻𝐻/𝐻𝑉]
𝑇

, where 𝜉𝑡  = 0.1, 

Δ𝜙𝐻𝐻/𝑉𝑉= π/4, and Δ𝜙𝐻𝐻/𝐻𝑉 = π/2.  

When a fluctuating target model is adopted according to a 

Swerling I model (see Fig. 4), vector 𝛂  is generated as a zero-

mean Gaussian random vector, with covariance matrix 

 𝐌𝑡 = 𝜎𝑡
2 [

1 0 0
0 1 0
0 0 𝜉𝑡

] (11) 

where 𝜉𝑡 has been set to 𝜉𝑡 = 0.1.  

The results are reported for the two case studies A (see Fig. 

3 (a) and Fig. 4(a) ) and B (see Fig. 3 (b)  and Fig. 4(b)) as a 

function of the signal-to-clutter ratio (SCR) at the first 

polarimetric channel, i.e. SCR= |𝑎𝑡|2/𝜎𝑑
2  in Fig. 3 and 

SCR= 𝜎𝑡
2/𝜎𝑑

2 in Fig. 4. The 𝑃𝑓𝑎  has been set to 10−3. 

In all figures, we plot in dash-dot red the 𝑃𝑑  of the 

polarimetric matched filter (Pol-MF, [1]) and we consider it 

as a benchmark of our performance evaluation since this 

detector does not make any assumption on the spectral shape 

of the actual disturbance but is based on the exact knowledge 

of the input disturbance covariance matrix. Also, in each 

figure, we compare the MC simulation results of the Pol-AR-

MF with the appropriate theoretical expressions, i.e. from 

either (8) or (9), depending on the target model, for three 

different values of Q, namely Q = 2, 4 and 8.  

By observing Fig. 3 and Fig. 4, the following 

considerations apply. 

• Both the closed-form and the approximate theoretical 

expressions match well with the results of the MC 

simulations, implying that the obtained 𝑃𝑑  expressions can 

accurately describe the asymptotic detection performance of 

the proposed detector under spectral mismatches. We recall 

that, in case study A, the detector operating with 𝑄 = 4 

represents the ‘spectral matched’ detector investigated in [1] 
. Consequently, in Fig. 2(a) also the exact expression derived 

 
(a) 

 
(b) 

Fig. 2 𝑃𝑓𝑎 versus threshold for different values of 𝑄 for: 

(a) case study A, (b) case study B. 
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in [1] (see eq. (31)) is reported, in solid dark blue line, for 

comparison. This additional comparison further confirms 

that (8) effectively approximates the closed-form solution 

when available, up to low 𝑃𝑑 values.  

• As for Fig. 2, the better the employed AR model 

approximates the true spectral characteristics of the 

disturbance, the better the target detection performance is.  

• As expected, when the case study A is considered (Fig. 3(a) 

and Fig. 4(a)), the ‘matched’ case of Q = 4 is the best 

performing. However, if a limited order mismatch occurs the 

resulting loss is still acceptable, especially when 

overestimating the order of the AR process (see the curves 

for Q = 8). In contrast, a larger performance degradation is 

observed when underestimating the value of Q to be adopted. 

In the case under exam, the highest mismatch loss is obtained 

for Q = 2 and it is about 3 dB with respect to the Pol-MF for 

both the non-fluctuating and fluctuating target models. 

• When the case study B is considered (Fig. 3(b) and Fig. 4(b)), 

the detection performance of the clairvoyant Pol-AR-MF 

detector improves as Q increases. Note that as for the 𝑃𝑓𝑎, 

depending on the temporal correlation properties of the 

disturbance, the Q value required to obtain a good whitening 

and, subsequently, a limited target detection loss with respect 

to the Pol-MF, might significantly change. In the case under 

exam, a loss smaller than 3 dB is reached for Q ≥ 4 for both 

the non-fluctuating and fluctuating target model. 

Although the considerations devised for Fig. 2, Fig. 3 and 

Fig. 4 specifically refer to the considered case studies, similar 

comments apply to alternative cases obtained with a different 

choice of the relevant parameters. For instance, with reference 

to case study B, depending on the position of employed 

Doppler frequency value with respect to the filter temporal 

notch, the behavior might not always be regular with respect 

to Q as the filter sidelobes might not be negligible. However, 

we expect that a Q value that better fits the data exist and that 

this value grows as the temporal correlation of the disturbance 

grows and vice versa. For instance, Fig. 5(a-b) shows the 

results obtained for case study B with the same parameters 

used in Fig. 2(b) and Fig. 4(b) but with a lower one-lag 

correlation coefficient value, i.e. 𝜚 = 0.93.  In Fig. 5 (a), we 

plot the 𝑃𝑓𝑎 versus threshold for a grid of Q values while in 

Fig. 5 (b) we plot the 𝑃𝑑 versus SCR for a Swerling I target 

 
(a) 

 
(b) 

Fig. 3 Pd versus SCR for Swerling 0 target model, 𝑃𝑓𝑎 = 10−3 and (a) case A, (b) case B 

 
(a) 

 
(b) 

Fig. 4 Pd versus SCR for Swerling I target model, 𝑃𝑓𝑎 = 10−3 and (a) case A, (b) case B 

 

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on April 29,2020 at 07:36:34 UTC from IEEE Xplore.  Restrictions apply. 



0018-9251 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAES.2020.2977794, IEEE
Transactions on Aerospace and Electronic Systems

model. By observing Fig. 5(a-b), we confirm that the higher is 

Q, the better is the approximation of the Gaussian shaped 

power spectral density based on a multi-channel AR model. 

However, as a lower temporal correlation is employed, a 

lower number of taps should be adopted to achieve an 

acceptable approximation. In fact, Fig. 5 (a) shows that Q≥10 

allows a good approximation. Furthermore, Fig. 5 (b) shows 

that using Q = 4, the clairvoyant Pol-AR-MF only yields 

approx. 1.5 dB loss with respect to the Pol-MF.  

Summarizing, the analyses of 𝑃𝑓𝑎 and 𝑃𝑑 of Sections II and 

III have clearly demonstrated that: 

1) Spectral model mismatches jeopardize the CFAR 

property for the proposed detection scheme even under 

asymptotic conditions. In other words, a practical strategy for 

the threshold setting (or at least a suitable approximation [1]) 

is no longer available. 

2) The presence of spectral model mismatches might also 

yield significant degradations in term of target detection 

capability.  The observed asymptotic loss is contained within 

few dBs when a limited mismatch is present. However this 

might jeopardize the benefits of the proposed AR model based 

approaches in practical cases where a spectral mismatch 

typically exists and the observed loss should be summed up 

with the adaptivity loss deriving from an operation with a 

limited number P of secondary data.  

IV. MODIFIED AR-BASED POLARIMETRIC 

ADAPTIVE MATCHED FILTER 

We aim at identifying a proper modification to the 

proposed AR model based polarimetric detection scheme to 

make it robust to limited mismatches in the spectral 

characteristics of the disturbance. Most importantly, a 

practical strategy should be devised for the threshold setting 

in order to control the false alarm rate.  

Notice that this is typically the case when no a priori 

information is available on the disturbance affecting the 

received data as in real-world radar systems. Moreover, 

despite effective approaches could be exploited to identify a 

suitable AR model that approximates the actual disturbance 

characteristics [5], the resulting approximation might not be 

perfect thus resulting in a residual spectral model mismatch. 

The theoretical developments in Section II clearly show 

that the considered mismatch is encoded in the covariance 

matrix 𝐃0 of the output random vector �̆�0, namely the vector 

collecting the data after both polarimetric and temporal 

disturbance cancellation, which then undergoes the non-

coherent integration across the polarimetric channels. This 

matrix tends to 2𝐈𝐿 if the AR model adopted for the detector 

design matches or very well approximates the actual 

disturbance characteristics. In contrast, in the presence of 

spectral mismatches, 𝐃0  takes alternative forms that are 

unknown in practice. 

Therefore, an asymptotically CFAR detection scheme can 

be obtained by cascading an additional whitening stage with 

the main stages of the proposed detector aiming at restoring a 

polarimetrically white output �̆�0. Accordingly, the modified 

clairvoyant detector becomes: 

𝑇′𝑃𝑜𝑙−𝐴𝑅−𝑀𝐹 = 2 𝐱0
𝐻𝐁 𝐂 𝐃0

−1 𝐂𝐻𝐁𝐻𝐱0

𝐻1

≷
𝐻0

𝜂′𝐴𝑅−𝑀𝐹 (12) 

where the scaling factor 2 allows a direct comparison with the 

clairvoyant detector in [1]. In the following, the detection 

scheme in (12) will be referred to as the modified polarimetric 

AR model based matched filter (Mod-Pol-AR-MF).  

It is easy to verify that the distribution of the detector in 

(12) coincides with that obtained in the ‘matched’ case 

considered in the companion paper if appropriate 

modifications are applied to the relevant parameters. 

Specifically, under the 𝐻0  hypothesis, we might write 

𝑇′𝑃𝑜𝑙−𝐴𝑅−𝑀𝐹 = ‖ �̆�0𝑤‖2 , where �̆�0𝑤  is the whitened vector  

�̆�0𝑤 = √2(𝐃0
−1/2

)
𝐻

 �̆�0  and �̆�0𝑤~𝒞𝒩(𝟎𝐿×1, 2𝐈𝐿) . Therefore, 

the distribution of the test statistic is a central Chi-squared 

distribution with 2L degrees of freedom, i.e. 

𝑇′𝑃𝑜𝑙−𝐴𝑅−𝑀𝐹  ~ 𝜒2𝐿
2 (0), and the 𝑃𝑓𝑎 is given by (2). 

 
(a) 

(b) 

Fig. 5 Performance evaluation for case study B with 𝜚 = 0.93 at 𝑓𝑑 = 

0.28: (a) 𝑃𝑓𝑎 versus threshold for different values of Q 

(b) Pd versus SCR for Swerling I target model for 𝑃𝑓𝑎 = 10−3 
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Similarly, under the 𝐻1  hypothesis, the theoretical  𝑃𝑑  

expressions derived in [1] for both the non-fluctuating and 

fluctuating target models exactly describe the detection 

performance of the modified detector if the target components 

are properly modified. Specifically, eq. (31) of [1] holds if the 

non-centrality parameter of the noncentral Chi-squared 

distribution of the test statistic is modified as ς′ =

‖√2(𝐃0
−1/2

)
𝐻

 𝐂𝐻𝐁𝐻𝐬‖
2

. On the other hand, eq. (32) of [1] 

applies if 𝜆0, … , 𝜆𝑁−1 denote the N distinct eigenvalues of the 

modified covariance matrix 𝐃0
′′ = 2(𝐃0

−1/2
)

𝐻
𝐃0

′   𝐃0
−1/2

 

where 𝐃0
′  was defined in Section II-B, which yields 𝐃0

′′ =

2𝐈𝐿 + 2 (𝐃0
−1/2

)
𝐻

𝐂𝐻𝐁𝐻 (𝐭𝐭𝐻⨂𝐌t) 𝐁𝐂  𝐃0
−1/2

. These 

modifications basically encode the effect of the additional 

cancellation stage on the target and clutter components and 

must be carefully analyzed in order to understand whether the 

modified detection scheme is able to limit the target detection 

loss due to disturbance spectral model mismatches. 

To make the detection scheme in (12) adaptive, we assume 

that a set of P secondary data is available, 𝐱𝑝 , p = 1, …, P 

which are target-free, independent and identically distributed 

(i.i.d) and share the same statistic of  𝐱0  under the 

𝐻0 hypothesis. As for the adaptive detector presented in [1], 

these data are first exploited to replace the unknown, though 

mismatched, parameters 𝐀𝑚𝑖𝑠  and 𝐑𝑚𝑖𝑠  within 𝐂 and 𝐁 with 

their ML estimates �̂�𝑚𝑖𝑠  and �̂�𝑚𝑖𝑠 , obtained from the P 

training data. Then the test statistic of the modified adaptive 

detector is built as: 

𝑇′𝑃𝑜𝑙−𝐴𝑅−𝐴𝑀𝐹 = 2𝐱0
𝐻�̂� �̂� �̂�0

−1 �̂�𝐻�̂�𝐻𝐱0

𝐻1

≷
𝐻0

𝜂′𝐴𝑅−𝐴𝑀𝐹  (13) 

where the output covariance matrix 𝐃0 is also estimated from 

the secondary data once they underwent the same filtering 

stages applied to the primary data. In particular, according to 

this doubly adaptive detection scheme, we define the output 

of the first adaptive stage for the p-th input vector as 

𝛇𝑝 = �̂�𝐻�̂�𝐻𝐱𝑝 , and we build an estimate of 𝐃0  as  �̂�0 =
1

𝑃
∑ 𝛇𝑝𝛇𝑝

𝐻𝑃
𝑝=1 . We observe that the secondary data to be 

exploited for the estimation of matrix 𝐃0  should not 

necessarily coincide with the secondary data exploited to build 

the first cancellation stage of the detector.  

Notice that, when L = 1, the adaptive transformation 

obtained by using the inverse of matrix �̂�0  would simply 

correspond to the scalar scaling factor of a Cell-Average 

CFAR autogate. In fact, we would have �̂�0
−1 = 𝜛−1, where 𝜛 

represents an estimate of the residual clutter power. This is 

obtained using P training data that underwent the filtering 

stages based on matrices �̂� and �̂�, i.e. 𝜛 =
1

𝑃
∑ |𝜁𝑝|

2𝑃
𝑝=1  with 

𝜁𝑝 =  �̂�𝐻�̂�𝐻𝐱𝑝 (p = 1, …, P). 

When L > 1, the adaptive transformation obtained by using 

the inverse of matrix  �̂�0 corresponds to an additional filtering 

stage based on the polarimetric information extracted at the 

output of the previous filtering stages.  

The introduced whitening stage is expected to make the false 

alarm control capability more robust against residual 

disturbance contributions that endure the first cancellation 

stage, as discussed in the following. 

Under asymptotic conditions, �̂�𝑚𝑖𝑠  and �̂�𝑚𝑖𝑠  are 

asymptotic, though mismatched, estimates obtained from an 

infinite number of secondary data [15]. Consequently, the 

distribution of the test statistic of the adaptive detector in (13) 

tends towards that of the clairvoyant detector in (12) based on 

mismatched parameters. 

Therefore, when exploiting a large number of training data, 

the performance of the modified polarimetric AR model based 

adaptive matched filter (Mod-Pol-AR-AMF) can be 

approximated by its asymptotic performance, as detailed 

above. Note that the CFAR property is restored for the 

modified adaptive detector at least in the asymptotic regime. 

In this regard, we have shown in [1] that a number P of 

training data equal to QL is typically enough to guarantee the 

asymptotic condition for the Pol-AR-AMF when M is 

sufficiently high since the estimation of parameters �̂�𝑚𝑖𝑠 and 

�̂�𝑚𝑖𝑠  benefits from the average performed both across the 

secondary data and the temporal observations within the CPI.  

However, this consideration does not apply to the 

additional stage included in the Mod-Pol-AR-AMF proposed 

in this section. In fact, this stage involves the estimation and 

inversion of a L×L matrix  �̂�0 , based on the available P 

training data. Therefore, an additional adaptivity loss is 

expected when operating with finite P, and this might result in 

a limited control of the 𝑃𝑓𝑎  and degradations of the target 

detection capability. 

To overcome the first issue, the fluctuations in the 

estimation of matrix  �̂�0  can be taken into account in the 

resulting  𝑃𝑓𝑎  expression. To this purpose we make the 

simplified assumption that the first adaptive cancellation stage 

meets the asymptotic condition, namely the outputs 𝛇𝑝 of this 

adaptive stage has the same distribution of the output �̆�𝑝 =

𝐂𝐻𝐁𝐻𝐱𝑝 of the clairvoyant filter. Specifically, under the 𝐻0 

hypothesis, we have 𝛇𝑝~𝒞𝒩(𝟎𝐿×1, 𝐃0), being 𝛇𝑝 , p = 1, …, 

P, a set of statistically independent vectors.  

Under such simplified assumptions, the 

probability density function of the test statistic of the adaptive 

detector in (13), 𝑇′𝑃𝑜𝑙−𝐴𝑅−𝐴𝑀𝐹 = 2 𝛇0
𝐻 �̂�0

−1𝛇0, is well known 

in the technical literature for multivariate analysis as the 

central F-distribution [5]. Specifically, we have 
𝑃−𝐿+1

2𝐿𝑃
𝑇′𝑃𝑜𝑙−𝐴𝑅−𝐴𝑀𝐹~ F (2L, 2(P – L +1)) and a better 

approximation of the 𝑃𝑓𝑎 can be obtained accordingly:  

𝑃𝑓𝑎 =
(1 − 𝜅)𝑃−𝐿+1 

Γ(𝑃 − 𝐿 + 1)
∑

Γ(𝑃 − 𝑙)

Γ(𝐿 − 𝑙)

𝐿−1

𝑙=0

𝜅𝐿−𝑙+1 (14) 

being 𝜂 = 2𝑃
𝜅

(1−𝜅)
 the detection threshold.  

The capability to control the false alarm rate based on (14) will 

be investigated in the following against both numerical and 

real data aiming at understanding the reliability of the adopted 

assumptions in practical cases. 

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on April 29,2020 at 07:36:34 UTC from IEEE Xplore.  Restrictions apply. 



0018-9251 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAES.2020.2977794, IEEE
Transactions on Aerospace and Electronic Systems

In turn, such analysis will also prove the CFAR property of 

the Mod-Pol-AR-AMF even when operating with finite P.  

In addition, it is expected that the additional adaptive stage 

included in the Mod-Pol-AR-AMF might yield a non-

negligible effect on its target detection capability. The 

benefits/drawbacks of this effect will be studied in the 

following Sections both through numerical and experimental 

data analysis.  

V. NUMERICAL RESULTS  

First, we investigate the false alarm rate control provided 

by the Mod-Pol-AR-AMF when using (14) for threshold 

setting. Specifically, we plot in Fig. 6 the measured 𝑃𝑓𝑎 versus 

the nominal 𝑃𝑓𝑎 for case study A and different values of Q, 

namely Q = 2,4,8 and 12, using different training data size, 

namely P = 4, 16 and 192.  

We recall that (14) represents an approximated expression of 

the 𝑃𝑓𝑎  since it relies on perfect estimates of the matrices 

exploited for the first adaptive stage whereas it only accounts 

for the fluctuations in the second adaptive stage. 

Fig. 6 shows that such simplified approach allows a good 

control of the actual 𝑃𝑓𝑎  up to reasonably low false alarm 

rates, at least when the number P of secondary data is 

sufficient to provide approximate asymptotic conditions at the 

first adaptive stage. In this regard, we observe that some 

degradations appear when operating with Q = 12 and a limited 

training data size. Below this value, the capability of 

controlling the 𝑃𝑓𝑎 is ensured both when the spectral model 

mismatch occurs and when it does not (i.e. Q = 4).  

For the performance evaluation under the H1 hypothesis, 

we consider the same Swerling I target model described in 

Section III and we plot the results in Fig. 7(a-b) for case 

studies A and B, respectively. Specifically, we report the 

target detection probability versus SCR for the Mod-Pol-AR-

AMF with Q = 5 and P = 16 or 192. 

Notice that, with the adopted value for the number Q of 

taps, the detection scheme operates under spectral mismatched 

conditions in both considered case studies. In each sub-figure, 

we use the Pol-MF as a benchmark for the performance 

evaluation while the performance obtained with the adaptive 

Pol-GLRT [3], working with P = 2ML = 192 secondary data, 

are also reported for comparison.  

As it is apparent from Fig. 7 (a-b), the Mod-Pol-AR-AMF 

with Q = 5 outperforms the Pol-GLRT when operating with 

the same number of secondary data. In fact, with P = 192, the 

proposed detector approximates its asymptotic version and 

provides performance that is largely comparable to the ideal 

Pol-MF. The loss with respect to the benchmark is negligible 

in case study A (Fig. 7 (a)) where a limited mismatch exists 

between the actual spectral characteristics of the disturbance 

and the model adopted by the detection scheme. In contrast, a 

slightly higher loss is observed in case study B (Fig. 7(b)) 

since the detector is attempting to approximate a Gaussian 

spectral shaped disturbance with a multi-channel AR process 

of order Q –  1 = 4.  

Nevertheless, the resulting loss is smaller than 1dB in the 

considered case study. When significantly reducing the 

number of secondary data, a consistent degradation is 

obtained with the Mod-Pol-AR-AMF which is mostly 

attributed to the fluctuations in the estimation of matrix �̂�0, 

namely the second adaptive stage.  In fact, following the 

results of [1], P = 16 is expected to provide accurate estimates 

of the matrices required at the first adaptive stage when 

operating with Q = 5 and M = 32.  

Anyway, thanks to the limited adaptivity loss, which is the 

typical benefit of parametric approaches [5]-[11] ,the Mod-

Pol-AR-AMF is still able to guarantee better performance 

with respect to the Pol-GLRT operating with a much larger 

training set in both the considered case studies. We 

incidentally observe that this result is obtained with a 

significantly reduced computational effort.  

To complete the analysis, in Fig. 8(a-b) we compare 

different polarimetric detectors in terms of SCR loss with 

respect to the Pol-MF, measured at 𝑃𝑑  = 0.9. The Mod-Pol-

AR-AMF is applied with a grid of Q values and different P 

values. The comparative analysis also includes the 

performance of the Pol-AR-MF in (1) and the Mod-Pol-AR-

MF in (12), which are representative of the asymptotic 

performance of the original proposed detector and the newly 

modified detection scheme, respectively.  

 
Fig. 6 Measured 𝑃𝑓𝑎 versus nominal 𝑃𝑓𝑎 for M = 32, L = 3 (HH, VV, 

HV), different Q values and different training data size. 
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As expected, regardless of the considered case-study, the 

Pol-GLRT yields a loss that only depends on the data size LM 

and number P of secondary data. This loss is equal to 3.1 dB  

and is shown as a horizontal line in Fig. 8 (a) and Fig. 8 (b). 

When comparing the clairvoyant detectors, namely the 

Pol-AR-MF and the Mod-Pol-AR-MF, we observe that the 

additional cancellation stage included by the modified scheme 

allows to limit the spectral mismatch loss investigated in 

Section III. Specifically, when the detector is fed with an AR 

disturbance process of order �̅� – 1 (case study A, Fig. 8 (a)), 

the smallest asymptotic loss with respect to the Pol-MF is 

observed when using Q = �̅� = 4  with both detectors; we recall 

that this loss in this case is solely due to the border effect 

arising from a block-based implementation of the detection 

scheme as discussed in [1].  

In contrast, when underestimating or overestimating the 

order of the AR process, the Mod-Pol-AR-MF limits the 

asymptotic loss thus making the resulting scheme more robust 

to AR model order mismatches with respect to the Pol-AR-

MF. Similar considerations apply to the asymptotic 

performance obtained in case-study B (Fig. 8 (b)) for a 

Gaussian spectral shaped disturbance. In this case, the 

asymptotic performance of the Pol-AR-MF slowly improves 

as the number of taps Q increases. In contrast, using the 

modified detector a much smaller Q is required to achieve 

negligible asymptotic loss with respect to the Pol-MF; for 

instance, in the considered case study B, further increasing Q 

beyond Q=5, does not yield significant improvements in terms 

of target detection capability as the reduced spectral mismatch 

loss is compensated by a larger border effect when a block-

based implementation is considered for the proposed scheme.  

It is then interesting to understand the effect of the 

additional adaptivity loss when operating with a finite number 

P of secondary data based on the proposed Mod-Pol-AR-

AMF.  As is apparent from Fig. 8 (a-b), the Mod-Pol-AR-

AMF with P = 192 basically reaches the asymptotic 

performance for all the considered values of the number Q of 

taps. Therefore, we can conclude that when operating with the 

same number of secondary data, the proposed Mod-Pol-AR-

AMF outperforms the performance of the Pol-GLRT for 

almost every considered value of Q.  

When reducing the size of the training set, an additional 

adaptivity loss is experience by the Mod-Pol-AR-AMF (see 

the curves for P = 32 and P = 16). Notice that the additional 

loss is almost independent of the number of taps since it is 

mostly due to the fluctuations in the estimation of the L×L 

matrix  �̂�0 to be used in the second adaptive stage, which is 

the price to be paid to benefit from the observed advantages. 

  

 
(a) 

 
(b) 

Fig. 7 Pd vs SCR for the Mod-Pol-AR-AMF against a Swerling I target 

model in (a) case study A, and (b) case study B. 

 

 

 
(a) 

 
(b) 

Fig. 8 SCR loss versus Q for different detection schemes against a 

Swerling I target model in (a) case study A and (b) case study B. 
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Nevertheless, in the considered case studies, the Mod-Pol-

AR-AMF retains its performance improvement over the Pol-

GLRT even when using a number of training data of P = 16, 

namely 12 times smaller than the one used for the Pol-GLRT. 

The numerical analyses reported in this section have clearly 

demonstrated the robustness of the proposed modified AR 

based polarimetric detector in both controlling the false alarm 

rate and reducing the detection loss under limited spectral 

model mismatches. These characteristics are further 

investigated in the following against experimental data sets. 

VI. PERFORMANCE ASSESSMENT AGAINST 

 EXPERIMENTAL DATA 

In order to prove its suitability in real world scenarios, the 

performance of the proposed polarimetric detection scheme 

are investigated in the following against two experimental 

data sets collected by different radar systems for diverse 

applications. First, we investigate the performance of the 

proposed Mod-Pol-AR-AMF against sea clutter 

measurements collected by means of an active radar. Then, we 

test its effectiveness against experimental data collected by 

means of a FM radio based passive radar system.  

A. Application to Active Radar Data 

The sea clutter radar measurements employed in this 

subsection have been collected at the Osborne Head Gunnery 

Range (OHGR), Dartmouth, Nova Scotia, Canada, using the 

McMaster IPIX radar [17]. The IPIX radar is a polarimetric 

radar system that alternatively transmits bursts of pulses in 

each of two linear polarizations (H and V) and receives the 

corresponding back-scattered echoes at both polarizations 

with two parallel receiving channels. The experiment 

description as well as information concerning the radar 

parameters, the sea state, etc. are reported in [17], [18]. The 

sea clutter data collected my means of the IPIX radar have 

been widely used in the literature, see e.g. [3],[19]-[23]. 

Specifically, the results reported in this work refer to the 

target-free data file starea4 collected on November 6, 1993. 

The auto- and cross- spectra of the HH, VV and HV channels, 

averaged out over the range bins, are reported in Fig. 9 in 

black, blue and red, respectively. 

 

In order to preliminary investigate the capability of the 

Mod-Pol-AR-AMF of discriminating targets against the 

background, we first consider a sample data sub-set that 

collects the range sweeps from three polarimetric channels, 

i.e. L = 3 (HH, VV, HV), at M = 32 consecutive pulses.  

Before applying the proposed detector, a fictitious point-

like target is injected at range cell 6 and 𝑓𝑑 = 0.25.As for the 

simulated analysis, the target complex amplitudes are set as 

𝛂 = 𝑎𝑡[1 e𝑗Δ𝜙𝐻𝐻/𝑉𝑉 √𝜉𝑡e𝑗Δ𝜙𝐻𝐻/𝐻𝑉]
𝑇
, with 𝑎𝑡 selected to 

guarantee SCR at the first polarimetric channel equal to SCR 

= –25 dB, 𝜉𝑡 = 10, Δ𝜙𝐻𝐻/𝑉𝑉 = 𝜋/4, and Δ𝜙𝐻𝐻/𝐻𝑉 = 𝜋/2.  

We report in Fig. 10(a-d) the normalized range-Doppler maps, 

resulting after applying the Mod-Pol-AR-AMF across the 

available range cell with different Q values, namely Q  = 1, 2, 

4 and 8. Fig. 10 shows that, when using Mod-Pol-AR-AMF 

with Q = 1 (see Fig. 10 (a)), the clutter contribution at the 

considered CPI is such that the target is very unlikely to be 

discriminated. Then, as Q increases, the disturbance level is 

progressively reduced, and the target peak becomes more 

evident thus it could be easily distinguished from the 

background. The performance is comparable from Q = 2 to Q 

= 5, although we do not show all the cases here for brevity. 

Afterwards, as the number of taps further increases, the 

background level starts slowly increasing again and Fig. 10(d) 

shows an example for Q = 8. Similar results are obtained when 

considering different CPIs within the available data. 

Therefore, in the following, we focus our analysis on a limited 

set of choices for the number of taps Q, which also represent 

suitable values for practical applications.  

 For a complete performance assessment, we carried out 

an extensive analysis by evaluating the false alarm rate control 

capability as well as the target detection performance over the 

entire data set. In Fig. 11, we plot the measured 𝑃𝑓𝑎  versus the 

nominal 𝑃𝑓𝑎 for three values of Q, namely Q = 3, 4 and 5 and 

two different numbers of training data, namely P = 192 and 

16. In each sub-plot, we show two different results. In 

magenta, we plot the results obtained when using the original 

proposed detector Pol-AR-AMF by setting the detection 

threshold according to (2), namely by assuming that  (i) a 

perfect matching exists between the spectral model adopted to 

 
Fig. 9 Clutter power spectra at starea4 data file 

 

 

(a) 
 

(b) 

(c) (d) 

Fig. 10 Range – Doppler maps after using the Mod-Pol-AR-AMF  
with P = 32, and (a) Q = 1 (b) Q = 2 (c) Q = 4 (d) Q = 8. 
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build the detector and the actual disturbance characteristics 

and (ii) the Pol-AR-AMF is working in the asymptotic regime, 

where the employed 𝑃𝑓𝑎  expression is valid. Fig. 11 clearly 

shows that the latter assumptions are too strict and that (2) 

would not provide an acceptable capability of controlling the 

false alarm rate for any value of P.  

However, these results also show that, among the set of Q 

values considered in Fig. 11, Q = 4 appears to be the one that 

yields a better false alarm rate control based on the above 

strategy. In turn, this suggests that an AR(3) model provides a 

reasonable approximation of the spectral characteristics of the 

data at this data file [19]. In the same figures, the dark blue 

lines show the results obtained with the Mod-Pol-AR-AMF, 

when selecting the detection threshold according to (14). Fig. 

11 confirms that the modified detector is robust to both 

spectral mismatches and non-asymptotic conditions since a 

quite good control of the 𝑃𝑓𝑎 is guaranteed for all considered 

combinations of values for Q and P up to 𝑃𝑓𝑎 = 10−3 . 

Incidentally, we note that lower 𝑃𝑓𝑎  values could not be 

estimated due to the limited size of the considered data set. 

Afterwards, the 𝑃𝑑 was investigated by injecting a fictitious 

Swerling I target into the sea clutter measurements before 

applying the proposed Mod-Pol-AR-AMF. The same 

parameters adopted in Section III have been used for 

generating the target amplitudes across the polarimetric 

channels. We plot the results in Fig. 12 for 𝑃𝑓𝑎= 10−3and Q = 

4, using different numbers of polarimetric channels , i.e. L = 1 

(HH), L = 2 (HH, VV), L = 3 (HH,VV,HV),   and different 

amount of secondary data. For comparison, we also report the 

performance of the Pol-GLRT operated using P = 2ML in 

dotted black. By observing Fig. 12, we notice that as the 

number of available polarimetric channels increases, the target 

discrimination capability increases and the performance of all  

 
polarimetric adaptive detectors improves. In particular, due to 

the higher SCR at the cross-polarized channel, using L = 3 

(HH, VV, HV) yields a considerable performance 

improvement. When comparing the Mod-Pol-AR-AMF and 

the Pol-GLRT, the results in Fig. 12 largely confirms the 

simulated analyses. In fact, we observe that, using the same 

number of training data (P = 2ML), the Mod-Pol-AR-AMF 

remarkably outperforms the Pol-GLRT. This consideration 

applies even when using much fewer training data (P = 32 or 

16), especially when L = 1 or L = 2 polarimetric channels are 

considered. As expected, the advantage of the Mod-Pol-AR-

AMF over the Pol-GLRT slightly reduces when L = 3; 

however, it can be still regarded as the most suitable approach 

against the considered data set.  

Finally, in Fig. 13 we study the detection performance as a 

function of the Doppler frequency and the target polarimetric 

cross-correlation coefficient 𝜌𝑡 . Specifically, we consider 

𝑃𝑓𝑎 = 10−3 and we inject a fictitious point like target using 

the same model adopted for Fig. 12 with SCR = –20 dB. In 

Fig. 13 (a), we report the 𝑃𝑑 obtained with the proposed Mod-

Pol-AR-AMF as a function of 𝜌𝑡 and 𝑓𝑑 with P = 2ML = 128. 

In Fig. 13 (b) we focus on the extreme values of 𝜌𝑡 and we 

compare the Mod-Pol-AR-AMF with P = 128 against the Pol-

GLRT using the same training data and the Mod-Pol-AR-

AMF operated using P = 16. Specifically, continuous lines 

refer to the case 𝜌𝑡 = 0 while dashed lines are for 𝜌𝑡= 0.99. In 

both subfigures, a logarithmic scale has been used to enhance 

the difference at high 𝑃𝑑 values. Fig. 13 (a-b) confirms that 

the lower is the target polarimetric correlation, the narrower is 

the cancellation notch resulting from the Mod-Pol-AR-AMF. 

This result is well in line with the simulated analysis reported 

in [1], however here the difference between the case of  𝜌𝑡 = 

0 and 𝜌𝑡  = 0.99 is slightly reduced, revealing a lower 

polarimetric correlation for the clutter [3]. 

The same behavior is obtained using the Pol-GLRT, 

however Fig. 13(b) shows that the proposed target detector 

outperforms the Pol-GLRT both when using the same number 

of training data (P = 128) and when using a much lower one  

(P = 16). Incidentally, when using P = 128, the worst result 

 
Fig. 11 Measured 𝑃𝑓𝑎 versus nominal 𝑃𝑓𝑎 for M=32, 

L = 3 (HH,VV,HV), different Q values and different training data 

 
 

 
Fig. 12 𝑃𝑑 versus SCR with 𝑃𝑓𝑎 = 10−3, M  = 32 with different 

polarimetric channels for Q = 4 
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obtained with the Mod-Pol-AR-AMF (𝜌𝑡 = 0, see dashed blue 

curve) still outperforms the best result obtained with the Pol-

GLRT (𝜌𝑡 = 0.99, see continuous black curve). 

B. Application to Passive Radar Data 

In the recent years, the exploitation of polarimetric 

diversity for target detection performance improvement has 

also been considered in passive radar systems [24]-[29] where 

the derived polarimetric adaptive detector can also find 

application, as preliminary shown in [29]. To this purpose, L 

polarimetric channels could be implemented in the passive 

system by connecting L differently polarized surveillance 

antennas to parallel receiving channels that simultaneously 

collect the corresponding signals. 

In such conditions, the proposed Mod-Pol-AR-AMF can 

be applied with only a few adjustments that can be easily 

accommodated into the general signal model adopted in [1]. 

Specifically, in this case, the M ‘temporal observations’ are 

provided by M consecutive samples of the received signals 

included in the CPI. Correspondingly, the temporal steering 

vector 𝐭 coincides with M samples of the signal collected at 

the reference channel, which provides a good copy of the 

transmitted signal. Note that, in passive radar applications, 

long CPIs (in the order of seconds) are typically used to attain 

desired levels of signal-to-noise ratio (SNR). Consequently, 

the number of samples M is usually very high (in the order of 

106) and this prevents the direct application of the Pol-GLRT 

due to (i) the unfeasible requirement of training data, and (ii) 

the prohibitive complexity of required computations. In 

contrast, suitable ML estimates of matrices 𝐀𝑚𝑖𝑠  and 𝐑𝑚𝑖𝑠 to 

be used in the Mod-Pol-AR-AMF can be obtained based upon 

proper signal fragments, assuming that the target contribution 

is negligible with respect to the competing disturbance. The 

estimation of matrix �̂�0, is instead performed using P = 32 

secondary data surrounding the cell under test in the bistatic 

range-Doppler plane. 

For the purpose of our analysis, we use the same data set 

used in [24],[26] and [29] for the case of a FM radio based 

passive radar system. Specifically, the acquisition campaign 

has been conducted near the Fiumicino Airport, Italy, 

exploiting a FM radio transmitter located in Monte Cavo, 

approx. 35 km from the receiver site. Two dual-polarized log 

periodic antennas were used as reference and surveillance 

antennas, being each one equipped with two independent, one 

vertical and one horizontal polarized, outputs. We consider the 

FM channel at 91.2 MHz and we first perform a reference 

signal-based disturbance cancellation stage, separately at each 

channel, aimed at removing the direct signal and multipath 

contributions [21]. Then we report in Fig. 14 the results 

obtained with the proposed detection scheme for a single data 

file among the considered data set. 

In particular, we show the results obtained L = 1 and Q = 

1 in Fig. 14(a) and (b) for the H and V channels, respectively. 

In this case, no adaptive cancellation is performed either in the 

polarimetric and temporal domain and a conventional single-

pol processing scheme is performed. The case of L = 1 and Q > 

1 is reported in Fig. 14(c) and (d) for Q = 3. Finally, the results 

obtained when jointly exploiting the L = 2 polarimetric 

channels and adaptively rejecting the disturbance according to 

the proposed Mod-Pol-AR-AMF with Q = 1 or Q = 3 are 

reported in Fig. 14(e) and (f), respectively. 

Specifically, for each case, we report the test statistics over 

the bistatic range-velocity plane before the application of a 

proper threshold, selected according to a desired value of 

nominal 𝑃𝑓𝑎 . For a fair comparison, the test statistic is mapped 

into the 𝑃𝑓𝑎  setting that would allow the corresponding 

threshold exceeding. In other words, each pixel in the map has 

been scaled so that it represents the minimum value of 

nominal  𝑃𝑓𝑎  to be set for that pixel to yield a detection. 

Additionally, based on the available ATC registrations, all 

targets that were present at the time of the considered data file 

are marked with circles. In detail, we used green circles for 

targets that would be detected for  𝑃𝑓𝑎 ≤ 10−4 and red circles 

for the others. 

 By observing Fig. 14(a-f), the following considerations 

are in order: 

• When the single-pol channels are separately used, and 

processed according to the conventional PCL processing 

scheme, some missed detections are obtained. Moreover, 

by comparing Fig. 14(a) and Fig. 14(b), most of these 

 
(a) 

 
(b) 

Fig. 13 𝑃𝑑 for SCR =  –20 dB, 𝑃𝑓𝑎 = 10−3, L = 2 (HH, VV), M = 32: 

(a) 𝑃𝑑 for Mod-Pol-AR-AMF (P = 128) as a function of 𝑓𝑑 and 𝜌𝑡 (b) 𝑃𝑑 

versus 𝑓𝑑 for 𝜌𝑡 = 0 (continuous lines) and 𝜌𝑡 = 0.99 (dashed lines). 
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missed detections are complementary, which confirms the 

information diversity conveyed by different polarimetric 

channels. Furthermore, the high background level would 

yield a non-negligible number of false alarms even at low 

𝑃𝑓𝑎  (see the number of isolated peaks that do not 

correspond to any target in Fig. 14(a) and (b)). 

• When the single-pol channels are separately used but the 

AR model based detector is performed using Q = 3, (see 

Fig. 14(c-d)), only a slight improvement is obtained with 

respect to the case of Q = 1 at the V channel (see Fig. 

14(d)).  However, the number of isolated peaks that would 

exceed the threshold although not associated to any target, 

is still quite high revealing that the considered strategy is 

not able to effectively reject the disturbance at this data file. 

•  When only exploiting the polarimetric diversity (see Fig. 

14(e)), a lower number of missed detections is obtained and 

the background level is significantly reduced. However, 

note that the farthest target that was recovered in Fig. 14(d) 

would exceed the threshold only at higher 𝑃𝑓𝑎 in this case. 

• Finally, when performing the proposed polarimetric 

adaptive detector using both the H and V channels and Q = 

3 (see Fig. 14(f)), all targets appear as isolated peaks and 

would be correctly detected at 𝑃𝑓𝑎 ≤10-4 . Moreover, the 

number of false alarms has been significantly lowered, 

confirming the capability of the devised approach to 

effectively counteract the disturbance thanks to the 

exploited information diversity. 

These results show the potentiality of the proposed 

polarimetric adaptive detector also for passive radar systems, 

as also preliminary shown in [29]. Clearly, for a complete 

performance assessement, an extensive analysis over the 

entire data set must be carried out. However, despite 

computationally more efficient than the Pol-GLRT, the direct 

implementation of the proposed Mod-Pol-AR-AMF to the 

passive radar case still requires a high computational burden 

that makes the aforementioned extensive analyses unsuitable. 

Therefore, future works will address possible strategies that 

aim at reducing the computational load while accepting small 

losses. 

VII. CONCLUSION 

In this paper, the performance of the polarimetric adaptive 

detector presented in the accompanying paper [1] has been 

extensively studied the case of an input disturbance that does 

not perfectly match the AR model used for the derivation of 

the detection test. The theoretical and simulated analyses have 

revealed the limitations of the original detector under such 

conditions and these include the loss of the asymptotic CFAR 

property and subsequent degradations in terms of target 

detection capability.  Consequently, the authors introduced an 

appropriate modification to the devised detector to make it 

robust to typical spectral mismatches occurring in practical 

situations. Eventually, the effectiveness of the resulting 

detection scheme has been demonstrated against both 

simulated and experimental data, where the modified detector 

was proven to guarantee a remarkable control of the false 

alarm rate and target detection performance outperforming the 

traditional detection schemes. 

 
(a) 

 

 
(c) 
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(b) 

 
(d) 

 
(f) 

Fig. 14 Minimum 𝑃𝑓𝑎 to set to detect each bin, using Mod-Pol-AR-AMF with (a) L = 1(H) and Q = 1; (b) L = 1(V) and Q = 1; 

(c) L = 1(H) and Q = 3; (d) L = 1(V)  and Q = 3 (e) L = 2 (H,V) and Q = 1; (d) L = 2 (H,V) and Q = 3. 
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APPENDIX 

APPROXIMATION OF THE ASYMPTOTIC PD  

FOR NON-FLUCTUATING TARGET 

In this Appendix, we look for Prob{‖�̆�0‖2 > 𝜂}, where 

vector �̆�0 is a complex Gaussian random variable with mean 

vector 𝛓 and covariance matrix 𝐃0. To this end, we follow the 

main steps of the procedure reported in [16], with reference to 

the problem under consideration.  

For the results in [16] to be applied, we first write vector 

�̆�0  as �̆�0 = 𝛓 + 𝛖, where 𝛓~𝒞𝒩(𝟎𝐿×1, 𝐃0). Then we rewrite 

the test statistic as 𝑇𝑃𝑜𝑙−𝐴𝑅−𝑀𝐹 = (𝛓𝑤 + 𝛖𝑤)𝐻 𝐃0(𝛓𝑤 + 𝛖𝑤), 

denoting 𝛓𝑤 = (𝐃0
−1 2⁄

)
𝐻

𝛓  as a white complex Gaussian 

random vector, i.e. 𝛓𝑤~𝒞𝒩(𝟎𝐿×1, 𝐈𝐿) and 𝛖𝑤 = (𝐃0
−1 2⁄

)
𝐻

𝛖. 

Moreover, let us consider the eigenvalue decomposition of 

matrix  𝐃0 , i.e.  𝐃0 = 𝐊𝚲𝐊𝐻  and let 𝜆0 … , 𝜆𝐿−1  denote the 

eigenvalues of  𝐃0.  

According to this model, we look for the cumulative 

distribution function (CDF) of 𝑇𝑃𝑜𝑙−𝐴𝑅−𝑀𝐹  which can be 

written as follows [16] 

𝐹0(𝑡) =
1

2𝜋
∫

𝑒𝑡(𝑗𝜔+𝛽)

(𝑗𝜔 + 𝛽)

 𝑒−𝑐(𝜔)

|𝐈𝐿 + (𝑗𝜔 + 𝛽)𝚲| 
𝑑𝜔

∞

−∞

 

 

(β > 0, t > 0)  

(15) 

with 𝑐(𝜔) = 𝛖𝐻 (𝐈𝐿 +
1

𝑗𝜔+𝛽
𝚲−1)

−1

𝛖, 𝛖 = 𝐊𝐻𝛖𝑤.  

A closed form solution for the integral in (15) cannot be 

obtained in the general case. Therefore, as in [16], we derive 

an approximation of the sought 𝑃𝑑 expression by resorting to 

the saddle point (SP) technique [30]. To this end, we define  

𝑓(𝜔) = 𝑡(𝑗𝜔 + 𝛽) − ln(𝑗𝜔 + 𝛽)

+ ∑|�̿�𝑙|
2

𝐿−1

𝑙=0

[
1

1 + (𝑗𝜔 + 𝛽)𝜆𝑙

− 1]

− ∑ ln[1 + (𝑗𝜔 + 𝛽)𝜆𝑙]

𝐿−1

𝑙=0

 

(16) 

and, consequently, we write (15) as 

𝐹0(𝑡) =
1

2𝜋
∫ 𝑒𝑓(𝜔)

∞

−∞

𝑑𝜔 (17) 

To apply the SP technique, we first differentiate 𝑓(𝜔) and 

look for the only real solution of �̇�(𝜔) = 0 , denoted as 𝜔0 =
𝑗(𝛽 + 𝑝0) , in the region p 𝜖 (−∞, 0). 

 

1 𝑃𝑑 = 1 −  𝐹0(𝜂) ≈ 1 −
1

√2𝜋
|− ∑ {

2|�̿�𝑙|2𝜆𝑙
2

[1+(𝑗𝜔0+𝛽)𝜆𝑙]3 +
𝜆𝑙

2

[1+(𝑗𝜔0+𝛽)𝜆𝑙]2}𝐿−1
𝑙=0 −

1

(𝑗𝜔0+𝛽)2|
−

1

2
× exp {𝜂(𝑗𝜔0 + 𝛽) −

ln(𝑗𝜔0 + 𝛽) + ∑ |�̿�𝑙|
2𝐿−1

𝑙=0 [
1

1+(𝑗𝜔0+𝛽)𝜆𝑙
− 1] − ∑ ln[1 + (𝑗𝜔0 + 𝛽)𝜆𝑙]

𝐿−1
𝑙=0 } 

(Errore. 

Solo 

documento 

principale.) 

𝑓̇(𝜔) = − ∑
𝑗𝜆𝑙

1 + (𝑗𝜔 + 𝛽)𝜆𝑙

[1 +
|�̿�𝑙|

2

1 + (𝑗𝜔 + 𝛽)𝜆𝑙

] 

𝐿−1

𝑙=0

+ 𝑗𝑡 −
j

(𝑗𝜔 + 𝛽)
= 0 

(18) 

Now we approximate 𝑓(𝜔) using a second order Taylor 

expansion around 𝜔0, yielding  

𝐹0(𝑡) ≈
𝑒𝑓(𝜔0)

√2𝜋|𝑓̈(𝜔0)|

 
(19) 

where 𝑓̈(𝜔0) is derived as 

𝑓̈(𝜔0)

= − {
1

(𝑗𝜔0 + 𝛽)2

+ ∑
𝜆𝑙

2

[1 + (𝑗𝜔0 + 𝛽)𝜆𝑙]
2

[
2|�̿�𝑙|

2

1 + (𝑗𝜔0 + 𝛽)𝜆𝑙

+ 1]

𝐿−1

𝑙=0

} 

(20) 

Therefore, by using (20) and by evaluating (16) in  𝜔0  we 

obtain (21),1which can be easily converted in (8). 
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