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Abstract: This article introduces the concept of space-time inversion of stochastic Langevin equations
as a way of transforming the parametrization of the dynamics from time to a monotonically
varying spatial coordinate. A typical physical problem in which this approach can be fruitfully
used is the analysis of solute dispersion in long straight tubes (Taylor-Aris dispersion), where the
time-parametrization of the dynamics is recast in that of the axial coordinate. This allows the
connection between the analysis of the forward (in time) evolution of the process and that of
its exit-time statistics. The derivation of the Fokker-Planck equation for the inverted dynamics
requires attention: it can be deduced using a mollified approach of the Wiener perturbations “a-la
Wong-Zakai” by considering a sequence of almost everywhere smooth stochastic processes (in the
present case, Poisson-Kac processes), converging to the Wiener processes in some limit (the Kac
limit). The mathematical interpretation of the resulting Fokker-Planck equation can be obtained
by introducing a new way of considering the stochastic integrals over the increments of a Wiener
process, referred to as stochastic Stjelties integrals of mixed order. Several examples ranging from
stochastic thermodynamics and fractal-time models are also analyzed.

Keywords: stochastic processes; space-time inversion; poisson-kac processes; stochastic stieltjes
integrals; transit-time statistics; fractal time

1. Introduction

Statistical mechanics is deeply intertwined with stochastic methods since the pioneering
contributions by Einstein and Smoluchowski that have foreseen the need of complementing the
classical thermodynamic approach based on average quantities with a detailed understanding of
fluctuation statistics [1,2]. The understanding of the statistical properties of fluctuations characterizing
particle motion in colloidal systems, both in equilibrium and non-equilibrium conditions, has recently
achieved a considerable experimental support from micro- and nanoscale analysis of the motion of
single particles both in gaseous and liquid systems [3–5]. These experiments have shown that at
short-time scales, Brownian fluctuations appear more regular than what predicted by the classical
Langevin-Wiener paradigm [6,7].

Closely related to the experimental analysis, the research on stochastic methods in physics is
experiencing a renewed flourishing in a variety of different directions: from the understanding
of the emergent anomalous features in a variety of physical systems showing both subdiffusive
and superdiffusive scalings [8,9], to the understanding of weak ergodicity breaking [10,11],
to the characterization of stochastic processes possessing finite propagation velocity [12–15] and
the understanding of the thermodynamic implications of this property [16–20]. Stochastic processes
possessing bounded propagation velocity intrinsically arise in relativistic theories [21–24] and in
applications involving both high-energy physics and astrophysical models [25].
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In this article, starting from a classical fluid dynamic problem, namely particle dispersion in
a channel flow [26], we analyze some novel physical and mathematical implications of it associated with
the need of reparametrizing stochastic particle motion with respect to a characteristic spatial coordinate
instead of the physical time. For details see Section 3. This problem stems from the possibility of
defining two different moment hierarchies (spatial and temporal) [27–30] and is motivated by the
interest in obtaining an analytical representation of their mutual relationships. A strategy for achieving
this scope is the parametrization of the particle motion with respect to the axial coordinate, instead of
the physical time (which is the natural setting for the particle Langevin equation), see Section 2.

For this reason, we refer to this approach as “the space-time inversion” of stochastic dynamics.
Space-time inversion provides for some classes of stochastic dynamics a way to treat time and some
specific spatial coordinate on equal footing, and space-time inversion provides the mathematical
formulation for this symmetry.

Albeit from the strictly mathematical point of view, space-time inversion is a purely stochastic
subordination [31,32]—and subordination and time change is a well known technique in the theory
of stochastic processes [33,34], widely applied in statistical physics in connection with modulations
of Continuous Time Random Walk models [35,36]—its solution, for nonlinear Langevin equations is
far from trivial and of interest in the much broader context of stochastic methodsin physics. In point
of fact, it is shown in Section 4 that none of the classical stochastic formulations (Ito, Stratonovich,
Hänggi-Klimontovich, λ-integrals) of stochastic calculus [37] is able to interpret the correct inversion
formula, which requires the introduction of the concept of stochastic integrals of mixed order, see
Section 5. Moreover, space-time inversion may find application in a variety of physical problems as it
intrinsically provides the connection between the solution of the forward Fokker-Planck equation and
the first-transit transit time probability density function (see Section 6).

With respect to a classical time-change, that is a generic and abstract reparametrization of time,
enabling the definition of new families of stochastic processes [34], the space-time inversion of
Langevin equations originates from a transport problem and admits a variety of physical implications.
For this reason, we follow in this article an approach that may sound “non-rigorous” for the pure
mathematician, as oriented to the solution of transport problems via stochastic methods. Nevertheless,
we believe that the main novel concepts addressed in the article can be further elaborated and polished
without great difficulty, to reach the level of a mathematical theory.

In this article we develop the setting of the space-time inversion problem, and derive the correct
“inverted” Langevin equation starting from stochastic processes possessing finite propagation velocity
(Poisson-Kac processes) and converging to Wiener processes in the Kac limit [16,19,38–40]. This can
be viewed as a mollification in the spirit of the Wong-Zakai theorem [41,42]. The interpretation of
the resulting Fokker-Planck equation for the probability density leads to introduce the concept of
stochastic integrals of mixed order, Section 5. Several physical applications are also briefly outlined,
ranging from stochastic thermodynamics to the Langevin modelling of stochastic processes in a “fractal
time” [43,44].

2. Basic Definitions and Statement of the Problem

Consider a stochastic process X(t) = (X1(t), . . . , Xn(t)) in Rn defined by the generalized
Langevin equation

dxh(t) = fh(x(t), t) dt +
s

∑
α=1

ah,α(x(t), t) dws,α(t), (1)

h = 1, . . . , n, where fh(x, t) are the entries of a deterministic vector field, and dws,α(t), α = 1, . . . , s the
increments of the stochastic processes ws,α(t), which do not need to be necessarily of Wiener nature.
In Equation (1), the lower case symbols xh(t) indicate the realizations of Xh(t).

Assume that, for some h, say h = 1, a1,α = 0 identically, for all α = 1, . . . , s, and that f1(x, t) ≥ 0 for
any value of x and t. Under these conditions, x1(t) = x1,0 +

∫ t
0 f1(x(τ), τ) dτ is a monotonic function
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of t. This means that it would be possible in principle to parametrize the system of Equation (1) with
respect to x1 instead of the physical time t. This observation leads to the following definition:

Definition 1. A stochastic process X(t) is positively subordinated to the process Y(t) if there exists a positive
function f (x, y) > 0, such that the following relation holds for the realizations of the two processes

dx(t) = f (x(t), y(t)) dt. (2)

Observe that, in Definition 1, the relation between X(t) and Y(t) is “ab initio” expressed in terms
of the differentials and not as a mathematical equality x(t) = f̃ (y(t)). The latter position would have
induced a completely different expression for the differential dx(t), depending on the dynamics of
Y(t) and on the stochastic calculus considered, (for instance, considering the Ito integral and enforcing
the Ito’s lemma [37]).

Assume that the dynamics of X(t) is positively subordinated to Y(t) which, in turn, satisfies the
stochastic dynamics

dy(t) = g(x(t), y(t)) dt + a(x(t), y(t)) dws(t). (3)

Enforcing the monotonic relation between x(t) and t deriving from Equation (2) it is possible to
represent the stochastic dynamics (2)–(3) in the form

dt = h(x, y(x)) dx

dy(x) = g(x, y(x)) dx + a(x, y(x))dws(x), (4)

that is, parametrizing the subordinating y-dynamics with respect to x instead of time t. In Equation (4),
h(x, y) = 1/ f (x, y), while the functions g(x, y), a(x, y) and the stochastic process Ws(x) should be
determined by a consistency condition connecting Equations (2)–(3) to Equation (4). More precisely, let

x(t) = x0 +
∫ t

t0
f (x(τ), y(τ)) dτ = F1(t; t0, x0, y0)

y(t) = y0 +
∫ t

t0
g(x(τ), y(τ)) dτ +

∫ t
t0

a(x(τ), y(τ)) dws(τ) = G1(t; t0, x0, y0),
(5)

equipped with some prescription on the meaning of the stochastic Stieltjes integral entering the second
Equation (5). The consistency condition, implies that it would be possible to define two functions
g(x, y), a(x, y), and a stochastic process Ws(x), such that

G1(t; t0, x0, y0) = y0 +
∫ F1(t;t0,x0)

x0

g(ξ, y(ξ)) dξ +
∫ F1(t;t0,x0)

x0

a(ξ, y(ξ)) dws(ξ). (6)

Therefore, we have the following definition:

Definition 2. If there exist two functions g(x, y(x)) and a(x, y(x)), and a stochastic process Ws(x) satisfying
Equation (6) almost everywhere in t with probability 1, the stochastic dynamics (4) is referred to as the space-time
inversion of the Equations (2)–(3).

3. The Prototypical Model

Let us introduce space-time inversion of Langevin equations from physical grounds.
The prototypical physical problem motivating this formulation in stochastic dynamics is solute
dispersion in a straight channel in the presence of an incompressible Poiseuille flow and diffusion
(Taylor-Aris dispersion) [26].

For notational simplicity, consider a two-dimensional model, letting x and y be respectively the
axial and the transversal (cross-sectional) coordinates in the channel. A cartoon picture of this problem
is sketched in Figure 1.
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Figure 1. Pictorial representation of the Poiseuille flow in a two-dimensional channel.

Solute particles, initially injected in the channel, undergoes advection controlled by the axial
Poiseuille flow and diffusion. Particle motion is thus described in non-dimensional form by
the equation

dx(t) = v(y(t)) dt +
√

2 K0 δx(y(t)) ◦ dw1(t)

dy(t) =
√

2 K0 δy(y(t)) ◦ dw2(t), (7)

x ∈ (−∞, ∞), y ∈ (0, 1), where v(y) is the axial velocity depending solely on the transverse coordinate,
K0 = 1/Pe the reciprocal of the Peclét number Pe = Vc W/D, corresponding to the ratio of the
characteristic diffusion time W2/D and the characteristic advection time W/Vc, where W is the
channel width, Vc a characteristic velocity (e.g., the mean velocity), and D the Stokes-Einstein diffusion
coefficient. In Equation (7), W1(t) and W2(t) are two independent Wiener processes. The symbol “◦”
indicates that the Stratonovich recipe to stochastic calculus is considered. Observe from Equation (7)
that both the axial Dx and the transversal diffusivities Dy are considered to be explicitly dependent on
the transversal coordinate, that is, on the distance from the walls, Dx(y) = K0 δx(y), Dy(y) = K0 δy(y),
where obviously δx(y), δy(y) > 0. For this reason, this problem is referred to as the generalized
Taylor-Aris problem. Position dependent diffusivities occur in micrometric channels when the particle
size is comparable to W [4,45,46]. As regards the flow velocity, Poiseuille conditions in a 2d channel
dictates a parabolic profile v(y) = 6 y (1− y) (in this case Vc is just the mean velocity). To avoid
singularity issues at the walls, we consider a slip perturbation of the Poiseuille profile, namely v(y) =
6 y (1− y) + ε > 0, where ε is a small slip velocity. The Poiseuille transport problem can be recovered
in the limit for ε→ 0. Equation (7) are complemented with reflection conditions at the channels walls
located at y = 0, 1.

If the Peclét number is sufficiently high, Pe > 102 (which is the rule in particle transport problems),
axial diffusion can be neglected as the dominant contribution to axial transport is essentially convective.
Therefore, setting a(y) = δy(y), W(t) = W2(t) Equation (7) simplifies as follows

dx(t) = v(y(t)) dt

dy(t) =
√

2 K0 a(y(t)) ◦ dw(t). (8)
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If wall effects to diffusion are negligible, then a(y) = 1, and the specification of the stochastic
calculus adopted becomes unnecessary.

Since v(y) > 0, it is natural to ask whether it would be possible to parametrize transversal motion
with respect to the axial coordinate, which corresponds to the space-time inversion problem introduced
in the previous Section.

4. Mollified Description and Space-Time Inverse Langevin Equation

The space-time inversion problem for Equation (8) can be approached by considering the
mollification of the stochastic dynamics using Poisson-Kac processes [17,38], namely,

dx(t) = v(y(t)) dt

dy(t) = b0 β(y(t)) (−1)χ(t;λ) dt, (9)

where b0 and λ are positive parameters such that b2
0/2λ = K0, and β(y(t)) is defined by β2(y) = a(y).

In Equation (9), χ(t; λ) is a Poisson process characterized by the uniform transition rate λ > 0.
The Wiener limit, that is, Equation (8) interpreted within the Stratonovich calculus is recovered
in the Kac limit, that is, for b0, λ → ∞ keeping fixed the ratio b2

0/2λ = K0. Equation (9) with
respect to Equation (8) can be viewed as a mollification “a-la Wong-Zakai” [41,42], in which the
singularity structure of the Wiener perturbation is “cured” by using a piecewise smooth and Lipshitz
continuous stochastic process. The only technical difference is that, while in the original Wong-Zakai
mollification, a piecewise interpolation of the Wiener process has been adopted, here Poisson-Kac
process are considered.

Proposition 1. In the Kac limit, the overall probability density function p(x, y; t) associated with the stochastic
process (9) is a solution of the Fokker-Planck equation associated with the Wiener-Stratonovich Langevin
Equation (8).

Proof. The overall probability density function associated with Equation (9) is given by p(x, y; t) =
p+(x, y; t) + p−(x, y; t) where the two partial probability densities p±(x, y, t) satisfy the hyperbolic
system of equations

∂t p±(x, y; t) = −∂x [v(y) p±(x, y; t)]∓ b0∂y [β(y) p±(x, y; t)]

∓ λ [p+(x, y; t)− p−(x, y; t)] (10)

where ∂ξ = ∂/∂ξ, ξ = t, x, y. Consequently, p(x, y; t) is a solution of the conservation equation

∂t p(x, y; t) = −∂x [v(y) p(x, y; t)]− ∂y [β(y) φ(x, y; t)] (11)

where φ(x, y; t) = b0 [p+(x, y; t)− p−(x, y; t)] fulfils the equation

∂tφ(x, y; t) + ∂x [v(y) φ(x, y; t)] + 2 λ φ(x, y; t) = −b2
0∂y [β(y) p(x, y; t)] . (12)

In the Kac limit, b0, λ → ∞, corresponding to infinite propagation velocity and vanishing
correlation time, keeping fixed the nominal diffusivity K0 = b2

0/2λ, Equation (12) provides φ(x, y; t) =
−K0 ∂y [β(y) p(x, y; t)] and thus the evolution equation for p(x, y; t) reads

∂t p(x, y; t) = −∂x [v(y) p(x, y; t)] + K0 ∂y
[
β(y) ∂y (β(y)p(x, y; t))

]
. (13)
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Rearranging the last term, considering that β2(y) = a(y), thus a′(y)/2 = β(y) β′(y), where
β′(y) = dβ(y)/dy, one finally obtains

∂t p(x, y; t) = −∂x [v(y) p(x, y; t)]− K0

2
∂y
[
a′(y) p(x, y; t)

]
+ K0 ∂2

y [a(y) p(x, y; t)] , (14)

which is the Fokker-Planck equation for the probability density function of the process (8) interpreted
in the meaning of Stratonovich.

Next, consider the space-time inversion of Equation (9). The y-dynamics in the inverted model is
parametrized with respect to x as

dy(x) = b0β(y(x)) (−1)χ(x,λ) dx, (15)

where χ(x, λ) is a Poisson process parametrized with respect to x and characterized by the transition
rate λ. Both β and λ should be determined by the consistency condition. Observe that in the case
of Poisson-Kac processes the consistency condition can be expressed as a local relation a.e. deriving
by differentiation of composite functions dy(t)/dt = (dy(x)/dx)x=x(t) (dx/dt)y=y(t), which implies

b0 β(y) (−1)χ(t,λ) = b0 β(y)(−1)χ(x,λ) v(y), and thus, β(y) = β(y)/v(y). Next consider the transition
probability in the time interval ∆t which equals λ ∆t + O(∆t2). This quantity is also equal in the
inverted representation to λ ∆x + O(∆x2), where ∆x is related to ∆t by the relation ∆x = v(y)∆t,
and consequently λ = λ/v(y). Observe that for the inverted process the transition rate becomes
a function of y. This result is summarized below.

Proposition 2. The space-time inversion of the Poisson-Kac process (9) is given by

dt(x) =
dx

v(y(x))

dy(x) =
b0 β(y(x))

v(y(x))
(−1)χ(x,λ/v(y(x)) dx. (16)

Let us analyze the statistical properties of the inverted process (16). It is sufficient to consider the
y-process alone, that is, the second Equation (16). Its statistical description involves the two partial
probability density functions p±(y; x) that are solution of the hyperbolic system of equations [17,38]

∂x p±(y; x) = ∓b0 ∂y

[
β(y)
v(y)

p±(y; x)
]
∓ λ

v(y)
[
p+(y; x)− p−(y; x)

]
. (17)

Consider the Kac limit of this process: the overall density function p(y; x) = p+(y; x) + p−(y; x)
satisfies the equation ∂x p(y; x) = −∂y

[
β(y) φ(y; x)/v(y)

]
, where φ(y; x) = b0

[
p+(y; x)− p−(y; x)

]
.

In the Kac limit, that is, for b0, λ→ ∞, keeping fixed the ratio b2
0/2λ = K0, the auxiliary flux variable

φ(y; x) satisfies the constitutive equation

φ(y; x) = −K0 v(y) ∂y

[
β(y) p(y; x)

v(y)

]
, (18)

and consequently

∂x p(y; x) = K0 ∂y

[
β(y)∂y

(
β(y) p(y; x)

v(y)

)]
. (19)

Equation (19) can be further rearranged in terms of the quantities entering the original stochastic
model (8). This leads to the following result:
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Proposition 3. The Fokker-Planck equation for the space-time inverted process Equation (8) is given by

∂x p(y; x) = −K0

2
∂y

[
a′(y)
v(y)

p(y; x)
]
+ K0 ∂2

y

[
a(y)
v(y)

p(y; x)
]

(20)

where a′(y) = da(y)/dy.

Proof. Reworking by part the r.h.s. of (20) one obtains

∂x p(y; x) = K0 ∂2
y

[
β2(y) p(y; x)

v(y)

]
− K0 ∂y

[
β′(y) β(y) p(y; x)

v(y)

]
. (21)

Since β(y) =
√

a(y), β(y) β′(y) = a′(y)/2, and Equation (20) follows.

The result expressed by Equation (20) is remarkable since:

• for a(y) = constant = 1, Equation (20) provides the classical subordination result [47],
corresponding to the dynamics of the space-inverted process given by dy(x) =√

2 K0/v(y(x)) dw(x), where W(x) is a Wiener process and this stochastic equation should be
interpreted using the Ito prescription;

• if the original Langevin Equation (8) is nonlinear, that is, a(y) depends explicitly on y,
the Fokker-Planck Equation (20) does not correspond to any simple Langevin equation of the form

dy(x) =

√
2 K0a(y(x))

v(y(x))
∗λ dw(x), (22)

where the stochastic integral is interpreted as a λ-integral [37] (the symbol “∗λ” indicates this
assumption on the stochastic integral), where λ = 0 corresponds to Ito, λ = 1/2 to Stratonovich,
λ = 1 to Hänggi-Klimontovich calculus. For the definition of λ-integrals see Reference [37] and
the introductory discussion at the beginning of the Section 5.

Let us consider some numerical examples. Consider the stochastic model (8) for a Poiseuille
flow v(y) = 6 y(1 − y) + ε in y ∈ [0, 1], where the small slip contribution ε = 10−2 is added for
ensuring positive subordination, and K0 = 10−3. As regards a(y) two models are considered: (model I)
where a(y) = a1 + y/(a2 + y), a1 = 10−2, a2 = 5 , and (model II) where a(y) = a1 + cos(2 π a2 y),
a1 = 1.1, and a2 = 5. Stochastic simulations of Equation (8) involve an ensemble of Np = 104 particles
initially (i.e., at time t = 0) located at x = 0 and uniformly distributed on the transversal cross section
y ∈ [0, 1]. In order to reach a stationary hitting distribution at a constant axial abscissa x, it is sufficient
to consider x > kmin = 3000. Once the particle reach integer values k of the axial abscissa greater
than kmin, the value of the transversal abscissa y at the transit point is recorded. By considering a set
of k values of the axial abscissa for evaluating the intersection, that is, k = kmin + 1, . . . , 2 kmin, it is
possible to estimate the stationary transversal distribution of the transit point averaged over ∼107–108

realization still using a relatively small ensemble of particles. From Equation (19), or equivalently
Equation (20), the stationary transversal transit distribution p∗(y) is given by

p∗(y) = A
v(y)√

a(y)
, (23)

where A is the normalization constant. Figure 2 depicts the results of the stochastic simulations, using
the direct stochastic model (8) (symbols) and the theoretical predictions (23) (solid lines) for model
I and model II, revealing the agreement between the theoretical results for the space-time inverted
process and the stochastic simulations of the direct dynamics.
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Figure 2. Stationary transversal hitting distribution p∗y(y) = p∗(y) vs y for model I and model II
described in the main text. Symbols correspond to stochastic simulations using the direct Langevin
Equation (8), solid lines to Equation (23). Line (a) and symbols (�) refer to model I, line (b) and symbols
(◦) to model II.

The stationary transversal hitting distribution cannot be reproduced from any stochastic
interpretation of the inverse stochastic dynamics of the form (22). This claim is depicted in Figure 3
for model I (data of Figure 2) where the stationary transversal hitting distribution associated with
Equation (22), and expressed by p∗(y) = A[v(y)/a(y)]1−λ, are compared, for typical values of λ,
with the direct stochastic simulations of Equation (8).
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Figure 3. Comparison of the stationary transversal hitting distribution p∗y(y) = p∗(y) vs y for model
I deriving from direct stochastic simulations of Equation (8) (symbols ◦, corresponding to curve d),
compared with the stationary predictions deriving from Equation (22) for λ = 0 (line a), λ = 1/2 (line
b) and λ = 1 (line c).

5. Mixed-Order Stochastic Integrals

From the above analysis, it follows naturally the quest for defining an appropriate space-time
inverted Wiener-driven Langevin equation for the process defined by Equation (8), providing the
Fokker-Planck Equation (20) as the evolution equation for its probability density function p(y; x).
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In point of fact, the Fokker-Planck Equation (20) can be derived from a stochastic Wiener-driven
Langevin equation by introducing a generalization of the stochastic integrals. The classical approach
to stochastic Stieltjes integrals is grounded on the concept of λ-integrals [37], corresponding to an
evaluation of the integrand at a convex mean of the endpoint values of its argument at each subinterval.

Let us briefly review this concept. Consider a realization w of a Wiener process, and let f (w)

a function of it. The stochastic Stieltjes integral of f (w) with respect to the increments of w, in the
interval [a, b], can be performed in different ways. It is usually referred to as λ-integral and indicated
with the symbol

∫ b
a f (w) ∗λ dw, where λ ∈ [0, 1]. A λ-integral of f (w) with respect to dw can be defined

by considering a subdivision {ti}N
i=1 of [a, b], t0 = a, ti < ti+1, tN = b, δ = maxi |ti − ti−1|, as

∫ b

a
f (w) ∗λ dw = lim

δ→0

N

∑
i=1

f (λ wi + (1− λ)wi−1)∆wi (24)

where wi = w(ti), ∆wi = wi − wi−1. For λ = 0, 1/2, 1, one recovers the Ito, Stratonovich and
Hänggi-Klimontovich formulation of stochastic integration, respectively. The Hänggi-Klimontovich
formulation finds application in some statistical mechanical approaches to the kinetic equation and to
fluctuation phenomena [48].

Next, consider the stochastic integration of the product of two functions, say f (w) and g(w)

with respect to the increments of w. It is possible to introduce a generalization of the λ-integrals by
considering the mixed (λ, µ)-integrals, λ, µ ∈ [0, 1] as

∫ b

a
f (w) g(w) ∗λ,µ dw = lim

δ→0

N

∑
i=1

f (λ wi + (1− λ)wi−1) g(µ wi + (1− µ)wi−1)∆wi, (25)

where the same notation used in Equation (24) has been adopted. Essentially, in mixed (λ, µ)-integrals,
two different recipes in the evaluation of the two integrand functions f (w) and g(w) are chosen.
We leave to further analysis the detailed description of the property of this mathematical tool, as the
main focus in the present context is to show that the Fokker-Planck Equation (20) can be derived starting
from a generalization of the Langevin Equation (22) involving the use of mixed stochastic integrals.

Specifically, consider the following generalized Langevin equation

dy(x) =
N(y(x))
D(y(x))

∗λ
µ dw(x), (26)

with D(x) > 0, and where dw(x) is the increment of a Wiener process parametrized with respect to x
in the interval (x, x + dx), equipped with the initial condition

y(x0) = y0 (27)

In Equation (26) the symbol “∗λ
µ” indicates that this stochastic differential equation should

be meant with respect to a mixed theory of stochastic integration. The formal solution of
Equations (26)–(27) is

y(x) = y0 +
∫ x

x0

N(y(x′))
D(y(x′))

∗λ
µ dw(x′), (28)

where the symbol “∗λ
µ” indicates that the mixed integral at the r.h.s of Equation (28) refers of

a λ-parametrization of the numerator N(y(x)) and to a µ-parametrization of the denominator D(y(x)).
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It is not difficult, using “a physicist approach”, to derive the associated Fokker-Planck equation
(a rigorous mathematical formulation can be developed in a later stage) as,

dy(x) =
N(y(x))
D(y(x))

∗λ
µ dw(x) =

N(y(x) + λ dy(x))
D(y(x) + µ dy(x))

dw(x)

=
N(y(x)) + λ N′(y(x)) dy(x) + o(dx1/2)

D(y(x)) + µ D′(y(x)) dy(x) + o(dx1/2)
dw(x)

=
N(y(x) + λ N′(y(x)) dy(x) + o(dx1/2)

D(y(x))
[
1 + µ D′(y(x))/D(y(x)) dy(x) + o(dx1/2)

] dw(x)

=
1

D(x)

[
N(y(x) + λ N′(y(x)) dy(x) + o(dx1/2)

]
×

[
1− µ

D′(y(x))
D(y(x))

dy(x) + o(dx1/2)

]
dw(x), (29)

where o(dx1/2) indicates a quantity vanishing to zero for dx → 0 faster than dx1/2, and N′(y(x)),
D′(y(x)) represent the derivatives of these functions with respect to their argument, N′(y(x)) =

dN(ξ)/dξ|ξ=y(x), and analogously for D′(y(x)).
The increments dy(x) at the r.h.s of Equation (29) can be expanded to the leading order,

and this corresponds to treat Equation (26) in its Ito formulation dy(x) = [N(y(x))/D(y(y(x))] dw(x).
Consequently, Equation (29) becomes

dy(x) =
N(y(x))
D(y(x))

dw(x) +
1

D(y(x))

[
λ N′(y(x))− µ

N(y(x)) D′(y(x))
D(y(x))

]
dy(x)dw(x) + o(dx)

=
N(y(x))
D(y(x))

dw(x) +
1

D(y(x))

[
λ N′(y(x))− µ

N(y(x)) D′(y(x))
D(y(x))

]
N(y(x))
D(y(x))

dw2(x), (30)

where in the last expression the higher order term o(dx) has been neglected. Since d2w(x) = dx [49],
Equation (30) corresponds to the equivalent Langevin-Ito equation

dy(x) =
1

D(y(x))

[
λ N′(y(x))− µ

N(y(x)) D′(y(x))
D(y(x))

]
N(y(x))
D(y(x))

dt +
N(y(x))
D(y(x))

dw(x)

= Veff(y(x)) dt +
N(y(x))
D(y(x))

dw(x), (31)

where

Veff(y(x)) =
1

D(y(x))

[
λ N′(y(x))− µ

N(y(x)) D′(y(x))
D(y(x))

]
N(y(x))
D(y(x))

. (32)

The corresponding Fokker-Planck equation for the associated probability density function p(y; x)
is therefore

∂p(y; x)
∂x

= −∂ [Veff(y) p(y; x)]
∂y

+
1
2

∂2

∂y2

[
N2(y)
D2(y)

p(y x)
]

. (33)

It is easy to see that for µ = λ Equations (32) provides the result obtained from a classical
λ-parametrization of the stochastic integral, namely,

Veff(y) = λ
N(y)
D(y)

d
dy

(
N(y)
D(y)

)
, (34)

which is a consequence of the fact that a mixed (λ, λ)-integral is indeed a λ-integral. The above
analysis provides the analytical background for the following result.
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Proposition 4. Equation (20) represents the Fokker-Planck equation associated with the mixed-order
Wiener-driven Langevin equation

dy(x) =
√

2 K0

√
a(y(x))

v(y(x))
∗1/2

0 dw(x) (35)

that is of 1/2-order with respect to the numerator
√

a(y) and of zero order with respect to the denominator v(y).

Proof. The proof follows from Equations (32)–(33), by considering N(y) =
√

2 K0
√

a(y), D(y) =√
v(y) and λ = 1/2, µ = 0. Specifically, the term involving the second-order derivative in Equation (33)

coincides with that Equation (20). As regards the convective contribution,

Veff(y) =
1√
v(y)

1
2

d
dy

[(√
2 K0

√
a(y)

)] √
2 K0

√
a(y)√

v(y)
=

K0

2
a′(y)
v(y)

, (36)

which is the convective velocity entering the r.h.s. of Equation (20).

6. Applications

In this Section some physical applications of the theory of space-time inversion of stochastic
dynamics are briefly outlined, pinpointing some characteristic problems of general interest.

Transit-time statistics—The inverse space-dynamics and the associated Fokker-Planck equation
provide a direct way to estimate transit-time statistics and transversal hitting distributions as a direct
problem for the space-time inverse dynamics. Consider the Poiseuille flow problem analyzed in the
previous Section, and set a(y) = 1 for simplicity, leading to a linear Langevin equation. In this case,
the inverse space-dynamics is given by

dt(x) =
dx

v(y(x))
, dy(x) =

√
2 K0

v(y(x))
dw(x) (37)

From Equation (37) the probability density function p(t, y; x) parametrized with respect to x can
be defined, and is a solution of the Fokker-Planck equation

∂x p(t, y; x) = −∂t [p(t, y; x)/v(y)] + K0 ∂2
y [p(t, y; x)/v(y)] . (38)

The marginal with respect to t, pt(t; x) =
∫ 1

0 p(t, y; x) dy, provides the density function for the
transit time through x, out of which the temporal (transit time) moments θn(x) =

∫ ∞
0 tn pt(t; x) dt,

n = 0, 1, 2, . . . , can be evaluated as a function of the axial abscissa x. The same quantities can be
estimated also from the numerical integration of the direct Equation (8), evaluating the (first) transit
times and the transversal intersections at a given axial abscissa from an ensemble of particles moving
according to the direct dynamics (8).

Conversely, the space-time inverse dynamics provides a direct framework to the first transit time
process, as the temporal variable is parametrized with respect to x. Observe that the condition of
positive subordination ensures that for each realization and for any value of x, there is one and only
one transit time through the transversal cross section located at any value of x. Figures 4 and 5 depict
the comparison of the stochastic simulations of the statistics of transit times, by considering either
the direct problem (i.e., Equation (8)), and the space-time inverse dynamics Equation (37). Figure 4
refers to the mean transit time θ1(x) and to the second-order central moment σ2

θ (x) = θ2(x)− (θ1(x))2,
starting from an ensemble of particles initially located at x = 0. Two initial transverse distributions
pin,y(y), y ∈ [0, 1], are considered in the simulations: (i) a uniform one, that is, pin,y(y) = 1, and (ii) and
an impulsive one, where all the particles are initially located at y = 0, pin,y(y) = δ(y). Therefore,
the initial condition for p(x, y; t) is p(x, y; 0) = δ(x) pin,y(y). An ensemble of 106 particles is used in
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the simulations. The comparison of the results deriving from the estimate of transit-time statistics
from the direct equation and from the solution of the space-time inverse equation reveals the excellent
matching between these two approaches.
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(b)
Figure 4. Lower-order transit time moments for the 2d Poiseuille channel flow problem vs the spatial
(axial) coordinate x at K0 = 10−3, ε = 10−2. Panel (a) refers to the first-order moments θ1(x), panel
(b) to the second-order central moments (squared variances) σ2

θ (x). Lines (a) and (b) are the results
of the stochastic simulations of the inverted process, while symbols represent the corresponding
quantities estimated from the direct process. Line (a) and (�) correspond to a uniform inlet distribution
pin,y(y) = 1, while line (b) and (◦) to an impulsive inlet condition pin,y(y) = δ(y). Lines (c) represent
the scalings θ1(x) ∼ x2/3 in panel (a), and σ2

θ (x) ∼ x4/3 in panel (b). Lines (d) correspond to the
large-distance linear scaling θ1(x) ∼ σ2

θ (x) ∼ x.

A similar comparison in terms of the transit-time probability density functions pθ(θ, x) =

pt(t; x)|t=θ is depicted in Figure 5 panel (b) at several values of x, while panel (a) depicts the resulting
stationary transversal distribution p∗y(y) = p∗(y) that, in the present case, is parabolic p∗y(y) = A v(y),
where A is a normalization constant.
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Figure 5. Transit time and transverse distribution for the same problem as in Figure 4 , that is, 2d
Poiseuille flow at K0 = 10−3 and ε = 10−2. Panel (a) refers to the stationary transversal hitting
distribution p∗y(y): symbols (�) corresponds to the results of the direct simulation Equation (8),
symbols (◦) to those of the inverse simulations Equation (37). The solid line represents p∗y(y) =

A v(y), where A is a normalization constant. Panel (b) depicts the transit-time probability density
functions pθ(θ; x) vs θ at different values of the axial coordinate x. Solid lines are the results of the
stochastic simulations of the inverse process, symbols those of the direct process. From (a) to (e),
x = 20, 50, 100, 200, 300, respectively.

The space-time inversion process provides a way for establishing a direct connection between
spatial and temporal moments in the analysis of particle dispersion in channel flows, and this issue
will be developed in forthcoming works.

Stochastic thermodynamics—Consider a classical Ornstein-Uhlenbeck model for a particle of
mass m in a conservative potential φ(x) in the presence of stochastic fluctuations

dx = v(t) dt (39)

m dv(t) = −η v(t) dt− φ′(x(t)) dt +
√

2 D η dw(t), (40)
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where η is the friction factor. In stochastic thermodynamics [50] one is interested in the statistics of the
dissipated heat Q(t), and in the work Ls(t) exerted by the stochastic fluctuations

dQ(t) = η v2(t) dt , dLs(t) =
√

2 D η v(t) ◦ dw(t), (41)

where “◦” indicates the Stratonovich approach to Stieltjes integrals in order to be consistent with
the classical definition of the kinetic energy. In this case, space-time inversion can be applied to the
dissipated heat, in order to obtain information on the statistics of the stochastic work Ls and of the
kinetic energy mv2/2 at a prescribed value of the dissipation. In order to ensure positive subordination,
the definition of the dissipated heat should be “mollified” by an arbitrarily small but positive factor
ε > 0, as dQ(t) =

[
ε + η v2(t)

]
dt, and the limit for ε→ 0 considered.

It is also clear that the entropy S(t) could be used as a subordinated process in order to obtain
a parametrization of the dynamics with respect to it instead of the physical time t. This approach could
have interesting thermodynamics implications and will be addressed elsewhere.

Fractal time models—There is a straightforward application of the space-time inversion related
to the idea by R. Hilfer of introducing transport models defined with respect to “a fractal time” [43,44].
To this purpose, consider a pure diffusion process defined by the Langevin model

dy(t) =
√

2 D dw(t), (42)

with y(0) = 0. We are interested in transforming this model parametrized with respect to the physical
time t, into a model parametrized with respect to some fractal time, that is itself a stochastic process.
Since y(t) ∼ w(t), the simplest way to achieve this is to define τ as a positive subordination of w(t),
for example, as

dτ(t) = [ε + |y(t)|ν] dt, (43)

where ε > 0 is a small quantity and ν > 0. The space-inversion of this process is analogous of the
corresponding problem developed in the previous Section for the Poiseuille flow, and leads to a form
of diffusion equation in the fractal time τ, defined by the Langevin dynamics

dy(τ) =

√
2 D

ε + |y(τ)|ν dw(τ), (44)

where W(τ) is a Wiener process parametrized with respect to τ, to be interpreted a la Ito.
Figure 6 depicts the mean square displacement R2(τ) = 〈y2(τ)〉 vs the fractal time τ at D = 1, ε =

10−3, for different values of the exponent ν. Simple scaling arguments indicate that R2(τ) ∼ τ2/(2+ν)

as observed in the stochastic simulations of the inverted process (44).
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Figure 6. Mean square displacement R2(τ) vs τ for the inverted process Equation (44) associated with
Equation (42) and (43), and corresponding to the occurrence of a “stochastic” time parametrization,
for different values of ν. The arrow indicates increasing values of ν = 0.25, 0.5, 1, 2. Symbols are
the results of the stochastic simulations of Equation (44), while lines depict the expected scalings
R2(τ) ∼ τ2/(2+ν).

7. Concluding Remarks

This article has developed the setting of the space-time inversion problems and the use of
mollified dynamics in order to resolve this problem, and obtain its correct statistical description via
a Fokker-Planck equation. If the original (direct) dynamics is described by means of a nonlinear
Langevin equation driven by Wiener fluctuations, the Fokker-Planck equation for the space-inverted
process cannot be explained in terms of the existing models (λ-integrals) of stochastic calculus, while it
can be derived by enforcing a mollified approach for example, using Poisson-Kac processes. In the limit
of infinite propagation velocity, the corresponding Fokker-Planck equation can be interpreted as the
statistical description of a Wiener-driven nonlinear Langevin equation defined in terms of mixed-order
stochastic integrals.

It is important to point out the connections between the present theory and the discrete models
of space-time transport developed in References [51,52]. The connections between the present
theory and fluid dynamic applications (both as regards particle dispersion and fluid mixing) will be
developed elsewhere.
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