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1. Introduction
s:introduction

In the last years, the mathematical modeling of the electrical activity of the heart
was a topic of major interest in biomedical research. A better understanding of the
complex bioelectrical processes involved in the activity of the heart is a key issue in
order to find new drugs and diagnostic techniques, being well-known that a huge part
of the heart diseases is produced by some disorders of its electrical activity.
One of the most well-known mathematical models in cardiac electrophysiology is the
so-called bidomain model (see, e.g., [13, 22, 23] and the references therein; see, also,
the references quoted in [14, Introduction]). In this model, at a macroscopic scale,
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the electric activity of the heart is governed by a system of two degenerate reaction-
diffusion partial differential equations for the averaged intra-cellular and, respectively,
extra-cellular electric potentials, along with the transmembrane potential, coupled in
a nonlinear manner to ordinary differential equations describing the dynamics of the
ion channels. In such a model, the cardiac tissue is represented, at a macroscopic
scale, despite its discrete cellular structure, as the superposition of two continuous
media, called the intra-cellular and, respectively, the extra-cellular domain, coexisting
at each point of the heart tissue and connected through a distributed continuous
cellular membrane.
Several ionic models are considered in the literature for describing the cellular mem-
brane dynamics, starting with the famous Hodgkin-Huxley formalism and continu-
ing with more and more complex models (see, for instance, [14, 17, 18, 22]). The
well-posedness of the bidomain model has been studied, for different nonlinear ionic
models and by using different techniques, by several authors (see, for instance,
[6, 11, 24, 26, 28]).
The bidomain model can be obtained from a corresponding appropriate microscopic
one by homogenization techniques (see, for instance, [2, 3, 5, 11, 14, 19, 23, 24, 27])
Despite the fact that the bidomain model is widely recognized as being the standard
model used in cardiac electrophysiology, it has some limitations (see [11, 16]). In
particular, the bidomain model is suitable for describing the propagation of the action
potential in a perfectly healthy cardiac tissue, but it is no longer valid (even if one tries
to ad-hocmodify some of its relevant modeling parameters) in pathological situations,
in which the heart contains electrically passive zones of fibrotic tissue, collagen or fat,
as observed for instance in scars, inflammations, ischemic or rheumatic heart diseases,
etc. Thus, it is important to find a suitable mathematical model that accounts for
the presence of pathological zones in the heart. Such a model was proposed in
[7, 9, 15, 16, 30]; it takes into account the presence in the cardiac tissue of damaged
zones, called diffusive inclusions and assumed to be passive electrical conductors.
From a mathematical point of view, we have a bidomain system coupled with a dif-
fusion equation. More precisely, the model consists of a degenerate reaction-diffusion
system of partial differential equations modeling the intra-cellular and, respectively,
the extra-cellular electric potentials of the healthy cardiac tissue, coupled with an
elliptic equation for the passive regions and with an ordinary differential equation
describing the cellular membrane dynamics. Such a model arises also in coupling the
torso and the heart (see, e.g., [7, 10, 28]).
We point out that in all the above mentioned papers a perfect electrical coupling
between the healthy part of the heart and the damaged tissue was assumed. More
general coupling conditions were proposed in [10] and investigated through numerical
simulations in [8, 30], in order to take into account the possible capacitive and resistive
effects of the surface of the diffusive inclusions . However, up to our knowledge, there
are no rigorous proofs in the literature covering such results.
The goal of the present paper is to study the well-posedness of such a modified
bidomain model. We include the structural defects of the heart tissue in this model,
by coupling a standard bidomain system in the healthy zone with a diffusion equation
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posed in the damaged part of the heart, through non-standard imperfect transmission
conditions (see equations (2.16)–(2.21)).
In order to describe the dynamic of the membrane, one can use a physiological ionic
model or a phenomenological one (see, for instance, [14]). In this paper, the dynamic
of the gating variable modeling the ionic transport through the cell membrane is
described with the aid of a Hodgkin-Huxley type formalism. We can also include in
our analysis the modified Mitchell-Schaeffer formalism proposed in [16] (see Remark
2.2).
We point out again that our model generalizes the modified bidomain model with
diffusive inclusions and perfect transmission conditions considered in [16, 17], the
original model being recovered by suitably rearranging the parameters appearing in
equation (2.21).
The mathematical problem we address here is rather non-standard and, up to our
knowledge, the proof of its well-posedness is new in the literature and generates diffi-
culties due to the degeneracy of the bidomain system and its non-standard coupling
with the diffusion equation.
Our main result is contained in Theorems 3.4 and 3.6, where the leading idea is to
reduce the problem to an abstract parabolic setting (see [12, 25]). This requires to
introduce several auxiliary differential systems and a non-standard bilinear form (see
Proposition 3.3).
The problem proposed here can be seen as a mesoscopic model which will be analyzed
in the homogenization limit in a forthcoming paper.

The paper is organized as follows: in Section 2, we introduce the mathematical
description of our modified bidomain model, together with its geometrical and func-
tional setting. In Section 3, we state and prove our main result.

2. The model
s:threeD_problemss:geometric

2.1. Geometrical setting. LetN ≥ 3. Let Ω be an open connected bounded subset
of RN ; we assume that ∂Ω is of class C∞, though this assumption can be weakened.
Moreover, for T > 0, we set ΩT = Ω × (0, T ). We assume that Ω = ΩD ∪ ΩB ∪ Γ ,
where ΩD and ΩB are two disjoint open subsets of Ω, and Γ = ∂ΩD ∩Ω = ∂ΩB ∩Ω.
The domain Ω is occupied by the cardiac tissue, ΩB represents the healthy part of the
heart tissue, modeled with the aid of a standard bidomain system, ΩD represents the
diffusive region, accounting for the damaged part of the heart, and Γ is the common
boundary of these two regions, assumed to be Lipschitz. From a geometrical point of
view, we assume that ΩB is connected, while ΩD might be connected or disconnected.
Indeed, we will consider two different cases: in the first one (to which we will refer
as the connected/disconnected case, see Fig.1 on the left), we will assume ΩD ⊂⊂ Ω

and ΩD is made by a finite number of connected components. In this case, Γ = ∂ΩD

and ∂ΩB ∩ ∂Ω 6= ∅.
In the second case (to which we will refer as the connected/connected case, see Fig.1
on the right), we will assume that both ΩD and ΩB are connected, with ∂ΩB∩∂Ω 6= ∅
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Figure 1. On the left: the connected/disconnected case. On the

right: the connected/connected case. fig:mb

and ∂ΩD ∩ ∂Ω 6= ∅. Finally, let ν denote the normal unit vector to Γ pointing into
ΩB.
In the following, by γ we shall denote a strictly positive constant, which may depend
on the geometry and vary from line to line.

ss:spaces
2.2. Functional spaces. Let us introduce the following functional spaces:

H1
null(Ω

B) := {w ∈ H1(ΩB) : w = 0 on ∂ΩB ∩ ∂Ω, in the sense of traces};

H1
null(Ω

D) := {w ∈ H1(ΩD) : w = 0 on ∂ΩD ∩ ∂Ω, in the sense of traces};

H
1/2
0 (Γ,Ω) := {r ∈ H1/2(Γ ) : r = r̃|Γ , with r̃ ∈ H1

0(Ω)}.

(2.1) eq:space1

Notice that H
1/2
0 (Γ,Ω) is a Hilbert space and, in the connected/disconnected case,

H
1/2
0 (Γ,Ω) = H1/2(Γ ) and H1

null(Ω
D) = H1(ΩD).

We also set

W := H1
null(Ω

B)×H
1/2
0 (Γ,Ω); H := L2(ΩB)× L2(Γ ), (2.2) eq:space2

where H is endowed with the scalar product

(
(w, r), (w, s)

)
H
:=

∫

ΩB

ww dx+ α

∫

Γ

rs dσ , (2.3) eq:scalar1

where α > 0 will be the constant appearing later in (2.21), and W is endowed with
the scalar product

(
(w, r), (w, s)

)
W

:=

∫

ΩB

∇w · ∇w dx+ (r, s)1/2 , (2.4) eq:scalar2

where (·, ·)1/2 is the standard scalar product on H1/2(Γ ).
Moreover, we define the space

X 1
0 (Ω) := {W : Ω → R : W|

ΩB
∈ H1

null(Ω
B), W|

ΩD
∈ H1

null(Ω
D)} , (2.5) eq:a1
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endowed with the norm

‖W‖2X 1

0
(Ω) := ‖∇W‖2L2(ΩB) + ‖W‖2H1(ΩD). (2.6) eq:a3

We recall that ∂ΩB ∩ ∂Ω is always non-empty, while ∂ΩD can intersect or not the
boundary of Ω, depending on the geometry. For W ∈ X 1

0 (Ω), we have the following
Poincaré inequality (see [1, Proposition 2]):

‖W‖2L2(Ω) ≤ γ
(
‖∇W‖2L2(ΩB) + ‖∇W‖2L2(ΩD) + ‖[W]‖2L2(Γ )

)
, (2.7) eq:poincare1

where [W] = W|
ΩB

−W|
ΩD

and the last term is not necessary in the connected/connected

case. Therefore, an equivalent norm on X 1
0 (Ω) is given by

‖W‖2X 1

0
(Ω) ∼ ‖∇W‖2L2(Ω) + ‖[W]‖2L2(Γ ); (2.8) eq:a7

again, the last term can be dropped in the connected/connected case.
ss:position

2.3. Position of the problem. Let α, β be strictly positive constants and σB
1 , σ

B
2 , σ

D

be measurable functions such that γ0 ≤ σB
1 (x), σ

B
2 (x), σ

D(x) ≤ γ̃0, a.e. in Ω, for suit-
able strictly positive constants γ0, γ̃0. The assumption that σB

1 , σ
B
2 , σ

D are scalar
functions is used only in Section 3. Removing this assumption is not trivial. If we
want to consider general bounded and symmetric matrices satisfying

γ0|ζ |
2 ≤ σB

1 (x)ζ · ζ ≤ γ̃0|ζ |
2, for every ζ ∈ R

N and a.e. x ∈ ΩB;

γ0|ζ |
2 ≤ σB

2 (x)ζ · ζ ≤ γ̃0|ζ |
2, for every ζ ∈ R

N and a.e. x ∈ ΩB;

γ0|ζ |
2 ≤ σD(x)ζ · ζ ≤ γ̃0|ζ |

2, for every ζ ∈ R
N and a.e. x ∈ ΩD,

(2.9) eq:matrix

we have to require some other structural hypotheses as in [11, Lemma 1] and [21,
Formula (1)] (see, also, [7] and [17]).

Let us consider a globally Lipschitz continuous function g : R
2 → R, such that

g(p, 1) ≥ 0 and g(p, 0) ≤ 0. The example we have in mind here is a function of the
form

g(p, q) = a(p)(q − 1) + b(p)q, (2.10) eq:gating3

where a, b : R → R are positive, bounded and Lipschitz functions. Notice that the
form of g in (2.10) is classical in this framework (see, for instance, [28]) and that g is
Lipschitz continuous with respect to p and affine with respect to q. Let Iion : R2 → R

be given by

Iion(p, q) = h1(p) + h2(p)q, (2.11) eq:ion3

where h1, h2 are Lipschitz continuous functions and h2 is bounded. Clearly, there
exists a positive constant γI such that

|Iion(p1, q1)−Iion(p2, q2)| ≤ γI(|p1−p2|+|q1−q2|) , ∀(p1, q1), (p2, q2) ∈ R
2 . (2.12) eq:stime1

Let wo ∈ L∞(ΩB), with 0 ≤ wo(x) ≤ 1 a.e. in ΩB and p ∈ L2(ΩB
T ). Consider the

gating equation

∂tw̃p + g(p, w̃p) = 0, in ΩB
T ; (2.13) eq:gating1

w̃p(x, 0) = wo(x), in ΩB. (2.14) eq:gating2
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Notice that, by classical results, the previous problem admits a unique solution w̃p ∈
H1(0, T ;L∞(ΩB)) and, from our assumptions, 0 ≤ w̃p(x, t) ≤ 1 a.e. in ΩB

T , since
0 ≤ wo(x) ≤ 1 a.e. in ΩB (see [20]).
Moreover, from the previous assumptions, we can prove that there exists a strictly
positive constant γI such that

∥∥Iion(p1, w̃p1)− Iion(p2, w̃p2)
∥∥
L2(ΩB

T )
≤ γI‖p1 − p2‖L2(ΩB

T ) , (2.15) eq:ion1

due to the Lipschitz dependence of w̃p on p.

We give here a complete formulation of the problem we shall address in this paper.
The operators div and ∇ act only with respect to the space variable x.
Let f1, f2 ∈ H1(ΩB

T ), v0 ∈ L2(ΩB), s0 ∈ L2(Γ ) and consider the problem for uB1 , u
B
2 ∈

L2(0, T ;H1
null(Ω

B)), uD ∈ L2(0, T ;H1
null(Ω

D)) and w̃ ∈ H1(0, T ;L∞(ΩB)), given by

∂

∂t
(uB1 − uB2 )− div(σB

1 ∇u
B
1 ) + Iion(u

B
1 − uB2 , w̃)=f1, in ΩB

T ; (2.16) eq:PDEin

∂

∂t
(uB1 − uB2 ) + div(σB

2 ∇u
B
2 ) + Iion(u

B
1 − uB2 , w̃)=f2, in ΩB

T ; (2.17) eq:PDEout

− div(σD∇uD) = 0, in ΩD
T ; (2.18) eq:PDEdis

σB
1 ∇u

B
1 · ν = 0, on ΓT ; (2.19) eq:flux1

σB
2 ∇u

B
2 · ν = σD∇uD · ν, on ΓT ; (2.20) eq:flux2

α
∂

∂t
(uB2 − uD) + β(uB2 − uD) = σB

2 ∇u
B
2 · ν, on ΓT ; (2.21) eq:Circuit

uB1 (x, t), u
B
2 (x, t), u

D(x, t) = 0, on ∂Ω × (0, T ); (2.22) eq:BoundData

uB1 (x, 0)− uB2 (x, 0) = v0(x), in ΩB; (2.23) eq:InitData1

uB2 (x, 0)− uD(x, 0) = s0(x), on Γ , (2.24) eq:InitData3

where w̃ is the solution of the gating equation (2.13), (2.14), with p = uB1 − uB2 .

r:r3 Remark 2.1 (Biological interpretation). The previous system of equations represents
the coupling of a standard bidomain model in ΩB , for the intra and the extra-cellular
potentials uB1 and uB2 of the healthy zone, with a Poisson equation in the diffusive
part ΩD, for the electrical potential uD of the damaged zone. The function uB2 − uB1
is the so-called transmembrane potential. The sources f1 and f2 are the internal
and the external current stimulus, respectively. The coefficients σB

1 , σ
B
2 and σD are

the conductivities of the two healthy phases and of the damaged one, while α and
β are given parameters related to the capacitive and the resistive behaviour of the
interface Γ . We point out that for the intra-cellular potential uB1 we assume no
flux condition on Γ (see (2.19)), while the extra-cellular potential uB2 is coupled
with the electrical potential uD of the damaged zone through non-standard imperfect
transmission conditions (see (2.20) and (2.21)). Our system is completed with suitable
initial and boundary conditions. The variable w̃, called the gating variable, describes
the ionic transport through the cell membrane. The terms g and Iion are nonlinear
functions, modeling the membrane ionic currents.
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For simplicity, we consider only one gating variable, but our results hold true also for
the case in which the gating variable is vector valued. �

r:r2 Remark 2.2. Different examples of functions Iion and g are considered in the liter-
ature. We consider here a Hodgkin-Huxley type model (see (2.10), (2.11)), as in
[4, 14, 28]. However, we point out that the results obtained in this paper are also
valid for a regularized version of the Mitchell-Schaeffer model proposed in [16] (see,
also, [15, 17]). �

By standard approximation procedure, multiplying (2.16) by uB1 , (2.17) by u
B
2 , (2.18)

by uD, subtracting (2.17) from (2.16), adding (2.18), integrating by parts, using
(2.19)–(2.24), (2.11), (2.12), (2.15) and moving the integral containing Iion to the
right-hand side, we get

1

2

∫

ΩB

(uB1 − uB2 )
2(x, T ) dx+

∫

ΩB
T

σB
1 |∇u

B
1 |

2 dx dt +

∫

ΩB
T

σB
2 |∇u

B
2 |

2 dx dt

+

∫

ΩD
T

σD|∇uD|2 dx dt+
α

2

∫

Γ

(uB2 − uD)2(x, T ) dσ(x) + β

∫

ΓT

(uB2 − uD)2(x, t) dσ(x) dt

=

∫

ΩB
T

(f1u
B
1 − f2u

B
2 ) dx dt +

1

2

∫

ΩB

v20(x) dx+
α

2

∫

Γ

s20(x) dσ(x)

−

∫

ΩB
T

Iion(u
B
1 − uB2 , w̃)(u

B
1 − uB2 ) dx dt

≤

∫

ΩB
T

(f1u
B
1 − f2u

B
2 ) dx dt + γ(‖v0‖

2
L2(ΩB) + ‖s0‖

2
L2(Γ ))

−

∫

ΩB
T

(
Iion(u

B
1 − uB2 , w̃)− Iion(0, w0)

)
(uB1 − uB2 ) dx dt

−

∫

ΩB
T

Iion(0, w0)(u
B
1 − uB2 ) dx dt

≤ γ(‖f1‖
2
L2(ΩB

T ) + ‖f2‖
2
L2(ΩB

T ) + ‖v0‖
2
L2(ΩB) + ‖s0‖

2
L2(Γ ) + 1)

+
δ

2
(‖∇uB1 ‖

2
L2(ΩB

T ) + ‖∇uB2 ‖
2
L2(ΩB

T )) + γ‖uB1 − uB2 ‖
2
L2(ΩB

T )) , (2.25) eq:energy1

where γ and δ are positive constants depending on γ0, α, γI; γH , γF , γa, and the geom-
etry, δ can be chosen smaller than min(σB

1 , σ
B
2 ), and we have also applied Poincaré’s

inequality to uB1 and uB2 . By absorbing into the left-hand side the first two terms in
the last line of (2.25) and using Gronwall’s inequality, from the previous estimate,
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we obtain

sup
t∈(0,T )

∫

ΩB

(uB1 − uB2 )
2(x, t) dx+

∫

ΩB
T

|∇uB1 |
2 dx dt+

∫

ΩB
T

|∇uB2 |
2 dx dt+

∫

ΩD
T

|∇uD|2 dx dt

+ sup
t∈(0,T )

∫

Γ

(uB2 − uD)2(x, t) dσ(x) +

∫

ΓT

(uB2 − uD)2(x, t) dσ(x) dt

≤ γ(‖f1‖
2
L2(ΩB

T ) + ‖f2‖
2
L2(ΩB

T ) + ‖v0‖
2
L2(ΩB) + ‖s0‖

2
L2(Γ ) + 1) . (2.26) eq:energy5

Proposition 2.3. Under the assumptions stated above, problem (2.16)–(2.24) and
(2.13), (2.14) admits at most one solution.

Proof. Assume that (uB1 , u
B
2 , u

D, w̃) and (uB1 , u
B
2 , u

D, w̃) are two different solutions of

problem (2.16)-(2.23), with w̃ being the solution of (2.13) and (2.14), corresponding
to p = uB1 − uB2 . Setting υB1 := uB1 − uB1 , υ

B
2 := uB2 − uB2 and υD := uD − uD, we

obtain that υB1 , υ
B
2 , υ

D, w̃ and w̃ solve the system

∂

∂t
(υB1 − υB2 )− div(σB

1 ∇υ
B
1 ) + Iion(u

B
1 − uB2 , w̃)− Iion(u

B
1 − uB2 , w̃)=0, in ΩB

T ;

∂

∂t
(υB1 − υB2 ) + div(σB

2 ∇υ
B
2 ) + Iion(u

B
1 − uB2 , w̃)− Iion(u

B
1 − uB2 , w̃)=0, in ΩD

T ;

− div(σD∇υD) = 0, in ΩD
T ;

σB
1 ∇υ

B
1 · ν = 0, on ΓT ;

σB
2 ∇υ

B
2 · ν = σD∇υD · ν, on ΓT ;

α
∂

∂t
(υB2 − υD) + β(υB2 − υD) = σB

2 ∇υ
B
2 · ν, on ΓT ;

υB1 (x, t), υ
B
2 (x, t), υ

D(x, t) = 0, on ∂Ω × (0, T );

υB1 (x, 0)− υB2 (x, 0) = 0, in ΩB ;

υB2 (x, 0)− υD(x, 0) = 0, on Γ .

Reasoning in a similar way as done for (2.25), i.e. by multiplying the first equation
by υB1 , the second one by υB2 , the third one by υD, subtracting the second equation
from the first one adding the third one, integrating by parts, using the remaining
equation of the previous system moving the integral containing Iion in the right-hand
side and using Hölder inequality, we get

sup
t∈(0,T )

∫

ΩB

(υB1 − υB2 )
2(x, t) dx+

∫

ΩB
T

|∇υB1 |
2 dx dt+

∫

ΩB
T

|∇υB2 |
2 dx dt+

∫

ΩD
T

|∇υD|2 dx dt

+ sup
t∈(0,T )

∫

Γ

(υB2 − υD)2(x, t) dσ(x) +

∫

ΓT

(υB2 − υD)2(x, t) dσ(x) dt

≤ ‖Iion(u
B
1 −u

B
2 , w̃)−Iion(u

B
1 −u

B
2 , w̃)‖L2(ΩB

T ) ·‖υ
B
1 −υ

B
2 ‖L2(ΩB

T ) ≤ γ‖υB1 −υ
B
2 ‖

2
L2(ΩB

T ) ,
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where, in the last inequality, we used (2.15). We can conclude by using Gronwall
inequality. �

Notice that, by setting V = uB1 − uB2 , U = uB2 a.e. in ΩB, U = uD a.e. in ΩD,
and denoting by [·] the jump across Γ of the quantity in the square brackets, i.e.
[U ] = uB2 − uD and [σ∇U · ν] = (σB

2 ∇u
B
2 − σD∇uD) · ν, the previous system can be

written in the more convenient form

∂V

∂t
− div(σB

1 ∇V ) + Iion(V, w̃)=f1 + div(σB
1 ∇U), in ΩB

T ; (2.27) eq:PDEinc

− div((σB
1 + σB

2 )∇U)=f1 − f2 + div(σB
1 ∇V ), in ΩB

T ; (2.28) eq:PDEoutc

− div(σD∇U) = 0, in ΩD
T ; (2.29) eq:PDEdisc

σB
1 ∇(V + U) · ν = 0, on ΓT ; (2.30) eq:flux1c

[σ∇U · ν] = 0, on ΓT ; (2.31) eq:flux2c

α
∂

∂t
[U ] + β[U ] = σB

2 ∇U · ν, on ΓT ; (2.32) eq:Circuitc

V, U = 0, on ∂Ω × (0, T ); (2.33) eq:BoundDatac

V (x, 0) = v0(x), in ΩB; (2.34) eq:InitData1c

[U ](x, 0) = s0(x), on Γ , (2.35) eq:InitData3c

complemented with the gating problem (2.13), (2.14), where again uB1 −u
B
2 is replaced

by V . Clearly, V ∈ L2(0, T ;H1
null(Ω

B)) and U ∈ L2(0, T ;X 1
0 (Ω)). We remark that,

since F is Lipschitz, the composed function Iion(V, w̃) is also a Lipschitz function
with respect to V .
The weak formulation of the previous problem is given by

−

∫

ΩB
T

V ∂tϕB dx dt+

∫

ΩB
T

σB
1 ∇V ·∇ϕB dx dt+

∫

ΩB
T

σB
1 ∇U ·∇ϕB +

∫

ΩB
T

Iion(V, w̃)ϕB dx dt

+

∫

ΩB
T

(σB
1 + σB

2 )∇U · ∇ϕ1
D dx dt +

∫

ΩB
T

σB
1 ∇V · ∇ϕ1

D dx dt

+

∫

ΩD
T

σD∇U · ∇ϕ2
D dx dt− α

∫

ΓT

[U ]∂t[ϕD] dσ dt+ β

∫

ΓT

[U ][ϕD] dσ dt

=

∫

ΩB
T

f1ϕB dx dt+

∫

ΩB
T

(f1 − f2)ϕ
1
D dx dt ,+

∫

ΩB

v0ϕB(0) dx+ α

∫

Γ

s0[ϕD](0) dσ (2.36) eq:weak5

for every ϕB ∈ L2(0, T ;H1
null(Ω

B)) ∩ H1(0, T ;L2(ΩB)), ϕ1
D ∈ L2(0, T ;H1

null(Ω
B)),

ϕ2
D ∈ L2(0, T ;H1

null(Ω
D)), and [ϕD] ∈ H1(0, T ;L2(Γ )), with ϕB(T ) = 0 and [ϕD](T ) =

0. Here, [ϕD] = ϕ1
D − ϕ2

D on Γ .
9



Clearly, by (2.26), we get the following energy inequality:

sup
t∈(0,T )

∫

ΩB

V 2(x, t) dx+

∫

ΩB
T

|∇V +∇U |2 dx dt+

∫

ΩB
T

|∇U |2 dx dt

+

∫

ΩD
T

|∇U |2 dx dt+ sup
t∈(0,T )

∫

Γ

[U ]2(x, t) dσ +

∫

ΓT

[U ]2 dσ dt

≤ γ
(
‖f1‖

2
L2(ΩB

T ) + ‖f2‖
2
L2(ΩB

T ) + ‖v0‖
2
L2(ΩB) + ‖s0‖

2
L2(Γ ) + 1

)
, (2.37) eq:energy3

where γ depends on γ0, γI , α, β, and the geometry. Notice that, by (2.37), it follows
also that

∫

ΩB
T

|∇V |2 dx dt ≤ γ
(
‖f1‖

2
L2(ΩB

T ) + ‖f2‖
2
L2(ΩB

T ) + ‖v0‖
2
L2(ΩB) + ‖s0‖

2
L2(Γ ) + 1

)
. (2.38) eq:energy4

3. Well-posedness
s:exist

In this section, we first prove the well-posedness of the problem (2.27)–(2.35) cor-
responding to Iion ≡ 0; then, the complete problem will be treated as a nonlinear
perturbation of this case (see, for instance, [12, 16, 20, 25]).
In order to prove existence and uniqueness for the linear problem, we will consider
it in an abstract setting and to this purpose we need “to move” the source f1 − f2
from (2.28) to (2.27), (2.32), and (2.35). This will be done by considering, for a.e.
t ∈ (0, T ), the following auxiliary problem:

− div
(
(σB

1 + σB
2 )∇ũ

)
= f1 − f2, in ΩB ; (3.1) eq:pde1

σB
1 ∇ũ · ν = 0, on Γ ; (3.2) eq:pde2

ũ = 0, on ∂ΩB ∩ ∂Ω. (3.3) eq:pde3

Clearly, problem (3.1)–(3.3) is classical and admits a unique solution ũ ∈ H1(0, T ;H1
null(Ω

B)).
Moreover, we extend ũ inside ΩD by zero, so that it has a nonzero jump on Γ ; i.e.,
ũ ∈ X 1

0 (Ω). On Γ , let us define

q := −α
∂[ũ]

∂t
− β[ũ] , (3.4) eq:a8
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and consider the problem for (v, u) ∈ L2(0, T ;H1
null(Ω

B))×L2(0, T ;X 1
0 (Ω)) given by

∂v

∂t
− div(σB

1 ∇v)=f1 + div(σB
1 ∇u) + div(σB

1 ∇ũ), in ΩB
T ; (3.5) eq:PDEins

− div((σB
1 + σB

2 )∇u)=div(σB
1 ∇v), in ΩB

T ; (3.6) eq:PDEouts

− div(σD∇u) = 0, in ΩD
T ; (3.7) eq:PDEdiss

σB
1 ∇(v + u) · ν = 0, on ΓT ; (3.8) eq:flux1s

σB
2 ∇u · ν = σD∇u · ν, on ΓT ; (3.9) eq:flux2s

α
∂

∂t
[u] + β[u] = σB

2 ∇u · ν + q, on ΓT ; (3.10) eq:Circuits

v, u = 0, on ∂Ω × (0, T ); (3.11) eq:BoundDatas

v(x, 0) = v0(x), on ΩB; (3.12) eq:InitData1s

[u](x, 0) = s0(x)− [ũ](x, 0), on Γ . (3.13) eq:InitData3s

The weak formulation of previous problem is given by

−

∫

ΩB
T

v∂tϕB dx dt+

∫

ΩB
T

σB
1 ∇v · ∇ϕB dx dt+

∫

ΩB
T

σB
1 ∇u · ∇ϕB dx dt

+

∫

ΩB
T

(σB
1 + σB

2 )∇u · ∇ϕ
1
D dx dt+

∫

ΩB
T

σB
1 ∇v · ∇ϕ

1
D dx dt

+

∫

ΩD
T

σD∇u · ∇ϕ2
D dx dt− α

∫

ΓT

[u]∂t[ϕD] dσ dt + β

∫

ΓT

[u][ϕD] dσ dt

=

∫

ΩB
T

f1ϕB dx dt−

∫

ΩB
T

σB
1 ∇ũ · ∇ϕB dx dt+

∫

ΓT

q[ϕD] dσ dt , (3.14) eq:weak1

for every ϕB ∈ L2(0, T ;H1
null(Ω

B))∩H1
0 (0, T ;L

2(ΩB)), ϕD ∈ L2(0, T ;X 1
0 (Ω)), where,

as before, [ϕD] = ϕ1
D −ϕ2

D and [ϕD] ∈ H1
0 (0, T ;L

2(Γ )). The weak formulation (3.14)
shall be complemented with the initial conditions. Indeed, as it will be proved in
Theorem 3.4, we have v ∈ C0([0, T ];L2(ΩB)) and [u] ∈ C0([0, T ];L2(Γ )).

The next step is to define a suitable bilinear form on W , which is continuous and
coercive. To this purpose, we need the following result.

p:p1 Proposition 3.1. Let (w, r) ∈ W be assigned. Then, there exists a unique solution
W ∈ X 1

0 (Ω) of the problem

− div((σB
1 + σB

2 )∇W)=div(σB
1 ∇w), in ΩB; (3.15) eq:PDEuno

− div(σD∇W) = 0, in ΩD; (3.16) eq:PDEdue

(σB
1 + σB

2 )∇W · ν = σD∇W · ν − σB
1 ∇w · ν, on Γ ; (3.17) eq:fluxuno

[W] = r, on Γ ; (3.18) eq:Circuituno

W = 0, on ∂Ω. (3.19) eq:Bound

11



Moreover, there exists a constant γ > 0, depending on σB
1 , σ

B
2 , σ

D, and the geometry,
such that

‖W‖X 1

0
(Ω) ≤ γ(‖w‖H1(ΩB) + ‖r‖H1/2(Γ )) . (3.20) eq:a4

Proof. Uniqueness for problem (3.15)–(3.19) is a straightforward consequence of its
linearity. In order to prove that a solution does exist, we first consider the following
auxiliary problem:

− div((σB
1 + σB

2 )∇W1)=div(σB
1 ∇w), in ΩB ; (3.21) eq:PDEtre

W1 = r, on Γ ; (3.22) eq:datauno

W1 = 0, in ΩD; (3.23) eq:PDEtrebis

W1 = 0, on ∂Ω. (3.24) eq:datadue

Clearly, the previous problem admits a unique solution W1 ∈ X 1
0 (Ω). Moreover,

there exists a constant γ > 0, depending on σB
1 , σ

B
2 , such that

‖W1‖X 1

0
(Ω) ≤ γ(‖w‖H1(ΩB) + ‖r‖H1/2(Γ )) . (3.25) eq:a5

Indeed, let us denote by r̃ ∈ H1
null(Ω

B) an extension of r from Γ to the whole ΩB,
such that ‖r̃‖H1(ΩB) ≤ γ‖r‖H1/2(Γ ), and set W

r

1 := W1 − r̃. Clearly, W
r

1 satisfies the
problem

− div((σB
1 + σB

2 )∇W
r

1)=div(σB
1 ∇w) + div((σB

1 + σB
2 )∇r̃), in ΩB ; (3.26) eq:PDEquattro

W
r

1 = 0, on ∂ΩB . (3.27) eq:dataquattro

Therefore, by the standard energy inequality, we get

∫

ΩB

|∇W
r

1|
2 dx ≤ γ

(
‖∇w‖2L2(ΩB) + ‖r‖2H1/2(Γ )

)
, (3.28) eq:energy2

which implies (3.25), with γ depending only on σB
1 , σ

B
2 .

Now, let us consider the second auxiliary problem for W2 ∈ H1
0 (Ω) given by

− div((σB
1 + σB

2 )∇W2)= 0, in ΩB; (3.29) eq:PDEcinque

− div(σD∇W2)= 0, in ΩD; (3.30) eq:PDEsei

[W2] = 0, on Γ ; (3.31) eq:jumpcinque
(
(σB

1 + σB
2 )∇W2 − σD∇W2

)
· ν = −

(
(σB

1 + σB
2 )∇W1 + σB

1 ∇w
)
· ν, on Γ ; (3.32) eq:circuitcinque

W2 = 0, on ∂Ω. (3.33) eq:datacinque

12



Existence and uniqueness for the previous problem is guaranteed by [1, Lemma 5];
moreover, the weak formulation of (3.29)–(3.33) is given by

0 =

∫

ΩB

(σB
1 + σB

2 )∇W2 · ∇ϕ dx+

∫

Γ

(σB
1 + σB

2 )∇W2 · ν ϕ dσ

+

∫

ΩD

σD∇W2 · ∇ϕ dx−

∫

Γ

σD∇W2 · ν ϕ dσ

=

∫

ΩB

(σB
1 + σB

2 )∇W2 · ∇ϕ dx+

∫

ΩD

σD∇W2 · ∇ϕ dx

−

∫

Γ

(σB
1 + σB

2 )∇W1 · ν ϕ dσ −

∫

Γ

σB
1 ∇w · ν ϕ dσ , (3.34) eq:weak2

for every ϕ ∈ H1
0 (Ω). From (3.21), we obtain

−

∫

Γ

(σB
1 + σB

2 )∇W1 · ν ϕ dσ −

∫

Γ

σB
1 ∇w · ν ϕ dσ

=

∫

ΩB

(σB
1 + σB

2 )∇W1 · ∇ϕ dx+

∫

ΩB

σB
1 ∇w · ∇ϕ dx .

which, replaced in (3.34), provides

0 =

∫

ΩB

(σB
1 + σB

2 )∇W2 · ∇ϕ dx+

∫

ΩD

σD∇W2 · ∇ϕ dx

+

∫

ΩB

(σB
1 + σB

2 )∇W1 · ∇ϕ dx+

∫

ΩB

σB
1 ∇w · ∇ϕ dx . (3.35) eq:weak3

By taking ϕ = W2 in (3.35), we get

∫

ΩB

(σB
1 + σB

2 )|∇W2|
2 dx+

∫

ΩD

σD|∇W2|
2 dx

= −

∫

ΩB

(σB
1 + σB

2 )∇W1 · ∇W2 dx−

∫

ΩB

σB
1 ∇w · ∇W2 dx ,

which, taking into account (3.25), implies

‖∇W2‖L2(Ω) ≤ γ(‖∇W1‖L2(ΩB)+‖∇w‖L2(ΩB)) ≤ γ(‖w‖H1(ΩB)+‖r‖H1/2(Γ )) , (3.36) eq:a2

with γ depending only on σB
1 , σ

B
2 , σ

D and the geometry.
Finally, setting W = W1 + W2, it is easy to see that W ∈ X 1

0 (Ω) and satisfies
(3.15)–(3.19) and (3.20). �
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r:r1 Remark 3.2. We point out that, taking r̃ ∈ H1
null(Ω

B) as in the proof of Proposition
3.1 and defining

Wr =

{
W − r̃ , in ΩB;

W , in ΩD,
(3.37) eq:a10

we get that Wr ∈ H1
0 (Ω) and it satisfies

− div((σB
1 + σB

2 )∇Wr)=div(σB
1 ∇w) + div((σB

1 + σB
2 )∇r̃), in ΩB ; (3.38) eq:PDEunod

− div(σD∇Wr) = 0, in ΩD; (3.39) eq:PDEdued

(σB
1 + σB

2 )∇Wr · ν = σD∇Wr ·ν − σB
1 ∇w ·ν − (σB

1 + σB
2 )∇r̃ · ν, on Γ ; (3.40) eq:fluxunod

[Wr] = 0, on Γ ; (3.41) eq:Circuitunod

Wr = 0, on ∂Ω. (3.42) eq:Boundd

The weak formulation of problem (3.38)–(3.41) is given by

∫

ΩB

(σB
1 + σB

2 )∇Wr · ∇φ dx+

∫

ΩD

σD∇Wr · ∇φ

= −

∫

ΩB

σB
1 ∇w · ∇φ dx−

∫

ΩB

(σB
1 + σB

2 )∇r̃ · ∇φ dx , (3.43) eq:weak6

for every φ ∈ H1
0 (Ω), which implies

∫

ΩB

(σB
1 + σB

2 )∇W · ∇φ dx+

∫

ΩD

σD∇W · ∇φ = −

∫

ΩB

σB
1 ∇w · ∇φ dx , (3.44) eq:weak7

for every φ ∈ H1
0 (Ω). �

Now, we are in the position to define the bilinear form a : W ×W → R as

a
(
(w, r), (w, s)

)
:=

∫

ΩB

σB
1 ∇w · ∇w dx+

∫

ΩB

σB
1 ∇W · ∇w dx

+

∫

ΩB

(σB
1 +σB

2 )∇W ·∇W dx+

∫

ΩB

σB
1 ∇w ·∇W dx+

∫

ΩD

σD∇W ·∇W dx+β

∫

Γ

rs dσ ,

(3.45) eq:bilin

where W and W are the solutions of (3.15)–(3.19) corresponding to (w, r) and (w, s),
respectively.

p:p4 Proposition 3.3. The bilinear form a : W ×W → R, defined in (3.45), is symmet-
ric, continuous, and coercive.
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Proof. Notice that the bilinear form a can be rewritten as

a
(
(w, r), (w, s)

)
=

∫

ΩB

σB
1 ∇(w +W) · ∇w dx+

∫

ΩB

σB
1 ∇(w +W) · ∇W dx

+

∫

ΩB

σB
2 ∇W · ∇W dx+

∫

ΩD

σD∇W · ∇W dx+ β

∫

Γ

rs dσ

=

∫

ΩB

σB
1 ∇(w+W)·∇(w+W) dx+

∫

ΩB

σB
2 ∇W·∇W dx+

∫

ΩD

σD∇W·∇W dx+β

∫

Γ

rs dσ ,

which immediately proves that it is symmetric. Moreover, from (3.20), it easily
follows that a is continuous.
In order to prove that it is also coercive, we note that

a
(
(w, r), (w, r)

)
=

∫

ΩB

σB
1 ∇(w +W) · ∇(w +W) dx+

∫

ΩB

σB
2 ∇W · ∇W dx

+

∫

ΩD

σD∇W · ∇W dx+ β

∫

Γ

r2 dσ

≥ γ(‖∇w +∇W‖2L2(ΩB) + ‖∇W‖2L2(ΩB) + ‖∇W‖2L2(ΩD) + ‖r‖2L2(Γ ))

≥ γ(‖w‖2H1(ΩB) + ‖r‖2H1/2(Γ )) , (3.46) eq:a6

where, in the last inequality, we take into account that r = [W] (see (3.18)) and we
use the Poincaré inequality (2.7) and the classical trace inequality, which assure that

‖r‖2H1/2(Γ ) ≤ γ‖W‖2X 1

0
(ΩB) ≤ γ

(
‖∇W‖2L2(ΩB) + ‖∇W‖2L2(ΩD) + ‖r‖2L2(Γ )

)
.

�

p:p2 Theorem 3.4. Assume that σB
1 , σ

B
2 , σ

D, α, β, f1, f2, v0, s0 are as in Subsection 2.3.
Let ũ be the unique solution of problem (3.1)–(3.3), extended by zero inside ΩD, and
q be defined in (3.4). Then, problem (3.5)–(3.13) admits a unique solution (v, u) ∈
L2(0, T ;H1

null(Ω
B)) × L2(0, T ;X 1

0 (Ω)), such that v ∈ C0([0, T ];L2(ΩB)) and [u] ∈
C0([0, T ];L2(Γ )).

Proof. Let us denote by 〈·, ·〉W ∗W the duality pairing between W and its dual space
W ∗ and define B ∈ W ∗ as

〈B, (ϕB, [ϕD])〉W ∗W =

∫

ΩB

f1ϕB dx−

∫

ΩB

σB
1 ∇ũ · ∇ϕB dx+

∫

Γ

q[ϕD] dσ ,
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for every (ϕB, [ϕD]) ∈ W . By using the bilinear form a introduced in (3.45), we can
consider the following abstract problem:

find (v, [u]) ∈ L2(0, T ;W ) ∩ C0([0, T ];H)

with v(0) = v0 and [u](0) = s0 − [ũ](0) such that

d

dt

(
(v, [u]), (ϕB, [ϕD])

)
H
+ a

(
(v, [u]), (ϕB, [ϕD])

)

= 〈B, (ϕB, [ϕD])〉W ∗W , ∀(ϕB, [ϕD]) ∈ W ,

(3.47) eq:problem

in the distributional sense. By [29, Theorem 23.A], the problem (3.47) is well posed
and it is not difficult to see that its weak formulation is given by

−

∫

ΩB
T

vϕB∂tψ dx dt+

∫

ΩB
T

σB
1 ∇v · ∇ϕBψ dx dt+

∫

ΩB
T

σB
1 ∇u · ∇ϕBψ dx dt

+

∫

ΩB
T

(σB
1 + σB

2 )∇u · ∇ϕ
1
Dψ dx dt+

∫

ΩB
T

σB
1 ∇v · ∇ϕ

1
Dψ dx dt

+

∫

ΩD
T

σD∇u · ∇ϕ2
Dψ dx dt− α

∫

ΓT

[u][ϕD]∂tψ dσ dt+ β

∫

ΓT

[u][ϕD]ψ dσ dt

=

∫

ΩB
T

f1ϕBψ dx dt−

∫

ΩB
T

σB
1 ∇ũ · ∇ϕBψ dx dt+

∫

ΓT

q[ϕD]ψ dσ dt , (3.48) eq:weak8

for every (ϕB, [ϕD]) ∈ W and every ψ ∈ C∞
0 (0, T ), where ϕD inside ΩB and ΩD is

defined as the solution of (3.15)–(3.19), starting from ϕB ∈ H1
null(Ω

B) and [ϕD] ∈

H
1/2
0 (Γ,Ω). Clearly, (3.48) shall be complemented with the initial conditions.

Notice that (3.48) formally coincides with (3.14); however, in (3.14) the test function
ϕD is a generic function belonging to L2(0, T ;X 1

0 (Ω)), while in the present case it
is the solution of an assigned differential problem. Hence, in order to state that,
actually, the two weak formulations are equivalent, we have to prove that we can
replace the prescribed ϕD in (3.48) with a generic test function belonging to X 1

0 (Ω).

To this purpose, let us fix [ϕD] ∈ H
1/2
0 (Γ,Ω) and choose two generic functions ϕ1 ∈

H1
null(Ω

B) and ϕ2 ∈ H1
null(Ω

D), such that [ϕ] := ϕ1 − ϕ2 = [ϕD]. By (3.44), with
φ = ϕD − ϕ ∈ H1

0 (Ω), we get
∫

ΩB
T

(σB
1 + σB

2 )∇u · ∇ϕ
1
Dψ dx dt +

∫

ΩB
T

σB
1 ∇v · ∇ϕ

1
Dψ dx dt+

∫

ΩD
T

σD∇u · ∇ϕ2
Dψ dx dt

=

∫

ΩB
T

(σB
1 + σB

2 )∇u · ∇ϕ
1ψ dx dt+

∫

ΩB
T

σB
1 ∇v · ∇ϕ

1ψ dx dt+

∫

ΩD
T

σD∇u · ∇ϕ2ψ dx dt .

(3.49) eq:weak10

Hence, replacing (3.49) in (3.48), it follows that it is possible to take ϕD ∈ X 1
0 (Ω)

arbitrarily in (3.48) and, thus, such a weak formulation coincides with (3.14), once
16



we take into account the density of product functions in L2(0, T ;H1
null(Ω

B)) and in
L2(0, T ;X 1

0 (Ω)). �

p:p3 Proposition 3.5. Assume that σB
1 , σ

B
2 , σ

D, α, β, f1, f2, v0, s0 are as in Subsection 2.3.
Assume that Iion ≡ 0. Then, problem (2.27)–(2.35) admits a unique solution (V, U) ∈
L2(0, T ;H1

null(Ω
B)) × L2(0, T ;X 1

0 (Ω)), such that V ∈ C0([0, T ];L2(ΩB)) and [U ] ∈
C0([0, T ];L2(Γ )).

Proof. Uniqueness easily follows by the linearity of problem (2.27)–(2.35). In order to
prove existence, set V = v and U = u+ ũ, where ũ ∈ H1(0, T ;X 1

0 (Ω)) is the solution
of problem (3.1)–(3.3) and the pair (v, u) ∈ L2(0, T ;H1

null(Ω
B)) × L2(0, T ;X 1

0 (Ω))
with v ∈ C0([0, T ];L2(ΩB)) and [u] ∈ C0([0, T ];L2(Γ )), is the solution of (3.5)–(3.13),
whose existence is guaranteed by Proposition 3.4. Then, by (3.14), we get

−

∫

ΩB
T

V ∂tϕB dx dt+

∫

ΩB
T

σB
1 ∇V · ∇ϕB dx dt+

∫

ΩB
T

σB
1 ∇U · ∇ϕB dx dt

+

∫

ΩB
T

(σB
1 +σB

2 )∇U ·∇ϕ1
D dx dt−

∫

ΩB
T

(σB
1 +σB

2 )∇ũ ·∇ϕ
1
D dx dt+

∫

ΩB
T

σB
1 ∇V ·∇ϕ1

D dx dt

+

∫

ΩD
T

σD∇U · ∇ϕ2
D dx dt− α

∫

ΓT

[U ]∂t[ϕD] dσ dt+ β

∫

ΓT

[U ][ϕD] dσ dt

=

∫

ΩB
T

f1ϕB dx dt , (3.50) eq:weak4

for every ϕB ∈ L2(0, T ;H1
null(Ω

B))∩H1
0 (0, T ;L

2(ΩB)), ϕD ∈ L2(0, T ;X 1
0 (Ω)), where,

as before, [ϕD] = ϕ1
D − ϕ2

D and [ϕD] ∈ H1
0 (0, T ;L

2(Γ )). Recalling (2.36), the thesis
is achieved, up to an integration in time, once we have taken into account that

∫

ΩB
T

(σB
1 + σB

2 )∇ũ · ∇ϕ
1
D dx dt =

∫

ΩB
T

(f1 − f2)ϕ
1
D dx dt , (3.51) eq:a9

as follows from (3.1)–(3.3). �

As a consequence of the previous results, we finally get our main theorem.

t:t1 Theorem 3.6. Assume that σB
1 , σ

B
2 , σ

D, α, β, f1, f2, v0, s0, and Iion satisfy the as-
sumptions stated in Subsection 2.3.
Then, problem (2.27)–(2.35) admits a unique solution (V, U) ∈ L2(0, T ;H1

null(Ω
B))×

L2(0, T ;X 1
0 (Ω)), such that V ∈ C0([0, T ];L2(ΩB)) and [U ] ∈ C0([0, T ];L2(Γ )).

Proof. The proof can be obtained following the same approach as in [16] (see, also,
[17, §2.4.1]). Indeed, recalling that the function g appearing in the gating equation
(2.13) is affine with respect to its second entry, problem (2.13)–(2.14) can be explicitly
solved in term of uB1 − uB2 = V . Therefore, denoting by w̃V such a solution and by
h(V ) := Iion(V, w̃V ), we obtain that problem (2.27)–(2.35) is a nonlinear version of
the problem considered in Proposition 3.5. Moreover, since the nonlinearity h satisfies

17



the assumptions [12, Definition 4.3.1], the thesis follows by the results in [12, Section
4.3] (see, also, [25, Ch. 6, Theorem 1.2]). �
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