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Abstract 

This paper investigates the dynamical response of a nonlinear piezoelectric (PZT) energy harvester under 
a hard harmonic excitation and assesses its output power. The system is composed of a unimorph 
cantilever beam with a tip mass and exposed to an harmonic tip excitation with a hard forcing amplitude. 
First, the governing dimensionless nonlinear electromechanical ordinary differential equations (ODEs) are 
obtained. Next, the multiple scales method (MSM) is exploited to provide an approximate-analytical 
solution for the ODEs in hard and soft forcing scenarios. It is observed that, the hard force results in sub- 
and super-harmonic resonances. The MSM-based solutions are then validated by a numerical integration 
method and a good agreement is observed between the approximate-analytical and numerical results. 
Furthermore, utilizing the MSM-based solutions for the subharmonic, superharmonic, and soft primary 
resonances cases, the associated frequency and force response curves are constructed. It is revealed that 
the hard excitation leads to a remarkable voltage generation in the secondary resonances; this leads to a 
broadband energy harvesting. In addition, the time-domain electrical responses of the secondary 
resonances are also obtained and compared with each other. Finally, the three-dimensional graphs of the 
electrical power versus detuning parameter and time constant ratio in the cases of the secondary 
resonances are plotted. The results show that the optimum output power of the superharmonic 
resonance is considerably larger than the maximum power of the subharmonic resonance case. 
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1-Introduction 

The use of battery-reliant electronic devices with sub-milliwatt power consumption ranging from sensors, 

controllers, and medical implants to wearable electronics is rapidly growing. The typical electrochemical 

batteries used in these devices are unsatisfactory because of the high costs due to periodical replacement 

and chemical pollution. The search for portable, cheap, and renewable energy resources for these low-

power electronic devices has motivated the harvesting of small-scale energy from the environment [1]. 

Harnessing untapped ambient environmental energy and converting it to useful electrical energy offers 

an abundant source of sustainable and renewable energy. Potential sources for renewable-based 

electricity generation are wind, wave, sunlight, and kinetic energies. The integration of energy harvesters 

with these devices improves their efficiency by providing local and green energy sources enabling them 

to operate autonomously. Contrary to the other sources, kinetic energy has been shown to be a promising 

source due to its ubiquity and diversity. Accordingly, electrical energy can be harvested through vibrations 

[2-4], flow-induced instabilities [5-9], combined loadings [10], and so on. The wasted energy can be 

converted to electrical form with the aid of electrostatic [11, 12], electromagnetic [13-16], and 

piezoelectric [17-19] transducers. Although each of these mechanisms has their own benefits and 

inevitable drawbacks, piezoelectricity is pursued increasingly owing to the possibility of downsizing 

devices and operation over a wide range of frequencies.   

Reviewing the vast research on piezoelectric vibration energy harvesters (PVEH), initial works have 

modelled simple PVEHs. Erturk and Inman [20, 21] provided lumped and distributed parameter models of 

a linear beam based PVEH and presented analytical solutions for the deflection and voltage responses. 

Their experimental results revealed that both of the developed models can capture the dynamics of the 

electromechanical system, whereas the distributed-parameter model is more precise. However, the 

efficiency of the initial linear devices is hindered due to their narrow resonance region and they are ill-

suited for operating under environmental excitation, which mainly consist of time-varying frequencies. 

Hence, novel designs have been increasingly perused to cope with this challenge and capturing the 

channeled energy in an efficient way [22, 23]. Firstly, the idea of integrating active/passive tuning 

mechanisms was investigated to match the excitation and PVEH resonance frequencies [24-26]. However, 

this tuning adds to the complexity and decreases the efficiency of PVEHs [27]. Inspired by the positive role 

of inherent nonlinearities in the structure to broaden the resonance bandwidth of the system, the concept 

of the intentional application of nonlinear restoring forces emerged to compensate the mistuning [17]. 

Daqaq et al. [28] reviewed the techniques that inject nonlinearity through magnetic coupling and 
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observed that, utilizing an external magnetic field, a mono/bistable cubic nonlinearity develops in the 

system and improves its efficiency through widening the resonance frequency bandwidth. This leads to 

superior performance of nonlinear energy harvesters over linear ones, and consequently nonlinearly 

designed PVEH are used extensively for efficient energy scavenging. Recently, Deng et al. [29] proposed a 

poly-stable PVEH using an array of piezoelectric beams with tip magnets. Empirical results showed that 

the operating bandwidth was widened by a factor of 41, with respect to its single linear counterpart. 

Moreover, the voltage and output power density increased by 178% and 760%, respectively, compared 

to the single linear harvester.  

However, nonlinear energy harvesters can also experience secondary resonances under the external 

excitation depending on the forcing amplitude. Masana and Daqaq [30] investigated a bistable PVEH 

under longitudinal excitation, in the vicinity of its super-harmonic resonance of order two. The theoretical 

and experimental results showed that, at the specific forcing levels, the harvester can produce 

considerable power in the vicinity of the half of its fundamental frequency. Lin et al. [31] investigated a 

magnetically coupled PVEH operating over a broad range of frequencies. It was observed that the voltage 

of the proposed system was three, four, and five times that of the linear counterpart in the presence of 

the stochastic, subharmonic, and ultraharmonic resonances, respectively. Syta et al. [32] studied the 

response of a bistable piezoelectric energy harvester, composed of a vertical beam with a tip mass. The 

results revealed that, in addition to the excitation frequency, the harvester is capable of producing 

comparable voltages at subharmonics of 1/3 and 2/3. Huguet et al. [33] examined the response of a 

bistable energy harvester in subharmonic oscillations, both numerically and experimentally. It was shown 

that activating the subharmonic resonances broadens the operating frequency bandwidth of the energy 

harvester by 180% compared to the case of primary resonance. Panyam et al. [34] investigated energy 

harvesting from the subharmonic parametric excitation of a bistable PZT beam. It was observed that, 

depending on the amplitude and frequency of the external excitation, the system can experience periodic 

intra-well oscillations, intra- and inter-well chaotic vibrations, and periodic inter-well motions. Moreover, 

the occurrence of subharmonic resonance, can result in broadband energy harvesting. Huguet et al. [35] 

studied, both analytically and experimentally, the subharmonic behavior of a bistable PVEH. The results 

showed that the frequency bandwidth of the harvester was 25 Hz in the presence of a sole harmonic 1 

resonance. However, by combining harmonic 1 and subharmonic 3 resonances, the bistable system could 

harness more than 100 µW with a 70 Hz frequency bandwidth. This implies a 180% increase in the 

resonance bandwidth. Chen et al. [36] investigated a bistable micro/nano-scale plate energy harvester 
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with a one-third super-harmonic resonance. It was observed that the presence of large amplitude 

vibrations in the super-harmonic region results in a 25mV amplification in the output voltage.  

Based on the literature, the occurrence of super-harmonic resonances in a vibratory energy harvester, is 

proven to result in a remarkable increase in output voltage. However, the investigation by Nayfeh and 

Mook [37] revealed that a nonlinear oscillator can undergo both sub- and super-harmonic resonances in 

the presence of a sufficiently large forcing level, referred to hard excitation. Although these resonances 

have already been noticed in mechanical oscillators [38, 39], to the best of the authors’ knowledge and 

from reviewing the literature, they have not been investigated analytically in the framework of energy 

harvesting. Consequently, there is not a comprehensive analytical study of the mechanical and electrical 

response along with the optimum electrical output of a PVEH in the presence of a hard excitation which 

leads to the sub- and super-harmonic resonances. The absence of such a study characterizing the response 

of a PVEH under hard excitation was also stated in Refs [33, 35]. To fill this gap, this work provides an 

analytical investigation to classify the probable resonances that a nonlinear PVEH can undergo in the 

presence of a hard external excitation, for the first time. Hence, the response of the system can be 

characterized over a wide range of frequencies and a bridge can be constructed between analytical, 

numerical, and empirical studies. Moreover, the optimum electrical power will be investigated to 

determine the efficiency of the PVEH at the secondary resonances. This allows the efficiency of a PVEH to 

be assessed for the secondary resonance cases. Hence, the dimensionless nonlinear electromechanical 

equations governing a cantilever unimorph carrying a tip mass under harmonic excitation are provided. 

Then, using the multiple scales method (MSM), the approximate-analytical solutions of the deflection and 

voltage for the secondary resonances are obtained. Finally, the MSM-based solutions, the numerical 

validation, and the optimum power are provided. The results show that the output power is maximum for 

the superharmonic resonance scenario. 

 

2-Mathematical Modelling 

Figure 1a shows the proposed system composed of a cantilever unimorph beam carrying a cubic tip mass 

and exposed to an harmonic tip excitation. The corresponding simplified electrical circuit is also illustrated 

in Fig. 1b. 
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Fig. 1  (a) The schematic of the piezoelectric energy harvester  and (b) a simplified electrical circuit 
 
 

Utilizing the experimentally validated data in Ref. [40], the governing equations for a single mode 

approximation of the transverse displacement (𝑢) and generated voltage (𝑉#) of the piezoelectric energy 

harvester with a cubic nonlinearity can be stated as: 

 

𝑚�̈� + 𝐶�̇� + 𝑘!𝑢 + 𝑘"𝑢" − 𝜃𝑉# = 2𝐴 cos(ω𝜏) (1-a) 

𝐶#𝑉#̇ +
𝑉#
𝑅
+ θ�̇� = 0 (1-b) 

where 𝑚, 𝐶, 𝑘!, and 𝑘" are, respectively, the mass, viscous damping, linear, and nonlinear stiffness 

coefficients of the piezoelectric beam. Moreover, 𝐴 and Ω denote the amplitude and frequency of the 

external excitation, respectively. In addition, 𝐶# is the piezoelectric capacitance, R is the load resistance, 

and θ is the linear electromechanical coupling coefficient. In Eq. (1-a), 𝜏 is the time and the over-dot 

denotes differentiation with respect to time. To generalize the results, the dimensionless form of the ODEs 

(Eq. (1)) is obtained by defining the following dimensionless parameters: 

𝑡 = ;𝑘!/𝑚	𝜏			; 			𝑥 =
𝑢
𝐿A
			 ; 			𝑣 =

𝐶#
𝐿AΘ

𝑉#			 (2) 

where 𝑡, 𝑥, and 𝑣 represent the dimensionless time, displacement, and voltage, respectively. Moreover, 

𝐿A  is a length scale and here is assumed to be the height of the tip mass (h). The physical properties 

assumed for the examples that follow are listed in Table 1 [41]: 
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Table 1. Physical properties of the energy harvester [41] 
Parameter Value 

Effective mass (m) 0.1134	kg 
Beam length (L) 209	mm 
Beam width (W) 24	mm 
Beam thickness (�̃�) 1	mm 
Damping ratio (ζ) 0.003 
Linear stiffness (k1) 58.2	N/m  
Nonlinear stiffness (k3) 1.2 × 10"	N/m" 
Capacitance of PZT layer (𝐶#) 187	nF 
Electromechanical coupling (Θ) 
Height of the tip mass (h)                                                                    

1.9 × 10$%	N/V 
5	cm 

 

Since both of the linear and nonlinear stiffness coefficients are positive, the elastic energy of the harvester 
is monostable.  Using the dimensionless parameters, the nondimensional governing equations are 
obtained as: 

 

�̈� + 2𝜁�̇� + 𝑥 + 𝜅𝑥" − Θ𝑣 = 2𝑓 cos(Ω𝑡) (3-a) 

�̇� + 𝛼𝑣 + �̇� = 0 (3-b) 

where  

𝜁 =
𝐶

2;𝑘!/𝑚
				 ; 			𝜅 =

𝑘"ℎ&

𝑘!
			 ; 			Θ =

𝜃&

k!𝐶#
		 ; 		𝑓 =

𝐴
𝑘!ℎ

		; 		Ω =
ω

;𝑘!/𝑚
			 ; 		𝛼 =

1
𝑅𝐶#;𝑘!/𝑚

 (4) 

 

Now, the over-dot shows differentiation with respect to the dimensionless time. Moreover 𝜁, 𝜅, Θ, 𝑓, and 
Ω are the dimensionless damping coefficient, cubic stiffness, electromechanical coupling, forcing 
amplitude, and excitation frequency, respectively. Furthermore, 𝑅𝐶# is called the time constant of the 
electrical circuit [42] and 𝛼 is the dimensionless time constant ratio. 

 

 

3- Approximate-Analytical Solution                 

To characterize the dynamical response of the energy harvester, the multiple scales method (MSM) will 

be used to obtain the approximate-analytical solution of Eq. (3). To this end, the displacement and voltage 

responses of the harvester are expanded as [43]: 
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𝑥(𝑡; 𝜀) = 𝑥'(𝑇(, 𝑇!) + 𝜀𝑥!(𝑇', 𝑇!) + 𝒪(𝜀&) 
(5) 

𝑣(𝑡; 𝜀) = 𝑣'(𝑇(, 𝑇!) + 𝜀𝑣!(𝑇', 𝑇!) + 𝒪(𝜀&) 

where 𝜀 is a small bookkeeping parameter; 𝑇' = 𝑡 and 𝑇! = 𝜀𝑡 are fast and slow time scales, respectively. 

Accordingly, the time derivatives can be rewritten as [43]: 

)
)*
= 𝐷' + 𝜀𝐷! + 𝒪(𝜀&)  

(6) 
)!

)*!
= 𝐷'& + 2𝜀𝐷'𝐷! + 𝒪(𝜀&)  

in which,  𝐷+ = 𝜕/𝜕𝑇+. The dimensionless damping ratio, cubic nonlinearity, and electromechanical 

coupling are scaled such that they appear in the first-order of the perturbation problem (𝒪(𝜀)). Physically, 

the system is assumed to be lightly damped, and hence the damping term can be assumed first order. 

Similarly, the electromechanical coupling is first order, since efficient energy harvesting requires 

mechanical resonance and too much coupling will increase the effective damping in the system. In this 

system, we assume a weak nonlinearity and so this term is also first order. Thus, mathematically: 

𝜁 = 𝜀𝜁			; 			𝜅 = 𝜀𝜅			; 			Θ = 𝜀Θ	 (7) 

When the external excitation amplitude is hard (𝑓 = 𝒪(1)), it must be scaled such that it appears in the 

zeroth-order (𝒪(𝜀')) perturbation problem [37, 44]. Introducing Eqs. (5)-(7) in Eq. (3) and considering 𝑓 =

𝒪(1), one finds: 

(𝐷'& + 2𝜀𝐷'𝐷!)(𝑥' + 𝜀𝑥!) + 2𝜀𝜁(𝐷' + 𝜀𝐷!)(𝑥' + 𝜀𝑥!) + (𝑥' + 𝜀𝑥!) + 𝜅(𝑥' + 𝜀𝑥!)" −
Θ(𝑣' + 𝜀𝑣!) = 2𝑓 cos(Ω𝑡)  
 

 
(8-a) 

(𝐷' + 𝜀𝐷!)(𝑣' + 𝜀𝑣!) + 𝛼(𝑣' + 𝜀𝑣!) + (𝐷' + 𝜀𝐷!)(𝑥' + 𝜀𝑥!) = 0 
 
 

(8-b) 

Separating 𝒪(𝜀') coefficients leads to: 

a𝐷'
&𝑥' + 𝑥' = 𝑓b𝑒,-* + 𝑒$,-*d																																																

𝐷'𝑣' + 𝛼𝑉' + 𝐷'𝑥' = 0																																																											
 (9) 

 

The solution of the Eq. (9) is: 

𝑥' = 𝐴𝑒,." + /
!$-!

𝑒,-." + 𝑐𝑐   
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𝑣' = −f0,1
#$"

23,
+ /-1#%$"

(!$-!)(23,-)
𝑒,-." + 𝑐𝑐g       (10) 

where 𝐴 = 𝐴(𝑇!), 𝐹 = 𝑓/1 − Ω&, and 𝑐𝑐 denotes the complex conjugate of the preceding terms. 

Moreover, separating 𝒪(𝜀!) coefficients gives: 

i𝐷'
&𝑥! + 𝑥! = −2𝐷'𝐷!𝑥' − 2𝜁𝐷'𝑥' + Θ𝑣( − 𝜅𝑥'"

𝐷'𝑣! + 𝛼𝑣! = −𝐷!𝑉' − {𝐷'𝑥' + 𝐷!𝑥'}														
  (11) 

Inserting the solution of the zeroth-order problem (Eq. (10)) in Eq. (11) yields: 

𝐷'&𝑥! + 𝑥! = −2{𝐴6𝑖𝑒,." + 𝐶𝐶} − 2𝜁{𝐴𝑖𝑒,." + 𝐹𝑖Ω𝑒,-." 	+ 𝑐𝑐} − Θ{ 0,
23,

𝑒,." + ,7-1#%$"
(23,-)

+

𝑐𝑐} − 𝜅{𝐴"𝑒",." + 𝐹"𝑒",-." + 3𝐴&	�̅�	𝑒,." + 3𝐴&𝐹𝑒,(&3-)." + 3𝐴𝐹&𝑒,(!3&-)." +
3𝐴&𝐹𝑒,(&$-)." + 3𝐴𝐹&𝑒,(!$&-)." + 3𝐹"𝑒,-." + 6𝐴�̅�𝐹𝑒,-." + 6𝐴𝐹&𝑒,." + 𝑐𝑐}  
 

 
 
(12) 

Inspecting Eq. (12), some of the terms are able to generate resonant behavior, the so-called secular terms. 
Separating the secular terms, the following equation is obtained: 

𝐷'&𝑥! + 𝑥! = −2{𝐴6𝑖𝑒,." + 𝑐𝑐} − 2𝜁{𝐴𝑖𝑒,." + 𝐹𝑖Ω𝑒,-." + 	𝑐𝑐} − Θ{ 0,
23,

𝑒,." + ,7-1#%$"
(23,-)

+ 𝑐𝑐} −

𝜅{3𝐴&𝐹𝑒,(&$-)." + 3�̅�&𝐹𝑒,(-$&)." + 3�̅�𝐹&𝑒,(&-$!)." + 6𝐴�̅�𝐹𝑒,-." + 𝐹"𝑒",-." + 3𝐹"𝑒,-." +
3𝐴&	�̅�	𝑒,." + 6𝐴𝐹&𝑒,." + 𝑐𝑐} + 𝜅{𝑁𝑆𝑇}  
 

 
 
(13) 

where NST denotes non-secular terms. Examining Eq. (13), it can be observed that, in addition to the 

terms proportional to 𝑒,.", the terms involving 𝑒,(-$&).", 𝑒",-.", and 𝑒,(&$-)."  are capable of generating 

resonant behavior. Specifically, the following cases lead to the production of secular terms: 

Ω − 2 = 1			 → Ω = 3			 

3Ω = 1								 → Ω = 1/3	 

2 − Ω = 1		; 	2Ω − 1 = 1		; 		Ω = 1			 → Ω = 1			 

(14) 

 

The cases of  Ω = 3 and 1/3 correspond to the secondary resonances of the subharmonic and 

superharmonic type, respectively. In addition,  Ω = 1 shows the case of primary hard excitation and is 

excluded, because the simultaneous presence of the hard excitation and primary resonance can be 

considered as a destructive case due to extremely large deflections. To characterize the energy harvester 

response under hard excitation comprehensively, the cases of the subharmonic and superharmonic 

resonances that are mentioned above will be investigated.  
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3-1- Subharmonic resonance 

First, the frequency response equation corresponding to the case of the subharmonic resonance (Ω ≈ 3) 

will be obtained. To this end, it is assumed that 𝐴 = !
&
𝑎𝑒,8, where  𝑎  and 𝛽 are real functions of 𝑇!, and: 

Ω = 3 + 𝜀𝜎 (15) 

Here 𝜎 is called the detuning parameter. Then, based on Eq. (13), the vanishing of the secular terms in 
this case requires that: 

−{(𝑎6 + 𝑎𝑖𝛽6)𝑖} − 𝜁𝑎𝑖 − 9:,
&(23,)

− 𝜅 f"
%
𝑎&𝐹𝑒,(;.&$"8) + "

<
𝑎" + 3𝑎𝐹&g = 0	  (16) 

 

In addition, by defining 𝛾 = 𝜎𝑇! − 3𝛽 and separating the real and imaginary parts of Eq. (16), the 

electromechanical modulation equations are found as: 

𝑎6 = −𝜁𝑎 − 9:2
&(2!3!)

− "
%
𝑎&𝜅𝐹 sin 𝛾  

 
(17) 

𝛾6 = "
:
f:;
"
− 9:

&(2!3!)
− 𝜅 f"

<
𝑎" + 3𝑎𝐹&g − "

%
𝑎&𝜅𝐹 cos 𝛾g	  

 

The steady-state form of Eq. (17) is obtained by setting 𝑎6 = 𝛾6 = 0 as: 

=
%
𝑎&𝜅𝐹 sin 𝛾 = −3x𝜁𝑎 + 9:2

&(2!3!)
y  

 
(18) =

%
𝑎&𝜅𝐹 cos 𝛾 = a𝜎𝑎 − "9:

&(2!3!)
− 𝜅 f=

<
𝑎" + 9𝑎𝐹&gz  

By eliminating 𝛾 from the relationships in Eq. (18), the frequency response curve of the displacement, a, 
in the subharmonic resonance can be stated as: 

{9 |𝜁 +
Θ𝛼

2(𝛼& + 1)}
&
+ |𝜎 −

3Θ
2(𝛼& + 1)

− 𝜅 i
9
8
𝑎& + 9𝐹&~}

&
� =

81
16
𝑎&𝜅&𝐹& (19) 

 

After solving Eq. (19) and obtaining the values of a, the voltage frequency response curve can be 

established by inserting the values of a into Eq. (10) and calculating the maximum of its output, which will 

be denoted by V.  
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3-2- Superharmonic resonance 

Next, the frequency response equation corresponding to the superharmonic case (Ω ≈ 1/3) will be 

obtained. In this scenario it is assumed that: 

3Ω = 1 + 𝜀𝜎	 (20) 

Based on Eq. (13), the disappearance of the secular terms in this case needs: 

−{(𝑎6 + 𝑎𝑖𝛽6)𝑖} − 𝜁𝑎𝑖 −
Θ𝑎𝑖

2(𝛼 + 𝑖)
− 𝜅 i

3
8
𝑎" + 3𝐹&𝑎 + 𝐹"𝑒,(;.&$8)~ = 0 (21) 

As for the previous case, by considering 𝛾 = 𝜎𝑇! − 𝛽 and separating the real and imaginary parts of Eq. 

(21), the modulation equations are obtained as: 

𝑎6 = −𝜁𝑎 − 9:2
&(2!3!)

− 𝜅𝐹" sin 𝛾  
 

(22) 
𝛾6 = !

:
f𝑎𝜎 − 9:

&(2!3!)
− 𝜅 f"

<
𝑎" + 3𝑎𝐹&g − 𝜅𝐹" cos 𝛾g	  

 

The steady-state form of Eq. (22) can be obtained by equating 𝑎6 = 𝛾6 = 0. These lead to: 

sin 𝛾 = − !
>7'

x𝜁𝑎 + 9:2
&(2!3!)

y  
 

(23) 
cos 𝛾 = !

>7'
a𝑎𝜎 − 9:

&(2!3!)
− 𝜅 f"

<
𝑎" + 3𝑎𝐹&gz	  

 

Elimination of 𝛾 between the relationships in Eq. (23) yields the frequency response equation of the 
superharmonic oscillations amplitude as: 

{|𝜁 +
Θ𝛼

2(𝛼& + 1)}
&
+ |𝜎 −

Θ
2(𝛼& + 1)

− 𝜅 i
3
8
𝑎& + 3𝐹&~}

&
� 𝑎& = (𝜅𝐹")& (24) 

 

The voltage frequency response curve in this case can also be constructed by introducing the values of a 

that are obtained from Eq. (24) into Eq. (10). 

Finally, it is worth providing the frequency equations for the soft primary resonance for further qualitative 

comparisons. When the amplitude of the external stimulus is soft, it can be said that 𝑓 = 𝜀𝑓.̅ The 
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frequency response equation corresponding to this case can be found using the previously mentioned 

procedures. The frequency response equations of the displacement amplitude a can be written as [42]: 

a|2𝜁 +
Θ𝛼

𝛼& + 1}
&
+ |

3
4
𝛼𝑎& +

Θ
𝛼& + 1

− 2𝜎}
&
z 𝑎& = 4𝑓̅&	 

(25) 

 

Moreover, the frequency response equation of the voltage amplitude V is: 

a|2𝜁 +
Θ𝛼

𝛼& + 1}
&
+ |

3
4
𝛼𝑎& +

Θ
𝛼& + 1

− 2𝜎}
&
z (𝛼& + 1)𝑉& = 4𝑓̅&	 

(26) 

 

 

4- Results and Discussions 

In this section the dynamical response of the electromechanical system will be examined utilizing MSM-

based solutions and a numerical integration method.  First, to verify the approximate-analytical MSM-

based solutions, one can use numerical integration methods. For this purpose, to verify the approximate 

analytical solutions, the frequency response curves for particular cases will be plotted using MSM-based 

solutions and compared to numerical integration results. To solve the governing electromechanical 

equations using numerical integration methods, Eqs. (3a) and (3b) must be written in state-space form, 

based on the states: 

�
𝑧! = 𝑥
𝑧& = �̇�
𝑧" = 𝑣

                                                                                    (27) 

 

hence, the state-space form of Eqs. (3a) and (3b) is written as: 

�̇�! = 𝑧&																																																																					
�̇�& = −𝑧! − 2𝜁𝑧& − 𝜅𝑧!" + Θz" + 2𝑓 cos(Ω𝑡)
�̇�" = −𝑧& − 𝛼𝑧"																																																					

 (28) 

 

To provide a numerical solution for the above coupled system based on the numerical integration method, 

the fourth-order Runge-Kutta scheme will be used. Accordingly, in Fig. 2, the frequency response curves 
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of the beam deflection for the cases of sub- and super-harmonic resonances along with soft primary 

resonance are plotted using the MSM solutions and the numerical integration method. Furthermore, the 

MSM- and numerical-based frequency response curves of the output voltage for the subharmonic, 

superharmonic, and soft primary resonance states are also plotted in Fig. 3. It must be mentioned that 

throughout this paper, the solid lines or dots represent the stable solutions and the dashed lines denote 

the unstable solutions. Of course the numerical approach will only produce the stable solutions. 

 

  

(a) (b) 

 

(c) 

Fig. 2 Verification of the MSM-based frequency response curves of the deflection for  (a) subharmonic, (b) 

superharmonic, and (c) soft primary resonance cases with the numerical integration method based on the 

fourth-order Runge-Kutta scheme 
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(a) (b) 

 

(c) 

Fig. 3 Verification of the MSM-based frequency response curves of the output voltage for (a) subharmonic, (b) 

superharmonic, and (c) soft primary resonance scenarios with the numerical integration method based on the 

fourth-order Runge-Kutta scheme 

 

 

As illustrated in Figs. 2 and 3, there is a good agreement between the MSM-based and numerical 

frequency response curves of the deflection and voltage for the three aforementioned cases. This implies 

that the approximate-analytical relationships and corresponding solutions are valid. However, based on 

Figs. 2a and b, a small difference can be observed between the MSM and the numerical deflection 

frequency response curves for the sub- and super-harmonic resonance cases, respectively. This is also 

true for the frequency response curves of the voltage in the sub-harmonic (Fig. 3a) and super-harmonic 

(Fig. 3a) states. These errors stem from the fact that the numerical integration scheme solves a differential 
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equation and includes all of the resonance points of the electromechanical system. Hence at each 

resonance point, the frequency response curve is slightly affected by the frequency response curves of 

the lower and higher resonance frequencies. This difference was also shown in an experimentally 

validated study by Abusoua and Daqaq [1]. 

Next, qualitative comparisons between the secondary resonances and primary resonance cases are given. 

First, the frequency response curves of the dimensionless displacement and voltage for the primary 

resonance case for different forcing levels are given in Fig. 4, using Eqs. (25) and (26). In what follows, the 

dimensionless time constant ratio is assumed to be one (𝛼 = 1). 

 

  
(a) (b) 

Fig. 4  Soft primary resonance frequency response curves of dimensionless (a) displacement and (b) voltage for 

different excitation levels 

 

As illustrated in Fig. 4, the displacement and generated voltage are both amplified by increasing the 

excitation level, f. Moreover, as shown by Figs. 4a and b, by increasing the excitation amplitude, the 

response behavior changes from linear to nonlinear hardening due to the presence of the positive cubic 

stiffness term in the equations. This causes the frequency response curves bend to the right and 

demonstrate jump phenomena, which yields a multivalued solution. Hence, in the vicinity of the 

resonance point, the initial conditions determine the branch to which the response attracts. However, for 

energy harvesting purposes, the initial conditions must be chosen such that the response follows the high 

amplitude, and consequently, high voltage branches. Moreover, as shown in Figs. 4a and b, the nonlinear 

behavior is intensified by increasing the excitation level. In addition, the force response curves of the 
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displacement and voltage in the primary resonance case are shown in Figs. 5a and b, respectively, 

considering three different detuning parameters and 𝑓 = 0.003. 

 

  
(a) (b) 

Fig. 5 Primary resonance force response curves of dimensionless (a) displacement and (b) voltage for different 

detuning parameters 

 

Figures 5a and b show the responses of the displacement and voltage for different detuning parameter 

values, and also exhibit jump phenomena and multivalued solutions. As stated previously, the initial 

conditions determine the branch which the solutions follow. 

Now, to characterize the response of the PZT energy harvester in the cases of the subharmonic and 

superharmonic resonances, the level of the external forcing must be increased. First, using Eqs. (19) and 

(10), the frequency response curves of the displacement and voltage in the case of subharmonic 

resonance are given in Fig. 6, considering three different  forcing levels. 
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(a) (b) 

Fig. 6 Subharmonic resonance frequency response curves of dimensionless (a) displacement and (b) voltage for 

different excitation levels 

 

According to Fig. 6, the general behavior of the frequency response curves differ from the graphs reported 

in Fig. 4. Furthermore, although the frequency of the excitation is three times the fundamental frequency 

of the system (Ω ≈ 3), the bimorph experiences considerably larger amplitude oscillations compared to 

the primary resonance case reported in Fig. 4a. This originates from the hard forcing amplitude. Hence, 

as shown in Fig. 6b, the energy harvester produces significantly higher voltages compared to the primary 

resonance scenario, i.e. Fig. 4b. This also implies that the harvester resonance bandwidth is extended 

towards the larger frequencies, rendering a broadband PVEH. Moreover, as is clear from Figs. 6a and b, 

by increasing the forcing amplitude, the harvester starts to oscillate and generate voltage for smaller 

detuning parameters. Thus, for harder excitations, the system vibrates and delivers electrical output at 

smaller frequencies. This indicates that the subharmonic resonance regions are very sensitive to the 

excitation amplitude, which was also stated in Ref [45]. In addition, although the stable and unstable 

responses coexist in Fig. 6, no jump phenomenon occurs and the initial conditions determine the solution 

branch. The dimensionless deflection and voltage force response curves of the subharmonic resonance 

are illustrated in Fig. 7, for three different detuning parameters values and  𝛼 = 3. 
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(a) (b) 

Fig. 7 Subharmonic resonance force response curves of dimensionless (a) displacement and (b) voltage for 

different detuning parameters 

 

Figures 7a and b reveal that as the excitation amplitude increases, the resonance region expands and the 

energy harvester can experience resonant oscillations and consequently generate high amplitude voltages 

over a larger frequency range. Moreover, although there are multivalued solutions in the displacement 

and voltage force response curves, the jump phenomenon does not take place and the initial conditions 

dictate the response value. Next, to examine the dynamical response of the PVEH in the superharmonic 

resonance case (Ω ≈ 1/3), the corresponding frequency response curves of the displacement and voltage 

for different excitation amplitudes are plotted in Figs 8a and b, respectively, using Eqs. (24) and (10). 

Inspecting Fig. 8, the first thing that draws attention is that, contrary to the subharmonic scenario, the 

behavior of the deflection and voltage frequency response curves resembles the primary resonance case. 

Specifically, the frequency response curves are of the hardening type and there are jump phenomena and 

multivalued solutions in the subharmonic case. Moreover, as illustrated in Fig. 8a, in this case, the 

deflection is considerably larger than the primary resonance response (Fig. 4a). This originates from the 

hard nature of the excitation. Subsequently, as revealed by Fig. 8b, the output voltage is also amplified. 

Specifically, by inspecting Fig. 8b, it is clear that, the level of the generated voltage is boosted considerably 

compared to the case of the primary resonance that is reported in Fig. 4b. 
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(a) (b) 

Fig. 8 Superharmonic resonance frequency response curves of dimensionless (a) displacement and (b) voltage 

for different excitation levels 

 

This implies that the PVEH performs efficiently in the case of superharmonic resonance. Hence, the 

resonance bandwidth increases towards the lower frequencies, resulting in wideband energy capture. The 

displacement and voltage force response curves for the superharmonic case are shown in Fig. 9. 

 

  

(a) (b) 

Fig. 9 Superharmonic resonance force response curves of dimensionless (a) displacement and (b) voltage for 

different detuning parameters 

 

In contrast to Fig. 8, in which the frequency response curves of the superharmonic case are similar to the 

primary resonance case, Fig. 9 shows that there is an essential difference between the force response 
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curves of the superharmonic and primary resonance scenarios. Precisely, based on Fig. 9, as the forcing 

amplitude increases, the deflection and voltage response curves experience a jump at the bifurcation 

point. Subsequently, the responses start to decrease steeply with further increases in the forcing 

amplitude up to a specific point, after which, the amplitude increases. In contrast, considering Fig. 5, in 

the primary resonance state, the responses undergo a monotonic increase after the upward jump occurs.  

 

  

(a) (b) 

  

(c) (d) 

Fig. 10 (a) The time history and (b) phase plane of the voltage for the subharmonic case ; (c) the time history and 

(d) phase plane of the voltage for the superharmonic case with f=0.9 

 

Next, utilizing the numerical integration method, one can examine the time-domain response of the 

systems in the secondary resonances. Hence, the time histories and phase-plane responses of the voltage 

in the sub- and super-harmonic resonance cases are plotted in Fig. 10, for f=0.9. According to Figs. 10a 
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and c, the level of the harvested voltage for the case of the superharmonic resonance is larger than that 

of the subharmonic. This can also be observed in the phase diagram of Figs. 10b and d. Specifically, the 

trajectories in the phase planes reveal that the voltage in superharmonic scenario is larger compared to 

the subharmonic resonance.   

Up to this point, the study has concentrated on the energy harvester amplitude and voltage responses 

under hard excitation. However, for energy harnessing purposes, the most important criterion that 

determines the efficiency of any newly proposed system is its maximum or optimum electrical output 

power. Consequently, the optimum power is required. In linear systems there is an analytical relationship 

that provides the maximum power and the corresponding optimum time constant ratio as a function of 

the energy harvester parameters [46]. The considered PVEH is a nonlinear system for which no closed-

form solution can be found in general. Hence, finding an analytical solution for the maximum power is not 

possible. However, to get an insight into the optimum electrical output, examining the variations of the 

output power versus the time constant ratio and detuning parameter can be informative, because, the 

output power can be assessed against two prominent and determinative parameters. The dimensionless 

output power can be defined, using Eq. (2) and (4), as [47]: 

 

𝑃 = 𝛼𝑉& (29) 

Using Eq. (29) and the previously obtained voltage frequency response equations, the three dimensional 

graphs of the output power versus the time constant ratio and detuning parameter for the sub- and super-

harmonic cases are given in Figs. 11a and b, respectively. To construct Fig. 11a, the frequency response 

curves of the output power versus the detuning parameter are plotted for various time constant ratios, 

using Eqs. (10), (19), and (29). Furthermore, Eqs. (10), (24), and (29) are utilized to establish the frequency 

response curves of the power in Fig. 11b. Here, the forcing amplitude is assumed to be 0.5 and the 

detuning parameter is in the range of  0 ≤ 𝜎 ≤ 30 . Figure 11 clearly shows that, for each case, changing 

the time constant ratio can alter the quantitative behavior of the response, not the qualitative behavior. 

In addition, as Figs. 11a and b show, by changing the time constant ratio at each detuning parameter, the 

output power reaches a maximum value. Hence, for a specific detuning parameter and forcing level, there 

exists an optimum power and associated time constant ratio.  
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To obtain the optimum output power and accompanying time constant ratio for the considered cases 

concisely, one can utilize Fig. 11. By extracting the precise values of the maximum output power and 

corresponding values of 𝛼 from the graphs represented in Figs. 11a and b and plotting them, one can 

obtain Fig. 12. Hence, Fig. 12 illustrates the optimum or maximum output power and the corresponding 

time constant ratio for each of the aforementioned scenarios. 

 

  
(a) (b) 

Fig. 11 Three dimensional graphs of the output power versus the time constant ratio and detuning parameter 

for (a) subharmonic (b) superharmonic resonance cases 

 

Based on to Fig. 11, in the considered range of the detuning parameter, the PVEH produces larger power 

for the superharmonic resonance case, compared to the subharmonic resonance state. Specifically, the 

maximum dimensionless powers for the super- and sub-harmonic cases are 3.9 and 3, respectively. This 

implies that the optimum power corresponding to the superharmonic case is 30 percent higher than the 

subharmonic scenario. The optimum output powers of the sub- and super-harmonic scenarios along with 

relevant time constant ratios for two other forcing levels of  f=0.55 and 0.6 are also evaluated using the 

same approach and the results are reported in Table 2. 
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Fig. 12 Optimum electrical power and the corresponding time constant ratio for the subharmonic and 

superharmonic cases 

 

Table 2. The optimum power of the sub- and super-harmonic scenarios for some various forcing amplitudes 
Forcing level Subharmonic Superharmonic Difference 

f=0.5 3 3.9 30 % 

f=0.55 3.08 5.24 70 % 

f=0.6 3.12 5.98 91 % 

 

Based on Table 2, also for the forcing levels of f=0.55 and 0.6, the output power in the superharmonic 

resonance state outweighs the power of the subharmonic scenario. Thus, the maximum harvested power 

in the former case is respectively 70 and 91 percent higher compared to the latter case. for f=0.55 and 

f=0.6, respectively. 

 

 

4-Conclusions 

In this article, energy harvesting from the secondary resonances of a nonlinear PZT beam under a hard 

periodic excitation is investigated. The system comprises a cantilever unimorph PZT beam with an 

attached tip mass and is exposed to an harmonic tip force. First, the dimensionless ordinary differential 

equations (ODEs) governing the electromechanical system are obtained. Then, the multiple scales method 

(MSM) is applied to provide an approximate-analytical solution for the ODEs. Primarily, the MSM solutions 
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showed that the hard stimulus results in secondary resonances of the sub- and super-harmonic types. The 

numerical integration method was then utilized to verify the MSM-based solutions. The results show that 

there is a good agreement between the numerical and approximate-analytical solutions. Next, to 

characterize the dynamical response of the system, the frequency and force response curves of the 

deflection and voltage for the cases of the subharmonic, superharmonic, and soft primary resonances are 

plotted using the MSM-based solutions. The results revealed that the generated voltages in the sub- and 

super-harmonic resonance scenarios are significantly higher, rendering the non-resonant hard excitation 

as a superb choice for energy harvesting. Moreover, this implies that the resonance bandwidth is 

broadened towards the lower and upper portions of the primary resonance vicinity in the superharmonic 

and subharmonic cases, respectively. The time histories of the output voltage and the phase planes 

revealed that the level of the generated voltage in the superharmonic scenario is larger than the 

subharmonic case. Finally, to assess the output power of the system in the various secondary resonances, 

the electrical power of the system is studied for different detuning parameters and time constant ratios.  

This investigation revealed that the optimum dimensionless power for the superharmonic resonance is 

larger than for the subharmonic resonance. Specifically, comparing the output powers, it was shown that, 

at the forcing levels of 0.5, 0.55, and 0.6, the output power corresponding to the superharmonic 

resonance is respectively 30, 70, and 91 percent higher than the subharmonic case. 
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