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� Sleep deprivation (SD) affects resting EEG sources in healthy subjects.
� Modafinil partially recovers those SD effects.
� Those EEG sources are related to brain arousal and vigilance.

a b s t r a c t

Objective: It has been reported that sleep deprivation affects the neurophysiologicalmechanisms underpin-
ning the vigilance. Here, we tested the following hypotheses in the PharmaCog project (www.pharmacog.
org): (i) sleep deprivation may alter posterior cortical delta and alpha sources of resting state eyes-closed
electroencephalographic (rsEEG) rhythms inhealthy young adults; (ii) after the sleepdeprivation, a vigilance
enhancer may recover those rsEEG source markers.
Methods: rsEEGdatawere recorded in36healthyyoungadultsbefore (Pre-sleepdeprivation) andafter (Post-
sleep deprivation) one night of sleep deprivation. In the Post-sleep deprivation, these data were collected
after a single dose of PLACEBO or MODAFINIL. rsEEG cortical sources were estimated by eLORETA freeware.
Results: In thePLACEBOcondition, the sleepdeprivation inducedan increaseandadecrease inposteriordelta
(2–4 Hz) and alpha (8–13 Hz) source activities, respectively. In the MODAFINIL condition, the vigilance
enhancer partially recovered those source activities.
Conclusions: The present results suggest that posterior delta and alpha source activities may be both related
to the regulation of human brain arousal and vigilance in quiet wakefulness.
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Significance: Future research in healthy young adults may use this methodology to preselect new symp-
tomatic drug candidates designed to normalize brain arousal and vigilance in seniors with dementia.

� 2019 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights
reserved.
1. Introduction

Alzheimer’s disease (AD) is a chronic neurodegenerative disease
characterized by cognitive (e.g. typically memory loss), function-
ing, and behavioral abnormalities. The typical amnesic manifesta-
tion of the AD is related to an impairment of the cholinergic
basal forebrain, thalamocortical system, associative parietal-
temporal areas, and the circuits linking the hippocampus, entorhi-
nal cortex, and amygdala (Daulatzai, 2010). To date, there are no
disease-modifying drugs that can prevent, care or even slow down
the AD pathological processes. Instead, there are two therapeutic
classes licensed for the symptomatic treatment of the cognitive
deficits in AD, namely the acetylcholinesterase inhibitors and a
NMDA receptor glutamatergic antagonist. Unfortunately, these
drugs have only modest effects on AD symptoms, and more
research is needed to advancing the treatment of the disease
(Babiloni et al., 2013a).

How to improve the early stages of the AD drug discovery path-
way? This objective may be achieved by procedures showing that a
given compound induces a beneficial recovery in healthy young
volunteers from an alteration of brain activity and cognitive pro-
cesses, similar to those observed in the disease, artificially due to
a challenging procedure (Widlöcher, 1996; Babiloni et al., 2014a).
In principle, this kind of challenge models may overcome the
inherent difficulty of detecting significant improvements in brain
activity and cognitive performance in normal healthy subjects.
Examples of this kind of challenges have previously been limited
to pharmacological interventions such as the administration of
antagonists of the cholinergic or glutamatergic neurotransmission
such as scopolamine or ketamine (Ebert et al., 2001; Snaedal et al.,
2010; Horacek et al., 2010).

Sleep deprivation shows features of interest to be considered as
a potential transient and reversible challenge model for the symp-
tomatic drug discovery pathway. Indeed, a bulk of previous studies
revealed that one night or more of sleep deprivation does induce
an alteration of vigilance (Cassé-Perrot et al., 2016). This alteration
would deteriorate cognitive processes such as executive functions
and attention, working and episodic memory, visuospatial abilities,
and language as a function of the sleep deprivation duration, task
difficulty, the procedures for the measurement of cognition, gen-
der, and subject’s age (Killgore et al., 2008; Cassé-Perrot et al.,
2016). A pharmacological intervention with caffeine (i.e. blocking
of adenosine receptors and inhibition of phosphodiesterase), dex-
troamphetamine (i.e. norepinephrine and dopamine agonist), and
Modafinil (i.e. reuptake inhibitor dopamine agonist) restored the
alertness in the Post-sleep deprivation period in a complex manner
with reference to the kind of the cognitive demands (Killgore et al.,
2009) and gender. The Modafinil had clear effects on both women
and men (Killgore et al., 2008).

It is well known that vigilance in the sleep-wake axis affects
psychomotor performance and is influenced by the interaction of
a sleep/wake dependent homeostatic process and a circadian pro-
cess of general arousal and body temperature ( Achermann, 2004;
Van Dongen and Dinges, 2005). The sleep homeostatic process
induces a pressure for sleeping during the wakefulness, which is
dissipated during the sleep. The circadian rhythms yield a waning
and waxing of pressure for the wakefulness over the day. During
total sleep deprivation, these two processes cause psychomotor
performance to deteriorate over time.

The effects of the sleep deprivation on the neurophysiological
mechanisms underpinning the vigilance were mostly unveiled by
studies using the recording of resting state electroencephalo-
graphic (rsEEG) rhythms. It has been reported that the sleep depri-
vation for 38–40 h altered the amplitude (power) of the scalp
rsEEG rhythms in the relaxed wakefulness at some specific fre-
quency bands such as delta (<4 Hz), theta (4–8 Hz), alpha (8–
12 Hz), and beta (12.25–25.0 Hz) rhythms (Cajochen et al., 1995;
Corsi-Cabrera et al., 1996, 2003; Aeschbach et al., 1997; Dumont
et al., 1999; Mander et al., 2010). Delta and theta rhythms were
characterized by a similar Post-sleep deprivation time course,
reflecting both a circadian modulation and the duration of the time
awake (Aeschbach et al., 1997; Dumont et al., 1999; Cajochen et al.,
2001; Corsi-Cabrera, 2003). Less clear was that correlation for the
alpha rhythms, due to a possible nonlinear interaction between
the homeostatic sleep process and the circadian rhythms
(Aeschbach et al., 1997; Dumont et al., 1999). The power of the
beta rhythms exhibited a wake-dependent increase (Aeschbach
et al., 1997; Dumont et al., 1999). Noteworthy, the sleep depriva-
tion increased the power of the theta rhythms and decreased that
of the alpha rhythms (Dumont et al., 1999; Corsi-Cabrera, 2003).

The clinical neurophysiological interest of the sleep deprivation
challenge relies on the fact that its effect on rsEEG rhythms is rem-
iniscent of that of AD (Giaquinto and Nolfe, 1986; Breslau et al.,
1989; Briel et al., 1999). Previous studies have shown that the
power (i.e. spectral power density) of eyes-closed rsEEG rhythms
was abnormal in patients with AD and amnesic mild cognitive
impairment (MCI) as a prodromal stage of the disease (Lehmann
et al., 2007; Bonanni et al., 2008; Ommundsen et al., 2011). Com-
pared with healthy subjects, AD and MCI patients were character-
ized by higher power of the widespread delta rhythms (0–4 Hz)
while a lower power was found in the posterior alpha rhythms
(8–12 Hz; Huang et al., 2000; Dierks et al., 1993; Jeong, 2004;
Moretti et al., 2004). Even whether those rsEEG rhythms may not
directly reflect the specific pathophysiological markers of AD
(Dubois et al., 2014), they are promising topographical markers
indexing the thalamocortical functional reserve underpinning the
regulation of brain arousal in quiet vigilance.

An important methodological limitation is that rsEEG scalp
topography is influenced by the blurring effects of the reference
electrode and head volume conduction (Nunez, 1987). To mitigate
this limitation, a promising approach stems upon an estimation of
cortical sources of eyes-closed rsEEG rhythms by the low-
resolution brain electromagnetic tomography (LORETA). LORETA
uses a brain source space coregistered to Talairach brain atlas
that is typically adopted in neuroimaging studies in humans
(Pascual-Marqui et al., 1994).

LORETA methodology has been extensively used in the EEG
module of the European FP7-IMI (Innovative Medicine Initiative)
project with the short title ‘‘PharmaCog” (2010–2015; www.phar-
macog.org). In the PharmaCog EEG studies, we have shown that in
AD patients at the stages of mild cognitive impairment (ADMCI)
and dementia (ADD), posterior cortical sources of delta (2–4 Hz)
and alpha (8–13 Hz) rhythms recorded in quiet wakefulness
were abnormal. More specifically, compared with normal elderly
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subjects, ADMCI and ADD patients were characterized by less
reduction (reactivity) in cortical alpha sources from eyes-closed
to -open in the resting state condition, namely an experimental
paradigm modulating subject’s vigilance (Babiloni et al., 2010).
Furthermore, posterior delta and alpha cortical source activities
in the eyes-closed condition were more abnormal in ADD than
ADMCI patients and were linearly correlated with the atrophy of
normalized cortical gray matter and measurements of global cog-
nitive status (Babiloni et al., 2013). Moreover, posterior cortical
sources of delta and alpha rhythms in the eyes-closed condition
were more abnormal in ADMCI than MCI patients not suffering
from AD, thus confirming the strict relationship of those EEG
source alterations and disease neuropathology (Galluzzi et al.,
2016; Jovicich et al., 2019).

Unfortunately, those previous PharmaCog findings did not clar-
ify whether abnormal posterior cortical delta sources in AD
patients may be related to changes in the level of vigilance in quiet
wakefulness, as a possible reflection of the effects of disease neu-
ropathologies on neurophysiological mechanisms regulating brain
arousal. Traditionally, cortical delta rhythms are considered as an
epiphenomenon in healthy subjects resting in quiet wakefulness,
so the mentioned abnormalities in posterior cortical delta sources
may merely reflect brain neuropathology in AD patients without
implications on the regulation of the vigilance. This issue is clearly
relevant for the interpretation of the effects of an intervention on
posterior cortical delta sources in testing new symptomatic drugs
improving vigilance in AD patients.

Keeping in mind the above open issue, the present study tested
the following two hypotheses: (i) one night of sleep deprivation
may alter cortical sources of resting state eyes-closed electroen-
cephalographic (rsEEG) rhythms in healthy young adults; (ii) after
the sleep deprivation (Post-sleep deprivation), a single dose of a
drug enhancing vigilance (Modafinil) may recover those rsEEG
source markers. These hypotheses globally evaluated if rsEEG
source activities at delta (2–4 Hz) and alpha (8–13 Hz) frequencies
were both related to the regulation of human brain arousal and
vigilance in quiet wakefulness.
Table 1
Mean values (±standard deviation, SD) of the demographic data in the young healthy
(male) adults enrolled in the present study. All subjects underwent a screening
including medical interview, physical examination, vital signs, blood chemistry and
hematology tests, electrocardiogram (ECG) and magnetic resonance imaging (MRI).
The subjects affected by chronic systemic illnesses (e.g. diabetes mellitus), receiving
chronic drugs, with a history of previous or present neurological diseases were
excluded. They also underwent psychological interview to include subjects without
psychiatric illness, no history of alcohol and drug abuse, good sleeping habits and
cognitive capacities to perform cognitive tasks. They also had no first-degree relative
diagnosed with a psychiatric disorder.

Young healthy

N 36
Age (years) 32.4 ± 4.0 SD
Education (years) 16.9 ± 2.1 SD
Gender (Male/Female) 36/0
Handedness (Right/Left) 36/0
2. Materials and Methods

2.1. Subjects

The sample size calculation was based on previous evidence
showing the effect of sleep deprivation on cognitive tasks in
humans (Groeger et al., 2008; Lo et al., 2012). The expected effect
size was set to 0.70. The number of subjects estimated was of 27,
considering a one-sided alpha level of 0.05, a power of 80%, and
the mentioned cross-over design. Estimating a subjects’ withdrawn
rate of about 25%, the sample size of 36 right-handed (male)
healthy young subjects was determined. In this line, 36 healthy
volunteers, right handed were enrolled. These subjects were
recruited by the following qualified clinical recording units of the
PharmaCog project: Universities of Lille 2, Toulouse, and Marseille
(France). At this early stage of the research, we selected only male
subjects to obtain results comparable with those of previous refer-
ence studies on the effects of sleep deprivation and Modafinil on
rsEEG rhythms (i.e. Chapotot et al., 2003, Bodenmann et al.,
2009; James et al., 2011). Furthermore, we did not enroll female
subjects to avoid (i) interactions between sleep deprivation, Mod-
afinil, and menstrual cycle and (ii) possible effects of the sleep
deprivation and the pharmacological manipulation on embryos in
case of unaware conception in the long period of the experiments
(cross-over design).

Local or national institutional Ethics Committees approved the
study. Participants received the information and the opportunity
to give their free and informed consent to participate in research
in line with the Code of Ethics of the World Medical Association
(Declaration of Helsinki), the national regulations, and the stan-
dards established by the local Institutional Review Board. All sub-
jects underwent a screening including medical interview, physical
examination, vital signs, blood chemistry and hematology tests,
ECG and MRI. The subjects with chronic systemic illnesses (e.g. dia-
betes mellitus), receiving chronic drugs, with a history of previous
or present neurological disease were excluded. They also under-
went psychological interview to include subjects without psychi-
atric illness (no relatives with psychiatric illness), no history of
alcohol and drug abuse, good sleeping habits and cognitive capac-
ities to perform cognitive tasks.

Table 1 reports mean values (±standard deviation, SD) of the
demographic data in the young healthy (male) adults enrolled in
the present study.
2.2. rsEEG recordings

The EEG signals were recorded, for at least 5 min, from the sur-
face of the scalp according to the International 10–20 System. A
minimum of 128 Hz sampling frequency was used with a bandpass
between 0.01 Hz and anti-aliasing frequency limits. It was pre-
ferred the linked-earlobe reference electrode, but not obligatory,
to align with the facilities and standards of the internal protocols
of the clinical recording units (i.e. Universities of Lille 2, Toulouse,
and Marseille, France). Usually, a ground electrode was placed
between the AFz and Fz electrodes, and the impedance of all elec-
trodes was kept below 5 KOhm. Eye movements and blinks were
also recorded with vertical and horizontal electro-oculographic
electrodes (EOG, 0.3 Hz - anti-aliasing frequency limits).

In all participants, Tthe rsEEG-EOG data were recorded in the
late morning (10:00–11:00 a.m.) to minimize drowsiness related
to the circadian rhythm. Moreover, an operator checked on-line
the subject and the rsEEG traces to keep constant the level of vig-
ilance. Of note, the rsEEG data were collected before (Pre-sleep
deprivation) and after (Post-sleep deprivation) one night of sleep
deprivation (Fig. 1), immediately followed by a single dose
(100 mg) of placebo or Modafinil (pseudorandom order of the PLA-
CEBO and MODAFINIL interventions).
2.3. Preliminary analysis of the rsEEG data

The following steps were performed on the rsEEG data prelim-
inarily: (i) band-passing to avoid aliasing, (ii) down-sampling to
128 Hz (when recorded with higher sampling frequency), (iii) seg-
mentation in consecutive 2-s rsEEG epochs, and (iv) off-line analy-
sis. In case of presence of operator’s markers indicating verbal



Fig. 1. Experimental paradigm. The neuropsychological assessment and the rsEEG-EOG recordings were performed, in all subjects, in the late morning (10:00–11:00 a.m.),
before (Pre-sleep deprivation) and after (Post-sleep deprivation) one night of sleep deprivation. Sleep deprivation was immediately followed by a single dose (100 mg) of
placebo or Modafinil (pseudorandom order of the PLACEBO and MODAFINIL interventions).
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monitions, drowsiness, eyes movements, arm/hand actions or
other disturbing events (e.g. head movements, sway, sweat), the
rsEEG epochs were rejected. Moreover, the rsEEG epochs with
blinking artifacts were preliminarily identified by an automatic
computerized process and corrected from the EOG activity by an
autoregressive method (Moretti et al., 2003). Subsequently, two
independent experimenters – blind to experimental condition at
the time of the rsEEG analysis – manually checked the rsEEG
epochs recognized for further analysis. The rsEEG epochs with
traces of a sleep interference (an on-going increase in theta, spin-
dles, K complex) were rejected. Finally, the artifact-free rsEEG
epochs were re-referenced to the common average to harmonise
the rsEEG data gathered using different reference electrodes.

After the preliminary procedure for the selection of individual
artifact-free rsEEG datasets, all subjects (N = 36) contributed to
address the first working hypothesis that sleep deprivation (one
night) may alter cortical sources of rsEEG rhythms in the PLACEBO
condition. Instead, 33 subjects were used to address the second
working hypothesis that after the sleep deprivation, a single dose
of Modafinil may recover those rsEEG markers (PLACEBO vs. MOD-
AFINIL condition). Indeed, rsEEG recordings in three individual
datasets of the MODAFINIL intervention (1 Pre-sleep and 2 Post-
sleep deprivation) showed an insufficient number of artifact-free
EEG epochs and were discharged for further analysis.
2.4. Spectral analysis of the rsEEG data

The power density of the rsEEG rhythms (frequency resolution:
0.5 Hz) was computed with standard digital FFT-based power spec-
trum analysis (Hanning windowing function, Welch technique, no
phase shift) using a home-made software getted under Matlab 6.5
(Mathworks Inc., Natick, MA).

Seven frequency bands of interest, used in several relevant EEG
studies on dementia (Babiloni et al., 2004, 2006a, b, c, 2013a, b, c,
2014b, 2017; Besthorn et al., 1997; Chiaramonti et al., 1997;
Gianotti et al., 2007; Holschneider et al., 1999; Kolev et al., 2002;
Jelic et al., 1996; Leuchter et al., 1993; Nobili et al., 1999;
Rodriguez et al., 1999),were considered: delta (2–4 Hz), theta
(4–8 Hz), alpha 1 (8–10.5 Hz), alpha 2 (10.5–13 Hz), beta 1
(13–20 Hz), beta 2 (20–30 Hz), and gamma (30–40 Hz). Sharing a
frequency bin by two contiguous bands is a widely accepted
procedure, based on the assumption of a possible partial functional
overlapping of two adjacent frequency bands.
Due to the variability of beta and gamma peaks in the power
spectra of different subjects, we could not use narrow frequency
bands for high-frequency bands (i.e. beta 1, beta 2, and gamma).
For this, some limitations may affect the presented results for beta
and gamma bands such as the sensitivity of EEG spectral analyses
for large bands (Szava et al., 1994).
2.5. Cortical sources of rsEEG rhythms as computed by eLORETA

An advanced version of LORETA (low-resolution brain electro-
magnetic tomography; Pascual-Marqui et al., 1994) software,
developed in 2007 (exact LORETA, eLORETA; Pascual-Marqui,
2007) was used to exactly localize the cortical source activity with
minimum localization error, less complexity and more validation
which include minimum norm. This software uses a head volume
conductor model constituted by three concentric spheres: scalp,
skull, and brain. In the outermost compartment (i.e. scalp), explor-
ing electrodes can be virtually positioned to give EEG data as an
input to the source estimation (Jurcak et al., 2007). The brain
model is based on a realistic cerebral shape taken from a template
typically used in the neuroimaging studies, namely that of the
Montreal Neurological Institute (MNI152 template; Mazziotta
et al., 1995). The eLORETA solves the so-called EEG inverse prob-
lem in the mentioned head volume conductor model estimating
‘‘neural” current density values at any cortical voxel for each fre-
quency bin. The input is the EEG spectral power density calcolated
at scalp electrodes. The output is the electrical brain source space
formed by 6239 gray matter voxels with 5 mm resolution (Fuchs
et al. 2002). An equivalent current dipole is placed in each voxel.
For each voxel, the eLORETA package provides the Talairach coor-
dinates, the lobe, and the Brodmann area (BA).

Afterwards, to reduce inter-subject variability and to fit EEG
power density in a Gaussian distribution (Leuchter et al., 1993),
this solution at each voxel (as the mean of the x, y, and z vectors)
was normalized to the power density averaged across all the fre-
quencies (0.5–45 Hz) and across all 6239 voxels of brain volume.

Due to the low spatial resolution of the present EEG method-
ological method (i.e. 19 scalp electrodes), the normalized eLORETA
solutions were averaged within large cortical macro-regions of
interest (ROIs): frontal, central, parietal, occipital, temporal, and
limbic. Table 2 reports the list of the BAs used for the ROIs consid-
ered in the present study. For the present study, eLORETA solutions
were estimated with a frequency resolution of 0.5 Hz, namely, the
maximum frequency resolution allowed using 2-s artefact-free



Table 2
Regions of interest (ROIs) used for the estimation of the cortical sources of the resting
state eyes-closed electroencephalographic (rsEEG) rhythms in the present study. Any
ROI is defined by some Brodmann areas of the cerebral source space in the freeware
used in this study, namely the exact low-resolution brain electromagnetic source
tomography (eLORETA).

BRODMANN AREAS INTO THE REGIONS OF INTEREST (ROIs)

Frontal 8, 9, 10, 11, 44, 45, 46, 47
Central 1, 2, 3, 4, 6
Parietal 5, 7, 30, 39, 40, 43
Temporal 20, 21, 22, 37, 38, 41, 42
Occipital 17, 18, 19
Limbic 31, 32, 33, 34, 35, 36
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rsEEG epochs. The frequency bands of interest (i.e. from delta to
gamma) were estimated as previously defined in all subjects.
2.6. Statistical analyses

Two statistical sessions were performed by the commercial tool
STATISTICA 10 (StatSoft Inc., www.statsoft.com). In both statistical
sessions, an ANOVA was performed (p < 0.05). The degrees of free-
dom were corrected by the Greenhouse-Geisser method when
appropriate. Duncan test was used for post-hoc comparisons
(p < 0.05).

The first statistical design tested the hypothesis that the sleep
deprivation challenge would affect the cortical source activity of
rsEEG rhythms. The regional normalized eLORETA current density
in the PLACEBO condition was used as a dependent variable. The
ANOVA factors (levels) were Time (Pre-sleep deprivation, Post-
sleep deprivation), Band (delta, theta, alpha 1, alpha 2, beta 1, beta
2, gamma), and ROI (central, frontal, parietal, occipital, temporal,
limbic). The hypothesis would be confirmed by the following two
statistical results: (i) a statistical ANOVA effect including the factor
Time (p < 0.05); (ii) a post-hoc test indicating statistically signifi-
cant differences in the eLORETA cortical sources with the pattern
Pre-sleep deprivation– Post-sleep deprivation (p < 0.05).

The second statistical design tested the hypothesis that a single
dose of Modafinil would mitigate the alteration of the cortical
source activity of rsEEG rhythms induced by the sleep deprivation.
The difference in the regional normalized eLORETA current density
between Post-sleep deprivation and Pre-sleep deprivation (Post-
sleep deprivation minus Pre-sleep deprivation) was used as an
input. The ANOVA factors (levels) were Condition (PLACEBO, MOD-
AFINIL), Band (delta, theta, alpha 1, alpha 2, beta 1, beta 2, gamma),
and ROI (central, frontal, parietal, occipital, temporal, limbic). The
hypothesis would be confirmed by the following two statistical
results: (i) a statistical ANOVA effect including the factor Condition
(p < 0.05); (ii) a post-hoc test indicating statistically significant dif-
ferences in the eLORETA cortical sources with the pattern PLACE-
BO–MODAFINIL (p < 0.05).
3. Results

Fig. 2 illustrates the grand average of the normalized eLORETA
solutions (i.e. normalized dipole current density at cortical voxels)
modeling the activity of distributed EEG cortical sources for (i) two
conditions (PLACEBO, MODAFINIL), (ii) two times (Pre-sleep depri-
vation, Post-sleep deprivation), and (iii) seven bands (delta, theta,
alpha 1, alpha 2, beta 1, beta 2, and gamma). In both the conditions
(PLACEBO, MODAFINIL), the Pre-sleep deprivation period was char-
acterized by delta sources with a widespread moderate activity,
and alpha 1 sources with the maximal activity distributed in pari-
etal, occipital, and temporal regions. Theta and alpha 2 sources
showed a moderate activity when compared to that of alpha 1
sources. Finally, beta 1, beta 2, and gamma sources were character-
ized by lowest activity. In both conditions (PLACEBO, MODAFINIL),
the alpha 1 source activity was lower in the Post- than Pre-Sleep
deprivation. This effect was greater in the PLACEBO than the MOD-
AFINIL condition as a possible beneficial impact of the Modafinil
over placebo. Finally, we reported that in the PLACEBO (but not
MODAFINIL) condition, the delta source activity was greater in
the Post- than Pre-Sleep deprivation as another possible index of
the beneficial effect of the Modafinil.

Fig. 3 shows the mean values (±SE) of the eLORETA cortical
source activity of the rsEEG rhythms for the following factors: (i)
Time (Pre-sleep deprivation, Post-sleep deprivation; PLACEBO con-
dition), (ii) Band (delta, theta, alpha 1, alpha 2, beta 1, beta 2,
gamma), and (iii) ROI (central frontal, parietal, occipital, temporal,
limbic). Notably, the rsEEG source activity differed across various
cortical macro regions, thus supporting the idea that scalp rsEEG
rhythms are generated by a distributed pattern of cortical sources.
The ANOVA showed a statistically significant interaction effect of
the factors Time, Band, and ROI (F (30, 1050) = 6.5, p < 0.00001).
Duncan post-hoc test (p < 0.05) provided the following results: (i)
the eLORETA cortical source pattern Post-sleep deprivation > Pre-
sleep deprivation time was fitted by parietal delta sources
(p = 0.01); (ii) the eLORETA cortical source pattern Post-sleep
deprivation < Pre-sleep deprivation time was fitted by central
(p = 0.000001), parietal (p = 0.00001), occipital (p = 0.00001), tem-
poral (p = 0.000001), and limbic (p = 0.000005) alpha 1 sources as
well as parietal (p = 0.00001), occipital (p = 0.000005), and limbic
(p = 0.05) alpha 2 sources. Furthermore, the effect sizes (Cohen’s
d) were calculated for the above nine mentioned LORETA solutions
presented statistically significant pattern Post-sleep depriva-
tion– Pre-sleep deprivation time. The effect sizes (Cohen’s d) pro-
vided the following results: 0.28 for parietal delta, �0.43 for
central alpha 1, �0.47 for parietal alpha 1, �0.47 for occipital alpha
1, �0.43 for temporal alpha 1, �0.50 for limbic alpha 1, �0.15 for
parietal alpha 2, �0.24 for occipital alpha 2, and �0.25 for limbic
alpha 2 sources.

These results suggest that the sleep deprivation challenge
affected the activity in the eLORETA cortical sources of rsEEG
rhythms in the healthy young volunteers.

Fig. 4 shows the mean values (±SE) of the eLORETA cortical
source activity in the rsEEG rhythms when that activity is sub-
tracted between the Post-sleep deprivation and the Pre-sleep
deprivation time (Post-sleep deprivation minus Pre-sleep depriva-
tion). These mean values are illustrated for the following factors:
(i) Condition (PLACEBO, MODAFINIL), (ii) Band (delta, theta, alpha
1, alpha 2, beta 1, beta 2, gamma), and (iii) ROI (central frontal,
parietal, occipital, temporal, limbic). In the figure, zero values
mean the same eLORETA cortical source activity in the Pre-sleep
deprivation and the Post-sleep deprivation time. Negative values
in this subtraction mean a lower eLORETA cortical source activity
in the Post-sleep deprivation than the Pre-sleep deprivation time.
Vice versa for the positive values. The higher the positive values
at the delta band, the higher the interference effect of the sleep
deprivation. The higher the negative values at the alpha band,
the higher the interference effect of the sleep deprivation. Notably,
the rsEEG source activity differed across various cortical macro
regions, thus supporting the idea that scalp rsEEG rhythms are gen-
erated by a distributed pattern of cortical sources. The ANOVA
showed a statistically significant interaction effect of the factors
Condition, Band, and ROI (F (30, 960) = 2.9, p < 0.0001). Duncan
post-hoc test (p < 0.05) unveiled the following 6 cortical delta
and alpha sources with significant effects: (i) the eLORETA source
pattern MODAFINIL < PLACEBO was fitted by the parietal
(p = 0.00003) and occipital (p = 0.005) delta sources; (ii) the eLOR-
ETA source pattern MODAFINIL > PLACEBO was fitted by the pari-
etal (p = 0.00001) and occipital (p = 0.00002) alpha 1 sources as

http://www.statsoft.com


Fig. 2. Grand average (mean) across subjects of the normalized eLORETA solutions (i.e. normalized dipole current density at cortical voxels) modeling the activity of
distributed EEG cortical sources for (i) two conditions (PLACEBO, MODAFINIL), (ii) two times (Pre-sleep deprivation, Post-sleep deprivation), and (iii) seven bands (delta,
theta, alpha 1, alpha 2, beta 1, beta 2, and gamma). The left side of the maps (top view, nose up) corresponds to the left hemisphere. Color scale: all normalized dipole current
density estimates were scaled based on the maximum value of the normalized eLORETA solutions that is reported under each column. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

C. Del Percio et al. / Clinical Neurophysiology 130 (2019) 1488–1498 1493
well as the parietal (p = 0.005) and occipital (p = 0.002) alpha 2
sources. Furthermore, the effect sizes (Cohen’s d) were calculated
for the above six mentioned LORETA solutions presented statisti-
cally significant pattern MODAFINIL– PLACEBO. The effect sizes
(Cohen’s d) provided the following results: 0.46 for parietal delta,
0.43 for occipital delta, �0.20 for parietal alpha 1, �0.18 for occip-
ital alpha 1, �0.18 for parietal alpha 2, and �0.22 for occipital
alpha 2 sources.

These 6 delta and alpha sources were used as an input for the
subsequent analysis with mixed linear models (p < 0.05), to test
the hypothesis of an interdependence between these sources and
a composite measure of subjects’ cognitive performances. The
composite measure was obtained as follows. Firstly, the individual
scores of six neuropsychological tests (i.e., Rey Auditory Verbal
Learning Test Learning phase, Rey Auditory Verbal Learning Recall
phase, Semantic verbal fluency task, Phonemic fluency task, Digit
Span Forward, and Digit Span backward) were considered. For
any single test, the original scores of all subjects in the pre- and
post-sleep deprivation phases and the PLACEBO and MODAFINIL
conditions formed a distribution of values. In this distribution,
the original scores were rescaled to assume minimum and maxi-
mum values equal to 0 and 1, respectively, while the other scores
assumed rescaled values from 0 to 1 proportionally. As an out-
come, for that single test any subject was associated with 4
rescaled values (i.e., PLACEBO Pre-sleep deprivation, PLACEBO
Post-sleep deprivation, MODAFINIL Pre-sleep deprivation, and
MODAFINIL Post-sleep deprivation). This operation was repeated
for all 6 neuropsychological tests. Secondly, the global composite
cognitive measure was calculated for a given subject, averaging
the rescaled values of 6 neuropsychological tests. As an outcome,
any subject was associated with 4 global composite cognitive mea-
sures (i.e., PLACEBO Pre-sleep deprivation, PLACEBO Post-sleep
deprivation, MODAFINIL Pre-sleep deprivation, and MODAFINIL
Post-sleep deprivation). Concerning the linear mixed models
(p < 0.05), the mentioned 6 (eLORETA) cortical sources were con-
sidered as independent variables, while Condition (PLACEBO,
MODAFINIL) and Time (Pre-sleep deprivation, Post-sleep depriva-
tion) were used as factors. In total, 6 linear mixed models were
performed (p < 0.05), one for any significant delta or alpha cortical
source. The results only showed a statistically significant main
effect for the occipital (F = 9.9, p = 0.002) alpha 2 source activities,
thus confirming a strict covariance between those posterior alpha
source activities during the experiments and subjects’ global cog-
nitive performances.



Fig. 3. Regional normalized eLORETA solutions (mean across subjects) of the rsEEG rhythms relative to a statistical ANOVA interaction among the factors Time (before and
after one night of sleep deprivation, followed by a single dose of Placebo; Pre-sleep deprivation, Post-sleep deprivation), Band (delta, theta, alpha 1, alpha 2, alpha 3, beta 1,
beta 2, and gamma), and ROI (central, frontal, parietal, occipital, temporal, and limbic). This ANOVA design used the regional normalized eLORETA solutions as a dependent
variable. Regional normalized eLORETA solutions modeled the rsEEG relative power spectra as revealed by a sort of ‘‘virtual” intracranial macro-electrodes located on the
macro-cortical regions of interest. Legend: the rectangles indicate the cortical regions and frequency bands in which the eLORETA solutions presented statistically significant
eLORETA pattern: Pre-sleep deprivation– Post-sleep deprivation (p < 0.05); the variability bars indicate the standard error of the mean, SE.

Fig. 4. Regional normalized eLORETA solutions (mean across subjects) of the rsEEG rhythms relative to a statistical ANOVA interaction among the factors Condition
(PLACEBO, MODAFINIL), Band (delta, theta, alpha 1, alpha 2, alpha 3, beta 1, beta 2, and gamma), and ROI (central, frontal, parietal, occipital, temporal, and limbic). This
ANOVA design used the difference in the regional normalized eLORETA current density between Post-sleep deprivation and Pre-sleep deprivation (Post-sleep deprivation
minus Pre-sleep deprivation) as a dependent variable. Zero values mean the same eLORETA cortical source activity in the Pre-sleep deprivation and Post-sleep deprivation.
Negative values of this subtraction mean lower eLORETA cortical source activity in the Post-sleep deprivation than Pre-sleep deprivation. Vice versa for the positive values.
Legend: the rectangles indicate the cortical regions and frequency bands in which the eLORETA solutions presented statistically significant eLORETA pattern:
PLACEBO–MODAFINIL (p < 0.05); the variability bars indicate the SE.
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A control ANOVA (p < 0.05) evaluated the effects of sleep depri-
vation and Modafinil on subjects’ global cognitive performances as
revealed by the mentioned global composite cognitive measure
(dependent variable). The ANOVA factors were Condition (PLA-
CEBO, MODAFINIL; independent variable) and Time (Pre-sleep
deprivation, Post-sleep deprivation). Fig. 5 shows the mean values
(±SE) of the global composite cognitive measure (arcsine square
root transformed) in the healthy young adults (N = 36) for the
two conditions (PLACEBO, MODAFINIL) and the two times (Pre-
sleep deprivation, Post-sleep deprivation) of the experiments. The
ANOVA results showed no statistically significant effects on
the dependent variable (p > 0.05), thus indicating that the sleep



Fig. 5. Mean values (±standard deviation, SD) of the global composite cognitive
measure (arcsine square root transformed) in the healthy young adults (N = 36) for
the two conditions (PLACEBO, MODAFINIL) and the two times (Pre-sleep depriva-
tion, Post-sleep deprivation) of the experiments.
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deprivation and Modafinil did not affect the subjects’ global com-
posite cognitive measure.
4. Discussion

In the present study of the PharmaCog project, we tested the
hypothesis that one night of sleep deprivation and a single dose
of a drug enhancing vigilance (i.e. Modafinil) may affect posterior
cortical sources of delta and alpha rhythms in healthy young adults
resting in relaxed wakefulness, thus suggesting a strict relationship
between those rsEEG source activities and physiological/pharma-
cological modulators of human vigilance in quiet wakefulness.

The present results showed that the sleep deprivation induced
an increase in the parietal delta source activity and a decrease in
the posterior (i.e. parietal, occipital, temporal and limbic) alpha 1
and alpha 2 source activities. These findings suggest that sleep
deprivation is able to deteriorate posterior cortical delta and alpha
sources, possibly reflecting neurophysiological mechanisms regu-
lating brain arousal during the quiet vigilance (Babiloni et al.,
2014a).

The present results also showed that compared to the placebo, a
single dose of a vigilance enhancer (i.e., Modafinil) - administered
immediately after the sleep deprivation - induced a significant
recovery of the mentioned posterior cortical delta and alpha source
activities, some of them related to subjects’ global cognitive perfor-
mances probed by standard neuropsychological tests. These results
extend to the regional cortical source space previous rsEEG evi-
dence in the literature (Cajochen et al., 1995; Dumont et al.,
1999; Corsi-Cabrera et al., 1996; Mander et al., 2010). Previous
studies have reported that compared to a placebo, a single dose
of Modafinil (200 mg) during 1 night of sleep deprivation partially
recovered rsEEG rhythms recorded over the whole scalp in healthy
(male) young adults; this ‘‘global” effect was described at delta,
theta, alpha, and beta bands (James et al., 2011). Furthermore, 3
doses of Modafinil (300 mg) before and during a prolonged sleep
deprivation (60 h) partially recovered the alteration of global scalp
rsEEG rhythms at the alpha band in healthy young adults
(Chapotot et al., 2003). Moreover, these alpha rhythms were less
deranged after sleep deprivation and were more sensitive to Mod-
afinil dosages (two single doses, 100 mg, during sleep deprivation)
in healthy (male) young adults with Val/Val than Met/Met allele
carriers (Bodenmann et al., 2009). Finally, the chronic administra-
tion of Modafinil (100 mg and 400 mg) for 3 weeks partially recov-
ered the alteration in prefrontal, parietal, and temporal rsEEG
source activities at the alpha band in drug-free patients with nar-
colepsy (Saletu et al., 2004, 2007). This effect was related to an
improvement in cognitive performances (Saletu et al., 2007) and
scores of Multiple Sleep Latency Test and Epworth Sleepiness Scale
(Saletu et al., 2004).

In relation to those previous investigations, the present study
unveiled significant effects of a moderate dose (100 mg) of Moda-
finil on posterior cortical delta and alpha source activities in
healthy (male) young adults after just 1 night of sleep deprivation.
Instead, the score of standard neuropsychological tests evaluating
cognitive functions were not affected by sleep deprivation and
Modafinil acute administration. Overall, these results confirm the
strict relationship between these delta and alpha source activities
and physiological and pharmacological manipulations of the vigi-
lance in the current healthy young adults (This theoretical conclu-
sion is valid even if this study was conducted only in male
subjects). Furthermore, results suggest that healthy young adults
can arouse brain activity and vigilance to ensure a good cognitive
performance in the neuropsychological assessment even after a
sleep deprivation night. This conclusion emphasizes the need of
biomarkers probing brain arousal in quiet vigilance to complement
standard neuropsychological exams in the assessment of human
higher functions.

Interestingly, the cortical source estimation of the present
approach allowed testing the hypothesis that the sleep deprivation
effects in healthy volunteers were reminiscent of the alteration of
the rsEEG sources investigated in patients with ADD and its pro-
dromal stage of ADMCI. The present results globally confirmed that
hypothesis in the light of the following previous findings obtained
with the same rsEEG source estimation in the occipital and parietal
cortex: (i) these cortical sources of alpha rhythms (about 8–10 Hz)
were abnormal in ADD patients when compared to ADMCI, cere-
brovascular dementia, and Parkinson’s disease subjects (Babiloni
et al., 2004, 2006a, 2017); (ii) those of delta (<4 Hz) and/or alpha
rhythms were related to the global cognitive status, brain amyloi-
dosis and neurodegeneration, and genetic risk factors for ADD and
ADMCI patients (Babiloni et al., 2006b,c, 2013a; Galluzzi et al.,
2016); and (iii) the cortical sources of delta and alpha rhythms
deteriorated across time (1 year) in ADD and ADMCI patients
(Babiloni et al., 2013b, 2014b). Overall, posterior cortical delta
and alpha sources exhibited congruent alterations in the present
healthy adults after sleep deprivation and the AD patients in previ-
ous PharmaCog studies (Babiloni et al., 2010, 2013; Galluzzi et al.,
2016; Jovicich et al., 2019), namely increased delta and decreased
alpha sources. Furthermore, those alpha sources were related to
scores of neuropsychological tests in AD patients (Babiloni et al.,
2010, 2013; Galluzzi et al., 2016; Jovicich et al., 2019) and the pre-
sent healthy adults. Therefore, neurophysiological mechanisms
underlying quiet vigilance may be affected in both AD patients
and healthy young adults after one night of sleep deprivation.
However, this conclusion should be considered as preliminary as
healthy young adults and AD patients show obvious differences
in the integrity of the brain structure and the availability of synap-
tic contacts/excitatory neurotransmitters (e.g., acetylcholine and
serotonin) modulating vigilance and attention in frontoparietal,
thalamus-cortical, and ascending reticular activating systems
involving hypothalamus and basal ganglia.

The neurophysiological mechanisms underlying these related
effects of the sleep deprivation and Modafinil on the rsEEG
rhythms in the present healthy adults remain unclear. At this early
stage of the research, we speculate that both sleep deprivation and
AD processes might downregulate thalamus-cortical mechanisms
generating posterior cortical delta and alpha rhythms. On one
hand, sleep deprivation might be associated with a progressive
reduction in signaling from thalamocortical high-threshold neu-
rons to GABAergic thalamic interneurons and thalamocortical
relay-mode neurons, the latter being the trigger of cortical pyrami-
dal neurons generating cortical alpha source activities (Hughes and
Crunelli, 2005; Lörincz et al., 2008, 2009; Lopes da Silva, 2013).
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Furthermore, thalamocortical neural activities may partially
switch from tonic to burst mode entraining oscillatory signals at
delta frequencies in that brain circuit (Hughes and Crunelli,
2005; Lörincz et al., 2008, 2009). As a result, posterior cortical
alpha rhythms might switch to theta frequencies and delta
rhythms in a gray zone between quiet wakefulness and sleep onset
(Hughes and Crunelli, 2005; Lörincz et al., 2008, 2009).

On the other hand, AD neuropathology (especially insoluble
Ab42) may diffusely desynchronize the mentioned thalamus-
cortical circuit with an effect of ‘‘overexcitation”. In this line, pos-
terior cortical alpha rhythms might desynchronize, and slower
EEG waves at delta frequencies might appear. Part of these waves
might be considered as mild manifestations of subclinical, noncon-
vulsive, epileptiform EEG activities described in some AD patients
(Horváth et al., 2016; Scarmeas et al., 2009; Vossel et al., 2013).

Several ascending activating systems may regulate the above
thalamus-cortical circuit. Among them, cholinergic neuromodula-
tory systems may play a prominent role as demonstrated by the
following previous findings. Firstly, cholinergic basal forebrain
retransmit noradrenergic (locus coeruleus) and glutamatergic
(brainstem reticular formation) signals arousing limbic and
thalamus-cortical circuits (Jones, 2004) and desynchronizes corti-
cal EEG rhythms inducing beta (13–30 Hz) and gamma (>30 Hz)
oscillatory activities (Kalmbach et al., 2012; Bohnen et al., 2018).
Secondly, a single dose of a muscarinic cholinergic antagonist
(i.e. scopolamine) transiently increased resting state cortical delta
and theta rhythms in healthy adults, while it reduced alpha and
beta rhythms (Ebert and Kirch, 1998; Liem-Moolenaar et al.,
2011). Thirdly, a similar effect was observed in both healthy sub-
jects and AD patients as a function of the integrity of cholinergic
neurotransmission (Neufeld et al., 1994). Fourthly, a single dose
of scopolamine deranged delta to gamma rhythms in ADD patients
resting in quiet wakefulness (Johannsson et al., 2015; Snaedal
et al., 2010). Fifthly, a single dose of Acetylcholinesterase inhibitors
enhanced the cortical alpha-theta ratio in AD patients clinically
responding to a long chronic treatment with that drug (Alhainen
et al., 1991). Sixthly, long chronic treatment with Acetyl-
cholinesterase inhibitors had beneficial effects on posterior cortical
alpha rhythms in ADD patients in some studies (Babiloni et al.,
2006d; Balkan et al., 2003). In other studies, those beneficial effects
were observed in cortical delta (Balkan et al., 2003; Gianotti et al.,
2008; Brassen and Adler, 2003) and theta (Brassen and Adler, 2003;
Gianotti et al., 2008) rhythms.

The present results do not grant that Modafinil administration
in AD patients can induce beneficial clinical effects on vigilance
and, consequently, cognitive processes. We can just speculate that
the present and some previous data make this hypothesis quite
promising. In previous studies, Modafinil showed the following
action mechanisms (Chemelli et al., 1999; Gerrard and Malcolm,
2007; Lin et al., 1996): (i) increase in cortical cellular creatine-
phosphocreatine pool and several excitatory aminergic
neurotransmitters in the synaptic cleft such as dopamine and nora-
drenaline; (ii) reduction in cortical GABA inhibitory neurotransmit-
ters by serotoninergic mediated pathways in brain regions
modulating brain arousal; and (iii) increase in the activity in ante-
rior hypothalamus and surrounding areas modulating brain arou-
sal possibly via orexin neurons. To test that promising
hypothesis, future investigations may bioethically adapt the pre-
sent experiments to AD research. For example, Nold and preclinical
AD (e.g., subjective memory complaint and positivity to cere-
brospinal markers of AD) subjects may undergo to a sleep depriva-
tion lasting only few hours before the administration of Modafinil
or placebo.

In the present study, 128-Hz sampling rate was used for the
present rsEEG data analysis, as it maximized the inclusion of indi-
vidual rsEEG datasets, allowing us to fit the estimated sample size.
As mentioned above, the working hypothesis of this study focused
on posterior cortical delta (2–4 Hz) and alpha (8–13 Hz) source
activities computed from rsEEG rhythms, based on previous find-
ings of our Consortium in AD patients (Babiloni et al., 2004,
2006a, b, c, 2013a, b, c, 2014b, 2017; Galluzzi et al., 2016). There-
fore, the use of 128-Hz sampling rate for the present rsEEG data
analysis did not affect the novel findings of this study.

Concerning the gamma band, the present Figs. 2–4 unveiled
that (eLORETA) source activities at beta 2 and gamma (i.e.,
20–40 Hz) bands were negligible in the current experimental con-
ditions (i.e. eyes-closed resting state, sleep deprivation, Modafinil
acute dose). However, the present 128-Hz sampling frequency
did not allow us the spectral analysis of rsEEG signals >40 Hz, for
the risk of some distortions of low-band frequencies (i.e., the alias-
ing issue). Therefore, future studies using a spatial sampling of EEG
activity >256 Hz or higher should be performed for extending the
present investigations to high-frequency gamma bands >40 Hz.
5. Conclusions

The present study of the PharmaCog project report that the
sleep deprivation induced an increase in posterior cortical delta
source activities and a reduction in widespread alpha source
activities, while the acute administration of Modafinil partially
recovered these effects.

These results have two main neurophysiological implications.
Firstly, the mentioned effects of sleep deprivation and Modafinil
suggest that in quiet wakefulness, not only alpha but also delta
cortical rhythms in posterior areas may reflect neurophysiological
oscillatory mechanisms underlying quiet vigilance in healthy
adults. Therefore, posterior cortical delta rhythms should be con-
sidered neither as (i) a mere epiphenomenon in the human brain
resting in quiet wakefulness and nor (ii) only a reflection of brain
abnormalities in patients with neurological disorders such as AD.

Secondly, the present results may enrich the interpretation of
abnormal posterior cortical delta and alpha source activities
reported in AD patients in the mentioned PharmaCog rsEEG stud-
ies. It can be speculated that in AD patients, alterations in both pos-
terior cortical delta and alpha source activities may reflect the
interaction of AD neuropathological processes on neurophysiolog-
ical oscillatory mechanisms underlying brain arousal and vigilance
in quiet wakefulness. If confirmed in future cross-validation stud-
ies carried out in healthy young adults, those delta and alpha
source activities may be used as surrogate endpoints of those
mechanisms for the evaluation of drug candidates designed to nor-
malize brain arousal and vigilance in AD patients.
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