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ABSTRACT

Through proliferation on smartphones and smart speakers, intel-

ligent personal assistants (IPAs) have made speech a common in-

teraction modality. Yet, due to linguistic coverage and varying lev-

els of functionality, many speakers engage with IPAs using a non-

native language. This may impact the mental workload and pat-

tern of language production displayed by non-native speakers. We

present a mixed-design experiment, wherein native (L1) and non-

native (L2) English speakers completed tasks with IPAs through

smartphones and smart speakers. We found significantly higher

mental workload for L2 speakers during IPA interactions. Contrary

to our hypotheses, we found no significant differences between L1

and L2 speakers in terms of number of turns, lexical complexity,

diversity, or lexical adaptation when encountering errors. These

findings are discussed in relation to language production and pro-

cessing load increases for L2 speakers in IPA interaction.
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1 INTRODUCTION

Intelligent personal assistants (IPAs) like Google Assistant have

increased the popularity of speech as an interaction modality [9].

Primarily used on smart speakers and smartphones [34], these as-

sistants can be used in a number of different languages, but cover-

age and functionality across these languages is not comprehensive

[27], requiring many users to interact using a non-native language.

This includes those using English as a second language, hereby re-

ferred to as L2 speakers. Interacting with IPAs in this way is likely

to be significantly more challenging than the interaction experi-

enced by those using English as their native language (L1 speak-

ers). For instance, L2 speakers tend to experience difficulty in lex-

ical retrieval [21, 43], because of an incomplete knowledge of the

language being used [47], with production being less automatized

when compared to L1 users [15]. Alongside increased demands

in processing and planning utterances in a second language, this

means L2 users may experience a significantly higher mental work-

load [14, 47] when engaging with IPAs. These factorsmay also lead

them to approach the interaction differently [40, 48]. Our research

explores this empirically, by comparing the mental workload and

language choices made by L1 and L2 speakers when interacting

with IPAs across smart speakers and smartphones.

Our study identified significant differences in cognitive demand

between the two speaker groups. Specifically, we found L2 speak-

ers experience significantly higher levels ofmental workloadwhen

interacting with IPAs in their non-native language compared to L1

speakers. Contrary to expectations, L1 and L2 speakers did not sig-

nificantly vary in the number of commands needed to complete

tasks, number of words used per command, the diversity of their

lexicon, nor their levels of adaptation when they experienced er-

rors during interaction. Our findings are the first to focus on the

cognitive and linguistic aspects in L2 IPA use. We discuss the find-

ings in relation to the cognitive mechanisms that may be present

when interacting with IPAs as an L2 speaker.
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2 RELATED WORK

2.1 Language production in speech interface
interaction

Current work on language production in speech interface interac-

tion almost universally observes the language choices of L1 speak-

ers. Even then, the volume of work on this topic is limited [9],

with a focus on comparing language production in interactions

between human-machine and human-human interlocutors. Such

work finds that users tend to vary significantly in how they inter-

act with systems compared to how they interact with humans [2],

although similar mechanisms may influence language production

[11, 12]. People tend to use fewer topic shifts, use more words, as

well as use fewer anaphora and fillers when interacting with com-

puters as opposed to human partners. Similarly, people tend to use

more basic lexical choices and grammatically simpler utterances

[7] when interacting with computers compared to other people

[26].

This tendency to vary speech choices based on partner type is

thought to be driven by the perception of a computer’s competence

as a dialogue partner (i.e., a user’s partner model), whereby people

see voice user interfaces as at-risk listeners [36]. This is similar to

the mechanisms for adaptation proposed in psycholinguistics lit-

erature, which highlight the tendency for partners to select their

language with the perceptions of their audience in mind, termed

audience design [6]. A similar effect has recently been shown to

operate on lexical choice in speech interface interaction, whereby

participants interacting with a US-accented system were signifi-

cantly more likely to use US lexical terms than when interacting

with an Irish-accented system [12].

2.2 L2 speakers and speech interfaces

Recent work comparing IPA use by both L1 and L2 speakers has

focused on user experience as opposed to observing their interac-

tion from a cognitive and linguistic perspective. L2 speakers see

IPAs as more difficult to use than do L1 speakers [39, 40]. Recent

work has also found that L2 speakers perceive difficulties in trying

to use the right sentence structures or retrieving the right lexical

terms [48] when speaking to IPAs, with L2 speakers feeling they

have to rephrase utterances, causing frustration [40]. Research on

L2 language production offers potential explanations for these per-

ceived difficulties. It is widely acknowledged that L2 speakers tend

to have an incomplete knowledge of the non-native language be-

ing used when compared to L1 speakers [15, 47]. Along with a

comparative lack of automatisation of the cognitive processes for

language production within a second language [15], this means

L2 users must resort to specific production strategies to mitigate

these production barriers. These include replacing lexical items, re-

ducing message complexity or describing the meaning of words

that are hard to retrieve [15]. Paired with the need to process non-

native speechwhen in dialogue, this means L2 speakers experience

considerable cognitive load when having to converse in a second

language [14, 47].

Accented speech and the need for longer planning timemay also

lead to L2 users experiencing difficulties in commands being un-

derstood, with the system either not recognising commands or in-

terrupting the user before commands are complete [25, 48]. When

they encounter communication breakdowns in IPA use, L2 speak-

ers tend to use common strategies to repair commands such as

repeating and rephrasing utterances [33]. Yet, the effective plan-

ning of error repair may depend on the type of device being used.

For example, L2 speakers have emphasised the benefit of using vi-

sual feedback [40], allowing them to use further visual information

(e.g., transcriptions of the conversation) to diagnose errors in their

commands as well as process system prompts, making them more

effective when using IPAs [33, 48].

3 RESEARCH AIMS & HYPOTHESES

Although a number of users engage with IPAs in their non-native

language, research on cognitive concepts such as the mental work-

load and the language they produce in interaction is scant. It is

therefore critical thatwewiden research to include the experiences

of non-native speakers [39, 40]. Our study focuses on linguistic

and cognitive aspects of L2 speaker interaction. We focus on the

mental workload experienced by L2 IPA users in comparison to L1

users, while also exploring the differences in language production

between the two groups when completing tasks with an IPA.

We hypothesise that, due to planning, generating and process-

ing speech utterances in a different language, L2 speakers are likely

to experience significantly higher mental workload in IPA interac-

tion compared to L1 speakers (H1). We also hypothesise that, due

to speech recognition and planning time difficulties [48], L2 speak-

ers may need significantly more turns when conducting a task

than L1 speakers (H2). Due to lexical retrieval and knowledge con-

straints compared to L1 speakers, we also hypothesise L2 speakers

will have significantly fewer words per utterance (H3), lower lex-

ical diversity than L1 speakers in interaction (H4) and may vary

in their levels of adaptation in comparison to L1 speakers when

experiencing errors (H5).

Based on work emphasising the importance of visual modalities

in supporting L2 speaker IPA use [40, 48], we also hypothesise that

these effects may vary significantly by device. Specifically, the vi-

sual feedback afforded by Google Assistant on a smartphone may

lead to reduced mental workload for L2 speakers due to visual out-

put supporting error diagnosis and system query understanding

(H6). As visual support helps users diagnose and correct errors, we

also hypothesise that using a smartphone may significantly affect

the number of commands per turn (H7) and the number of words

per command (H8), while also impacting lexical diversity (H9) and

levels of adaptation (H10) for L2 speakers.

4 METHOD

To investigate these hypotheses, we designed a study that enabled

us to quantitatively compare the cognitive workload and linguis-

tic properties of L1 and L2 speakers in their interaction with IPAs.

The study received ethical approval through the university’s ethics

procedures for low risk projects.
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4.1 Participants

A sample of 33 participants (F=14, M=18, Prefer not to say=1) with

a mean age of 28.1 years (SD=9.8 years) took part in the study.

These were all recruited from students and staff at a European

university via email, campus-wide posters, and snowball sampling.

One participant was removed due to technical difficulties in record-

ing their utterances, leaving 32 participants in the sample. 16 (F=8,

M=7, Prefer not to say=1) were native English speakers, and 16

(F=6, M=10) were native Mandarin speakers, who used English as

their non-native language. These Mandarin speakers self-reported

their English proficiency as moderate (7 point Likert Scale: 1 =

Not at all proficient; 7 = Extremely proficient; Mean=4.21, SD=0.7).

78.1% (N=25) of our sample had used IPAs before, with 9.4% (N=3)

using IPAs frequently or very frequently. For those that had used

IPAs before, Siri (56%) wasmost commonly used, followed by Ama-

zon Alexa (36%) and Google Assistant (12%). Each participant was

given a €10 voucher as an honorarium for taking part.

4.2 Device type

The study included two device conditions. Participants interacted

with Google Assistant, using both a Moto G6 smartphone (Smart-

phone condition) and a Google Home Mini smart speaker (Smart

speaker condition) in a within-subjects design. We selected Google

Assistant because it is commonly used on both smartphones and

on smart speakers [34], minimising potential variation due to dif-

ferences in the IPAs being used across devices. The order of device

interaction was fully counterbalanced across L1 and L2 speaker

groups.

4.3 Task

Participants used Google Assistant to complete a total of 12 tasks

(6 with each device) across the experimental session. Experimental

tasks focused on 6 common IPA tasks [3, 17]: 1) playing music, 2)

setting an alarm, 3) converting values, 4) asking for the time in a

particular location, 5) controlling device volume and 6) requesting

weather information. To reduce practice effects, two versions of

each task were generated, creating two sets of six tasks. Each set

of tasks was used in only one of the device conditions. To eliminate

the influence of written tasks on user utterances, and the potential

confound of written tasks increasing L2 speaker cognitive load, all

tasks were delivered to participants as pictograms (see Figure 1 -

all pictograms are included in supplementary material). The order

of task sets were arbitrarily assigned, ensuring they were counter-

balanced as much as possible across device and speaker conditions.

Task order was randomised within sets for each participant.

4.4 Measures

4.4.1 Mental Workload: To assess participants’ mental workload

during interaction with each of the devices, participants completed

the NASA-TLX [24] after completing each task set. The NASA-TLX

is a 6-item Likert scale (20 point scale per item) questionnaire, mea-

suring 6 constituent factors of mental workload: Mental Demand,

Physical Demand, Temporal Demand, Performance, Effort, and Frus-

tration. Scores on the questionnaire were summed to create an

overall workload (Raw TLX) score (Range: 0-120, see [23]).

4.4.2 Language production in interaction: To assess language pro-

duction in interaction, user task commandswere transcribed. From

these transcripts, a number of measures were derived. These mea-

sures include: Number of commands per task, Lexical complexity,

Lexical diversity per task, Dynamic lexical adaptation, Lexical adap-

tion from initial command.

Number of commands per task is defined as the number of ut-

terances, starting with a wake phrase (i.e. "Hey Google" or "OK

Google"), that a participant used to complete a task.

Lexical complexity (measured through word count per com-

mand) was derived by dividing the total word count used to

complete a task by the number of turns taken. This measure rep-

resents the complexity of the utterance, and follows measures

of L2 linguistic complexity used in text-based research [35]. As

commands to speech interfaces tend to be concise, formulaic state-

ments [19, 26], we used word count per command rather than

measuring numbers of clauses as is done in other L2 complexity

research [35].

Guiraud’s index of lexical diversity [22] was also calculated to

identify the number of unique words used when completing a task

(Lexical diversity per task). This measure compares unique words

in a command to the root of total words in a command. It is con-

sidered to be a robust alternative to diversity measures that use a

direct ratio of unique words to total words, as these measures tend

to inflate diversity as utterance lengths increase [45].

To gauge levels of lexical adaptation for tasks that required mul-

tiple utterances to complete, wemeasured the Guiraud index of lex-

ical diversity for each pair of consecutive commands within a task

(Dynamic lexical adaptation). We also measured the Guiraud index

of lexical diversity for each utterance paired with the first utter-

ance of a task to determine howmuch participants varied their lexi-

cal choices away from their initial command (Lexical adaption from

initial command). Both measures of adaptation were used so that

different styles of adaptation would be detected. For instance, par-

ticipants may make a command, try a different phrasing, then re-

turn to their original phrasing. This would result in high dynamic

lexical adaptation but low lexical adaptation from initial command.

Participants may alternatively adapt by changing fewwords across

many commands, resulting in low dynamic lexical adaptation but

high lexical adaptation from initial command as each utterance in-

creasingly departs from the first attempt. Using both measures al-

low us to detect these differences.

4.5 Procedure

Upon arrival, participants were welcomed by the experimenter,

given an information sheet with details about the experiment and

asked to give written consent to take part in the study. Participants

then completed a demographic questionnaire, giving information

about their age, sex, nationality, native language, experience with

IPAs and speech interfaces, and their self-reported level of English

proficiency. Participants were then given instructions for the study.

Within these, they were asked to also look at 6 practice pictograms

with the same visual structure as those in the experimental session

but different in the information requested, and write what they

would say to the IPA to complete the task depicted. From these
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Figure 1: Example set of task pictograms

responses, experimenters ensured they were interpreting the pic-

tograms correctly before conducting the experimental tasks. They

were then asked to complete a number of tasks with Google As-

sistant on two devices - a smartphone and a smart speaker. These

tasks were displayed on a laptop, one at a time. Participants were

asked to complete a task using the Assistant and once they felt

they had done so, were asked to move to the next task. After com-

pleting a set of 6 tasks with one of the devices, participants then

completed the NASA-TLX. This was then repeated for the next 6

tasks, wherein they interacted with Google Assistant through the

other device. After finishing all tasks with both devices, partici-

pants then completed a short post-interaction interview and were

then fully debriefed as to the aims of the study, and thanked for

participation. To capture participant utterances, the sessions were

recorded using Audacity v. 2.3.0.

5 RESULTS

Out of the total of 384 tasks, 315 were successfully completed (82%)

with 14 partially completed (3.6%) (i.e., participants completed the

task but varied the information requested). 45 tasks (11.7%) were

not successfully completed, of which 24 (6.2%) were not com-

pleted due to technical errors. Unsuccessful and technical error

tasks were excluded from the dataset analysed. Before analysis, all

data was screened for outliers, with these being replaced by values

of the mean ± 3 SDs as suggested in [18]. Descriptive statistics for

all measures included in the study are shown in Table 1.

5.1 Mental Workload

Due to violation of the assumption of normal distribution (p<.05),

a robust mixed ANOVA with 10% trimmed means was run using

the WRS2 package (Version 1.0) [30] in R (Version 3.6) [41]. There

was a statistically significant main effect of speaker on the mental

workload experienced, whereby L1 speakers reported significantly

lower NASA-TLX scores (Mean=27.0; SD=19.07) than L2 speakers

(Mean=42.0; SD=14.37) [Q=11.74, p=.002] (see Figure 2). This sup-

ports our first hypothesis (H1). However, there was no statistically

significant main effect of device type [Q=0.28, p=.60] or interaction

between speaker type and device type [Q=0.81, p=.37] on mental

workload. H6 was therefore not supported.

5.2 Language production in interaction

5.2.1 Analysis Approach: To analyse the language production

data, linear mixed-effects models (LMM) were run using the lme4

0

30

60

90

120

L1 L2
Speaker

R
aw

 T
LX

 S
co

re

Figure 2: Mean Raw TLX scores (10% trimmed means with

trimmed standard error) for each speaker group

package (Version 1.1.21) [5] in R (Version 3.6) [41]. This type of

analysis allows for the modelling of fixed (i.e., device and speaker

type) and random (i.e., participant and task variations) effects on

specific outcomes such as lexical diversity. LMMs also allow us to

model individual differences through random intercepts, as well

as differences in how the fixed effects vary by participant and by

task through modelling random slopes. We take the approach of

modelling the maximal random effect structure determined by

the experiment [4], reducing the complexity of random effects by

removing higher order random slopes to facilitate convergence.

We report LMM results in the text, following recent best-practice

guidelines [31] by also reporting all LMM analyses fully. These

appear in the supplementary material. We include fixed and ran-

dom effect results as well as reporting all model syntax to improve

model reproducibility.

5.2.2 Number of commands per task: Across the data set there

was a total of 933 user commands. The LMM run showed no sta-

tistically significant effect of speaker [Unstandardized β=-0.39, SE

β=0.37, 95% CI [-1.12,0.34], t=-1.06, p=.29], device [Unstandardized

β=0.12, SE β=0.27, 95% CI [-0.41,0.63], t=0.43, p=.67] or speaker

and device interaction [Unstandardized β=0.33, SE β=0.38, 95% CI

[-0.41,1.07], t=0.88, p=.38] on the number of user commands per

task. This means that our hypotheses (H2 and H7) were not statis-

tically supported.
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Table 1: Descriptive statistics by speaker and device type

NASA-TLX

score

(10% trimmed)

Number of

commands

per task

Lexical

complexity

Lexical

diversity

per task

Dynamic

lexical

adaptation

Lexical

adaptation

from initial

command

Speaker Device Type Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

L1

Smart speaker

Smartphone

Total

27.36

29.00

27.50

18.59

13.38

14.13

2.24

2.35

2.29

2.18

2.14

2.15

8.08

8.57

8.32

2.87

3.07

2.97

2.61

2.58

2.60

0.53

0.58

0.56

2.12

2.24

2.19

0.67

0.61

0.66

0.98

0.80

0.88

0.96

0.91

0.93

L2

Smart speaker

Smartphone

Total

47.00

40.64

43.23

12.20

8.69

8.11

1.84

2.30

2.07

1.28

2.02

1.70

7.39

7.43

7.42

2.58

2.11

2.55

2.45

2.55

2.50

0.60

0.53

0.57

2.05

1.96

2.00

0.66

0.71

0.68

0.71

0.88

0.80

0.93

0.89

0.91

Total
Smart speaker

Smartphone

36.89

35.27

16.16

10.25

2.04

2.33

1.79

2.07

7.74

8.01

2.74

2.69

2.53

2.57

0.57

0.56

2.09

2.10

0.66

0.67

0.85

0.84

0.95

0.90

5.2.3 Lexical complexity: Across the dataset there were 7112

words used to command the IPAs, with an average of 7.62 words

per command. There was no statistically significant effect of

speaker [Unstandardized β=-0.65, SE β=0.59, 95% CI [-1.83,0.53],

t=-1.11, p=.27], device [Unstandardized β=0.50, SE β=0.34, 95%

CI [-0.17:1.18], t=1.45, p=.15] or speaker and device interaction

[Unstandardized β=-0.45, SE β=0.49, 95% CI [-1.41,0.51], t=-0.92,

p=.36] on the number of words used per command. Therefore our

hypotheses in relation to lexical complexity (H3 and H8) were not

statistically supported.

5.2.4 Lexical diversity per task: The LMM model showed no sta-

tistically significant effect of speaker type on levels of lexical

diversity per task [Unstandardized β=-0.15, SE β=0.11, 95% CI

[-0.38,0.07], t=-1.38, p=.18], speaker type [Unstandardized β=-0.01,

SE β=0.08, 95% CI [-0.16,0.14] ,t=-0.19, p=.85] and speaker device

interaction [Unstandardized β=0.12, SE β=0.11, 95% CI [-0.09,0.33]

,t=1.14, p=.26]. Therefore our hypotheses in relation to lexical

diversity (H4 and H9) were not statistically supported.

5.2.5 Dynamic lexical adaptation: Over the 315 successful tasks,

116 required more than one command to complete. Tasks that par-

ticipants only used one turn to complete (N=199) were excluded

from the dataset. There was no statistically significant effect of

speaker [Unstandardized β=-0.04, SE β=0.16,95% CI [-0.36,0.28], t=-

0.28, p=.78], device [Unstandardized β=0.14, SE β=0.14, 95% CI [-

0.14,0.42], t=0.98, p=.32] or speaker and device interaction [Unstan-

dardized β=-0.24, SE β=0.20, 95% CI [-0.64,0.16], t=-1.20, p=.23] on

the level of lexical diversity from a preceding turn. Therefore, L1

and L2 speakers did not vary in their levels of lexical adaptation

from a previous utterance when having to use more than one com-

mand to complete a task. There was also no impact of device type

on levels of lexical adaption from previous command, so H5 and

H10 were not supported.

5.2.6 Lexical adaptation from initial command: Again, tasks

where participants only used one utterance to complete the task

were excluded from analysis. The LMM showed no statistically sig-

nificant effect of speaker [Unstandardized β=-0.26, SE β=0.18, 95%

CI [-0.61,0.10], t=-1.43, p=.16], device [Unstandardized β=-0.17, SE

β=0.17, 95% CI [-0.51,0.17], t=-1.01, p=.32] or speaker and device

interaction [Unstandardized β=0.33, SE β=0.25, 95% CI [-0.15,0.82],

t=1.35, p=.18] on the level of lexical diversity from the first turn.

It seems that both L1 and L2 speakers tend to use similar levels of

lexical adaptation from their first turn, with this adaptation not

being influenced by device type. This means that again H5 and

H10 were not supported.

6 DISCUSSION

Our work set out to identify how using IPAs in a non-native lan-

guage impacted mental workload and language production. We

found L2 speakers experienced significantly higher mental work-

load than L1 speakers in IPA interactions across both smart speak-

ers and smartphone devices. Although there were significant levels

of workload for L2 users, there were no significant differences be-

tween L1 and L2 speakers in terms of the number of turns, words

used and diversity of lexical choice. They also did not vary in the

level of lexical adaptation from their initial utterances. They also

did not vary in their level of lexical adaptation when comparing to

a preceding turn. We discuss the interpretations of these findings

below.

6.1 Linguistic retrieval, synthesis processing &
workload

Our work highlights that, even though they may show similar

types of language use, L2 speakers experience significantly higher

mental workload than L1 users in IPA interaction. Reasons for this

are likely to involve the increased load in producing and process-

ing utterances in a non-native language [14, 15]. Efforts needed for

lexical retrieval in production and processing may be of particular

influence. Multilingual speakers store significantly more words in

their mental lexicon when compared to monolinguals, to facilitate

accurate word retrieval in processing and production when using

other languages. This is thought to lead to less frequent access

of words across their lexicon, making activation lower and thus

leading to difficulties in recall and retrieving these lexical items

[15, 21, 43]. The lack of automatisation of language production

processes [15], is also likely to contribute to this load.
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In addition to production issues, many L2 speakers also find

it more cognitively challenging to process and understand non-

native synthetic speech [46]. Non-native speakers find synthesis

in a non-native language significantly less intelligible than do

native speakers [1, 42, 46]. This is proposed to derive from L2

speakers’ comparative unfamiliarity with their non-native lan-

guage’s phonological system, common syntactic structures and

lexicon, which may increase cognitive load when interpreting and

processing speech output [46]. In real world IPA use, this mental

workload may be even higher as background noise negatively

affects non-native speakers’ ratings of intelligibility compared to

native speakers [42]. A challenge for future HCI research is to

investigate ways to mitigate this load for L2 users.

6.2 Lexical adaptation and limited potential for
diversity

Contrary to our hypotheses, number of commands, lexical adapta-

tion, complexity and diversity did not vary across speaker groups

or device types. There may be a number of reasons for this. Al-

though L2 users may experience more load in lexical retrieval, IPA

interaction still tends to be lexically constrained. Consequently,

complex and diverse lexical choices may not be a priority, as IPAs

are often seen as basic dialogue partners [8, 10, 32]. This is con-

trasted by more open-ended interactions in which people have

been shown to use conversational and complex linguistic struc-

tures (e.g., with automotive interfaces [28, 29]). L1 and L2 speaker

variance may be more stark in these types of interaction.

The opportunity for lexical variation may be further limited by

the requirement to use the wake word at the start of commands,

reducing the potential for variability. Additionally, although adap-

tation has been noted as a common strategy for error repair in

human-machine dialogue [26, 36], it may be that lexical adaptation

in this instance is not the primary adaptation strategy for users.

Although L2 users have suggested they may use lexical strategies

in IPA use (e.g., substitution or describing the meaning of words

they cannot retrieve) [48], adaptation of pronunciation is much

more strongly emphasised by L2 speakers in previous work [40,

48]. L2 speakers tend to vary significantly from L1 speakers in

other speech dimensions like tempo, rate of hesitations (e.g., filled

pauses, repetitions and corrections [47]) while also adapting syn-

tactically or semantically [37]. Our findings suggest that, at a lex-

ical level, L2 speakers and L1 speakers do not vary in the limited

lexical context of IPA interaction. Future work should look to ex-

plore other forms of adaptation as well as other linguistic cues in

language production with IPAs across these user groups.

6.3 Proficiency and automaticity

Although we found no significant difference between speakers in

lexical diversity and complexity, this may be due to proficiency

of the participants recruited. L2 participants rated themselves as

moderately proficient and all attended an English-speaking uni-

versity. These factors, together with the relative simplicity of the

commands required for IPA use, may explain the lack of effect in

our analysis. Increased proficiency significantly improves IPA user

experience for L2 language speakers [39, 40]. Increased fluency in a

second language is also linked to the proceduralisation of syntactic

and lexical knowledge of that language [44]. Although we found

no effect in our sample, there may be differences between begin-

ner and more advanced L2 speakers. Future work should look to

identify the role that this proficiency has on language production

within IPA interactions.

7 LIMITATIONS

Along with L2 users being recruited from a European university

where English is the primary language, all L2 users were native

Mandarin speakers, which may influence the wider generalisabil-

ity of results to other native and non-native language combina-

tions. It may be that cognitive effects seen in our work vary based

on similarities and differences of the languages being used, such

as the phonetic or structural similarity of a non-native language

to participants’ native tongue. This means that L2 speakers whose

native languages are more closely related to English may expe-

rience even less evident language production effects than Man-

darin speakers. It is therefore important that future work explores

whether similar effects are seen for L2 speakers with different na-

tive languages, as well as differing levels of language ability men-

tioned above. It is also important to note that future work should

look to increase sample size so as to identify whether the findings

are replicated across larger samples of users.

To increase ecological validity, participants were able to control

when to move on to the next task. This meant that participants

could complete the tasks at their own pace and may more accu-

rately reflect how many attempts participants are willing to give

a task before abandoning it. Individual differences in this willing-

ness are likely to influence the number of commands users made.

Somewere willing to try several times in order to successfully com-

plete tasks, whereas others preferred to skip to the next task after

relatively few attempts, even if they were not successful at com-

pleting the task (although we note only 5.5% of tasks in our data

were abandoned by participants). Although the experimenters en-

couraged participants to try as many times as necessary, they had

the freedom to move on before a successful response, which could

have influenced the number of commands recorded per task.

In relation to ecological validity, it is also important to note that

our research was lab based. This allowed us to minimise poten-

tial confounds such as background noise and user distraction. Yet

this context may have also made users aware that they were being

recorded. Real-world IPA use is likely to vary on these dimensions

in comparison to a lab based environment. Future work should

therefore aim to replicate our findings in a real-world deployment.

Rather than using text based task instructions, we used pic-

tograms to inform participants what to complete during the study.

This was to ensure that the processing of non-native language in

task instructions for L2 users did not confound any mental work-

load effects. The use of pictograms also ensured that text-based

instructions did not influence subsequent language used when

making commands. Future studies with L2 speakers should inves-

tigate the mental workload and language production impact of

delivering written tasks experienced by speakers in such studies.

Our findings are limited to a relatively constrained linguistic

task of IPA interaction. IPAs are generally designed to perform
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simple tasks [3, 13] through question-answer adjacency pair dia-

logues [20, 38], rather than being designed formore conversational

or open-ended speech tasks [10, 16]. It is important that future re-

search considers the nature of L2 speech behaviours in these more

open-ended scenarios.

8 CONCLUSION

Although IPA use has grown, fuelled by their inclusion on smart

speakers and smartphones, not all languages are fully supported,

leading some users to interact in a non-native language. Our study

focused on these non-native (L2) speakers to understand differ-

ences in their experience of IPAs from native (L1) speakers from a

cognitive and linguistic perspective. We found that L2 speakers ex-

perienced significantly higher mental workload than L1 speakers,

irrespective of the device they are using. Even though they experi-

ence higher load in producing and interpreting the language from

the IPA, they did not vary in the way they interacted linguistically

with the IPAs, showing similar number of commands, lexical com-

plexity, lexical diversity and lexical adaptation to L1 speakers. Our

work sheds light on this under-researched set of users. CUI-based

research needs to study this group in more detail to identify ways

to support their IPA interactions, reducing the cognitive burden

they experience.
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