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ABSTRACT

Graphene exhibits both high electrical conductivity and large elastic modulus, which makes it an ideal 

material candidate for many electronic devices. At present not much work has been conducted on using 

graphene to construct thermoelectric devices, particularly due to its high thermal conductivity and lack 

of bulk fabrication. Films of graphene-based materials, however, and their nanocomposites have been 

shown to be promising candidates for thermoelectric energy generation. Exploring methods to enhance 

the thermoelectric performance of graphene and produce bulk samples can significantly widen its 

application in thermoelectrics. Realization of bulk organic materials in the thermoelectric community is 

highly desired to develop cheap, Earth-Abundant, light, and non-toxic thermoelectric generators. In this 

context, this work reports a new approach using pressed pellets bars of few layered graphene (FLG) 

nanoflakes employed in thermoelectric generators (TEGs). Firstly, FLG nano-flakes were produced by 

a novel dry physical grinding technique followed by graphene nano-flakes liberation using plasma 

treatment. The resultant material is highly pure with very low defects, possessing 3 to 5-layers stack as 

proved by Raman spectroscopy, X-ray diffraction measurement and scanning electron microscopy. The 

thermal and electronic properties confirm the anisotropy of the material and hence the varied 

performance characteristics parallel to and perpendicular to the pressing direction of the pellets. The 

full thermoelectric properties were characterized both parallel and perpendicular to the pressing 

direction, and the proof of concept thermoelectric generators were fabricated with variable amounts of 

legs.

KEYWORDS: Few layered graphene, bulk thermoelectric generator, high output power, flexible 

substrate, organic
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1. INTRODUCTION 

Global energy consumption has dramatically increased over the past few decades and if the 

world pursues along its present path then the consumption is predicted to grow 20–30% by 2040 

and beyond, largely dominated by the fossil fuels.1 Owing to the fast depletion of the current 

affordable energy resources, sustainability is critical as the world energy demand is increasing. 

Moreover, the energy produced from conventional fossil fuels is accompanied by environmental 

constraints such as the greenhouse effect and the air pollution.2 Almost two-thirds of the total 

energy produced is dissipated in the environment as heat,3-4 which highlights the potential of 

thermoelectric (TE) generators. TE devices allow for the direct conversion of heat to electricity 

through a temperature gradient. The heat can be harvested from multitude sources such as waste 

heat from factories, engines, electronic devices and even the human body. 5-6 

The efficiency of a TE material is evaluated by the dimensionless figure of merit, ZT = 

S2σT/κ, where S, σ, T and κ  denote the Seebeck coefficient (V K-1), electrical conductivity (S m-

1), absolute temperature (K) and thermal conductivity (W m-1 K-1), respectively.7-8 The transport 

characteristics are interrelated, thus optimizing one variable conflicts with another.9 This leads to 

optimal TE materials typically being heavily doped inorganic semiconductors such as Bi2Te3, 

PbTe and SiGe, which exhibit some of the highest ZTs, typically above 1.10-13 To date there has 

been limited uptake in thermoelectrics due to the components have serious drawbacks of toxicity, 

material scarcity and relatively higher cost, which ultimately has limited their widespread 

commercialisation.14 Conversely, conducting polymer-based organic TE materials have gained 

significant interest due to their unique advantages of abundance, low cost of constituent elements, 

facile processing, mechanical flexibility, intrinsically low thermal conductivity and relatively 

lower toxicity.15-19 However, their performance is significantly lower than the conventional 
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inorganic TE materials, as the power factor of organic materials is limited by the low S and often 

low σ.20 Due to the low Seebeck coefficient values of conducting organic polymers, the resulting 

ZTs of  these materials are substantially lower than bulk inorganic materials, with a ZT of 0.42 

published several years ago not being surpassed.21 Moreover, it is hard to extract bulk-materials 

required for traditional thermoelectric generators (in the order of 1 mm × 1 mm × 2 mm) from 

these organic polymers, due to cost of synthesising the polymers and it being only possible to 

obtain only a few hundred nanometres thickness of the deposited films using any of the deposition 

techniques which are  required for high σ values. These limitations highlight the need for new 

Earth-abundant and low-cost organic solutions. 

Graphene, a single layer of a carbon in a two-dimensional hexagonal lattice,22 being the most 

widely explored instance of 2D materials, has gained remarkable attention for its applications in 

mechanical, electrical and photonic industries owing to its unique properties.23 For instance, It 

possesses very high carrier mobility (∼200000 cm2/[V.s]), excellent mechanical strength and 

electrical properties.24 Graphene possesses better electrical conductivity and larger surface area 

compared to other nanocarbons.20 Graphene, however, as a TE material has limited scope owing 

to the semi-metallic nature of graphene that implies limited S,25 along with the high κ that lead to 

the modest TE conversion efficiency.26 A number of theoretical studies suggested various 

nanostructured designs to circumvent these problems such as graphene nanoribbons,27 

heterostructures 28 and nanopore structures 29 to yield high S values. Although, a few of these 

approaches showed promising output and unusually predicted larger ZT values for graphene,25 

most of them remained a challenge to develop a practical device owing to the deficiency of desired 

large-area fabrication techniques.30 As a result, despite the exceptional promise of graphene as the 

constituent in the polymer-based low-temperature thermoelectrics,30-31 only a few studies have 
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5

focused on all graphene-based thermoelectrics.32 Particularly, its potential for bulk material 

synthesis coupled with its mechanical resilience, highlight its potential for bulk thermoelectrics. 

An area that to date has been unexplored.     

In the context of the above discussion, the present work demonstrates novel few layered 

graphene (FLG) nano-flakes based pellets, with the capability to manufacture pellets of up to 10 

cm × 10 cm × 10 cm. These can then be used in bulk TE device applications. The utilized FLG 

was sourced from a novel dry physical grinding technique followed by graphene nano-flakes 

liberation using plasma treatment, intercalation with Dielectric Barrier Discharge (DBD) utilizing 

both atmospheric and Vacuum process. The resulting pellets exhibit anisotropic properties parallel 

to and perpendicular to the pressing directions, with electrical conductivity similar to the best 

conducting organic polymers being observed. The lightweight bulk thermoelectric materials could 

be of significant interest to thermoelectric applications where weight is a concern, such as 

transport. Moreover, the synergy of the lightweight bulk pellet material and the flexible substrate 

used in this work, highlights its potential for use in wearable systems.33

2. EXPERIMENTAL SECTION 

2.1 Materials Synthesis 

FLG nano-flakes (Figure 1a) were produced by a novel dry physical grinding technique 

followed by graphene nano-flakes liberation using plasma treatment, intercalation with Dielectric 

Barrier Discharge (DBD) utilizing both atmospheric and vacuum processes. In graphene-like 

structures, due to the 90° rotation of a C–C bond, Stone–Wales defects introduction results in a 

change in six-membered rings into typically pentagons and heptagons. (5-7 carbon). The density 

of Stone–Wales defects is relatively smaller due to the high activation barrier of multiple electron 
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volts (eVs) for the bond rotation. The defects in all probability facilitate partially or completely 

negation of the Van Der Walls forces. Argon plasma was employed to generate defect sites for the 

functionalization with a variety of moieties allowing plasma induced ion intercalation to further 

cause the Van Der Waals attraction to become a Van Der Waals repulsion negating the bonds that 

hold that graphene sheets within the graphite. 

2.2 Materials Characterization

Morphology and structural properties of the FLG nano-flakes were characterized using field 

emission scanning electron microscope, FESEM (Hitachi 4800 S, Japan) equipped with an Oxford 

Instruments EDS attachment and a Renishaw inVia Qontor confocal Raman spectrometer using a 

CW He-Ne laser emitting at 633nm with a power of 500 mW, respectively. The Raman shifts were 

calibrated using an optical phonon frequency (520.6 cm-1) of single silicon crystal. In addition, the 

reflecting microscope objective was set to be 50×, n. a. 0.15, and the excitation spot diameter was 

15 μm. The light was detected by a charge-coupled device. X-ray diffraction (XRD) was carried 

out using a Bruker D8 diffractometer with Cu-Kα radiation. 

2.3 Thermoelectric Characterization

The Seebeck coefficient and the electrical properties of free-standing pressed pellet-bars 

were measured both parallel to and perpendicular to the pressing direction using an ULVAC ZEM-

3 with a helium atmosphere. The Thermal Diffusivity of the sample was measured using a Netzsch 

LFA 457. The solid Ø12.5mm sample was placed in aluminium titanate sample holder with a 

silicon carbide cap. The sample was located in the high temperature furnace chamber which was 

evacuated and back filled with Argon. A sustained flow of 100 mL per minute of Argon cover gas 

was then piped through the chamber throughout the experiment. The temperature change of the 

sample was detected using an InSn-IR detector cooled by liquid nitrogen. Temperature steps of 50 
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°C were taken from 35 °C to 1000 °C. Five shots were performed at each temperature step and the 

standard deviation was calculated. The thermal diffusivity of each shot was calculated using the 

Cowon method with pulse correction applied.34 Heat capacity was determined from Differential 

scanning calorimetry (DSC) (Figure 2e), with the method described in detail in the supporting 

information. The bulk density was determined to be 2.178 g cm-3 using the method of hydrostatic 

weighing, employing Archimedes’ principle.35

2.4 Fabrication of Thermoelectric Generators (TEGs)

Firstly, 1 g of FLG nano-flakes were pressed with the SGS 20 Ton Hydraulic Press - Hand 

Pump at 10 tons per square inches force to obtain FLG sheets measuring 5.0 cm × 5.0 cm × 0.065 

cm each. Further, these sheets were sliced into the pressed pellet-bars measuring 3.0 cm × 0.5 cm 

× 0.065 cm. The thicknesses of the FLG pellet bars was measured to be ∼ 0.65 mm with relative 

deviation of ± 10% using digital Vernier caliper. Onto the polyester sheet with a thickness of ∼ 

180 µm  (obtained from Customark Ltd. United Kingdom), the parallel legs comprising of pressed 

pellet-bars of FLG nano-flakes were glued using Loctite double-bubble epoxy glue (Loctite, 

Germany). Silver conductive paint was brush painted to make top and bottom contacts. The paste 

was ensured to be completely dried before further characterizations have been made. 

2.5 Device Characterization

Thermoelectric devices were measured as follows, the current (I) and the voltage (V) were 

recorded with a Keithley 2401 digital  Multimeter. A digital hotplate model Elektrotechnik PR 

53T was used to heat the hot side and a custom-made passive cold stage has been designed to use 

as heat sink to help maintain a temperature gradient (ΔT). ΔT was determined by using two 

thermocouples attached to the samples, one on the cold side the other on the hot side. All 

measurements were taken with 5 seconds of reaching each ΔT.
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3. RESULTS AND DISCUSSIONS

Figure 1 shows the molecular structures of the FLG nano-flakes used to fabricate the bulk-

FLG TEGs, along with the pellet making process and a photograph of an example of the pellets 

made. Detailed fabrication and characterization procedures have been described in the 

Experimental Section. 

Figure 1: (a) Molecular structures of the FLG nano-flakes, (b) schematic of the pellet making 

process from FLG powder, (c) photograph of a pellet 

3.1 Characterization of FLG nano-flakes

Raman spectral analysis was performed to characterize the prepared FLG nano-flakes, since 

it is a non-destructive technique to demonstrate the defects and the number of layers through the 

D, G and 2D bands.36-37 Figure 2a shows the representative Raman spectra possessing the main 
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9

peak at 1583 cm-1, which is ascribed to the G band and it represents the doubly degenerate phonon 

mode of sp2 carbon36-37 and this band also validates the existence of graphene as well as to probe 

the thickness.38 A very weak Raman scattering peak at 1347 cm-1 is ascribed to D-band, which is 

representative of structural defects in the graphene such as; point defects, dislocation-like defects, 

bilayer or multilayer bending, substitutional impurities, and carbon adatoms, etc., and these defects 

are attributed to the imperfections in the individual hexagons in the honeycomb structure of 

graphene.38 While, the pronounced 2D peak which appears at 2683 cm-1 is attributed to the second 

order of zone boundary phonon.37 It is noteworthy that greater number of defects in the honeycomb 

structure induce high peak intensity of D band peak. Also, the intensity ratio of D and G bands, 

ID/IG, increases with the increasing numbers of layers in graphene.39 However, the prepared 

material possesses almost no defects as evident from the very low peak intensity of the D-band. 

Also, the spectra exhibit ID/IG = 0.12 which is significantly smaller than the previously reported 

data for FLG such as Lin et al.40 and Rao et al.36 where  ID/IG  ratios to be 0.35 and 0.67 were 

reported, respectively. All these facts demonstrate the high quality of the prepared material 

exhibiting very low defects and fewer number of layers. This shows that our FLG is of high quality 

and exhibits enhanced properties such as excellent electrical conductivity and can be used in wide 

range of applications including thermoelectrics, solar cells and supercapacitors etc.41-43 This is 

evident from the diffraction peak at 2θ value of 26.5° of the XRD spectra too, which is ascribed to 

the 002 crystal lattice and well matched with the JCPDS 41-1487, as shown in Figure 2b. Contrary 

to the broader peak at 26.5° typically attributed to the disordered structure of prepared graphene 

sheets,44 the sharp peak (2θ = 26.5°) spanning only within 1° indicates a highly organized crystal 

structure of the FLG nano-flakes prepared during this work which implies the lesser defects and 

high quality of our material, also it is consistent with the layer spacing of normal graphite.45 The 
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10

sharp peak is probably attributed to the fact that inner layer spacing within the FLG nano-flakes 

has a structure identical to that of normal graphite.  

The few layered structure has been revealed in the FESEM images too. Figure 2c and d 

show low and high magnification images of the FLG nano-flakes, respectively. The FESEM 

images of graphene nano-flakes show large sized sheets of micrometer dimensions. It seems that 

several large sheets have been broken into smaller sheets, which might have occurred during the 

exfoliation process. At higher magnification, ultrathin 2-3 graphene sheets stacked with each other 

can be clearly seen. While, the inter-sheet spacing is also clearly visible, suggesting a high level 

of exfoliation which also justifies that our prepared graphene is FLG nano-flakes. This is consistent 

with our Raman and XRD results too.   
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Figure 2: (a) Raman and (b) XRD spectra along with the (c) Low and (d) high magnification 

FESEM images of FLG nano-flakes. (e) DSC (black) and thermogravimetric analysis (blue) of 

bulk FLG. 
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12

3.2 Thermoelectric characterization of the FLG nano-flakes based pellets 

Thermoelectric characterization of free-standing pressed pellets of FLG can be seen in 

Figure 3. It shows that the electrical conductivity of the material is substantially higher 

perpendicular to the pressing direction as compared to the parallel to the pressing direction. Both 

the electrical conductivity and the Seebeck coefficient show a positive correlation with 

temperature, this observation cannot be explained due to a change in the carrier concentration as 

these variables are inversely and directly proportional to the carrier concentration, respectively.46 

The plots in Figure 3a show perpendicular to the pressing direction an initial value of around 481 

S cm-1 at 316 K, and an almost linear increase with temperature has been observed leading to a 

maximum of 1066 S cm1 at 1233 K. Whilst, the electrical conductivity showed the similar response 

parallel to the pressing direction, the values were substantially lower, with a maximum of 176 S 

cm-1 being reached at 1233 K. The non-metallic electrical conductivity dependence on 

temperature, is most likely a result of scattering of charge carriers at the grain boundaries. This 

semiconducting behavior type temperature response is consistent with multi-layer graphene in the 

literature.47 In contrast, the measurements of the Seebeck coefficients (Figure 2b), reveal that the 

FLG nano-flakes are p-type with metallic-like type behavior. This is evidenced by both the 

Seebeck coefficient and the electrical conductivity increasing both parallel to and perpendicular to 

the pressing plane with increases in temperature, with a weak linear trend. This temperature 

Seebeck dependence observed is believed to be due to a small change in the electrochemical 

potential and a large degree of hole hoping.48 A Seebeck coefficient parallel to the pressing plane 

of 26 µV K-1 can be observed at 1233 K. While the Seebeck coefficient of the FLG nano-flakes 

perpendicular to the pressing plane showed significantly lower values than parallel to the pressing 

direction, that also linearly increased, reaching to the maximum value of 11 µV K-1 at 1233 K. 
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13

Figure 2c shows power factor plots parallel to and perpendicular to the pressing direction. The 

resulting power factor is seen to increase exponentially as the function of increasing temperature 

due to both components increasing linearly with temperature. Perpendicular to the pressing 

direction the values remained substantially low typically below 1 µW m-1 K-1 until 800 K which 

exponentially increased between 800 and 1233 K and reached up to 13 µW m-1 K-1. While, parallel 

to the pressing direction exhibited a semi-linear trend and the power factor reached up to 11 µW 

m-1 K-1. The power factor difference between the two planes is due to parallel to the pressing plane 

having a higher Seebeck coefficient than perpendicular to the pressing plane, but a lower electrical 

conductivity, which can be explained due to fewer grain boundaries being present perpendicular 

to the pressing plane.
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Figure 3: Thermoelectric properties of the FLG nano-flakes based pellets. (a) Electrical 

conductivity, (b) Seebeck coefficient, (c) power factor (d) thermal conductivity and,  (e) figure of 

merit, parallel to and perpendicular to the pressing directions.

Thermal conductivity was calculated as the product of heat capacity (Figure S1a), thermal 

diffusivity (Figure S1b) and density. Figure 3d shows the thermal conductivity parallel to and 

perpendicular to the pressing direction of the FLG nano-flakes based pellets, which is significantly 

lower compared to other values reported for FLG 49. This observation is most likely due to the 

high numbers of grain boundaries in the bulk pellets compared to isolated FLG samples. The values 

perpendicular to the pressing direction are substantially higher than parallel to the pressing 

direction and is 125 W m-1 K-1 at 308 K that follows a negative linear trend dropping to 75 W m-1 

K-1 at  1233 K. Parallel to the pressing direction shows the same linear decreasing trend as the 

function of increasing temperature, starting at 11 W m-1 K-1 at 309 K and decreasing to 7 W m-1 

K-1 at 1266 K. The overall trend is negative with temperature increase, the opposite observation 

when compared to the electrical conductivity. Thermal conductivity can be expressed as the sum 

of the electrical and lattice components (κ = κe + κL) and the electrical component is linearly 
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dependent on the electrical conductivity as shown by Wiedemann-Franz law (κe = L.σ.T). The 

drop in thermal conductivity with increase in temperature can therefore not be explained by the 

electrical component, but instead must be occurring due to a drop in the lattice component. An 

explanation for this could be a ‘puffing effect’ in the bulk FLG pellets due to the thermal expansion 

of tiny air bubbles between FLGs, leading to increased gaps between FLGs, which increases 

phonon scattering and thus reduces the lattice component of thermal conductivity. This trend in 

thermal conductivity and the values observed are similar to polycrystalline graphite,50 with the 

perpendicular to plane being higher and the parallel to plane being lower.

The differences in the thermal conductivity, the Seebeck coefficient and the electrical 

conductivity of FLG between parallel to and perpendicular to the pressing direction could be 

explained by the FLG plane orientation. The FLG planes line up preferentially perpendicular to 

the pressing direction, which causes more grain boundaries parallel to the pressing direction than 

against it. More grain boundaries could equate to lower electrical and thermal conductivity and 

higher Seebeck coefficient.51

Figure 3e determines the dimensionless figure of merit (ZT) parallel to and perpendicular 

to the pressing directions of the FLG nano-flakes. Although, parallel to the pressing direction, the 

value is very low at room temperature (9 × 10-6) the value steadily increases with increasing 

temperature in an exponential manner to 1188 K where the maximum ZT value of 0.00206 is 

observed. The simultaneous increase of the electrical conductivity and Seebeck coefficient with 

increasing temperature and a lowering thermal conductivity at the same time, all indicate higher 

ZT numbers could be observed at more elevated temperatures, up to graphene’s melting point of 

typically above 4000 K.52 However, due to instrument limitations measurements could not be 

conducted above 1273 K. The ZT plot perpendicular to the pressing direction shows the trend 
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similar to the parallel to the pressing direction but it possesses significantly lower values that 

reached to a maximum of 0.0009 at above 1200 K. Whilst these values are low compared to most 

inorganic thermoelectric materials and the highest values reported for PEDOT:PSS, they are 

similar to most organic conducting polymers such as polypyrrole (ZT = 0.0068)53, P3HT (ZT = 

0.04)54 and Poly[Cux(Cu-ett)] (ZT = 0.014)55 and polymer composites, such as 

polythiophene/MWCNT (ZT = 0.000871)56, PEDOT:PSS/rGO:C60 (ZT = 0.067) 57 and 

P3HT/MWCNT (ZT = 0.00002).58 The bulk few layer graphene pellets have the potential to 

achieve higher ZT values through doping and, in contrast to conducting polymers, are stable to 

over 1273 K and could therefore lead to an organic route harness high grade heat through 

thermoelectric generators.  

3.3 Performance evaluation of FLG nano-flakes based TEGs

Despite the limited ZT in the temperature range studied compared to some inorganic 

materials, the ease of large-scale production of these organic FLG pellets was used to allow the 

production of to our knowledge the thickest organic thermoelectric generator legs to date (~0.65 

mm). As a proof of concept, the TEGs were fabricated onto a polyester sheet to make use of a 

flexible substrate to build a flexible TEG, despite the bulky and rigid nature of the pellets. The 

TEGs composed of only p-type FLG nano-flakes based pellets, glued onto the substate and were 

connected in series by brush painting silver paint as seen for other materials in the literature.33 The 

fabricated device and the corresponding TE performance evaluation have been presented in the 

Figure 4a-d with heat flowing perpendicular to the pressing direction. The short circuit current 

(Isc) and the open circuit voltage (Voc) versus temperature gradient for the single TEG unit has been 

plotted in Figure 4c. While Figure S2 presents the corresponding plots for the quadruple TEG 

units. The single TEG unit reached a maximum open circuit voltage (Voc) of 1.30 mV and short 
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circuit current (Isc) of 0.46 mA corresponding to the maximum power output of 150 nW (assuming 

Pmax = 0.25 × Voc × Isc) 59 while the quadruple TEG units yielded an output power of  (Voc = 2.24 

mV, Isc= 0.55 mA) 308 nW.  However, due to slight heat fluctuations on the samples the voltage 

and current values were seen to fluctuate by up to 6% each during the measurements, therefore an 

error bar of ± 12% has been implemented into the data in Figure 4d. The voltage generated by 

each device linearly increased with both the ΔT and the number of pellets connected in series. 

Figure 4: (a) Photograph of the fabricated TEGs, (b) device testing schematic, (c) linearly 

connected Voc and Isc at different ΔT, (d) Maximum power output of the single and quadruple TEG 

units at various temperature differentials assuming that Pmax = 0.25 × Voc × Isc.59 
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Our devices yielded reasonably higher output power up to the temperature gradient of 50 K, 

which is higher than most organic TEGs reported to date, as shown in Figure 5.60-70 However, for 

the practical application of FLG nano-flakes based bulk material, device performance is desired to 

be improved. Such as, by optimizing the device structure (e.g. with heat flow travelling parallel to 

the pressing direction), reducing contact resistant, or introducing the suitable n-type counterpart. 

Further improvements could also be yielded by doping the FLG to optimize ZT. Nevertheless, due 

to the ease of bulk fabrication of FLG, these organic TEGs still exhibit higher power output than 

any organic TEG in the literature to date with so few legs.

Figure 5: Output power of the recently reported thermoelectric devices based on organic, organic-

organic, and organic-inorganic composites materials. 
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4. CONCLUSIONS

In summary, bulk FLG nano-flakes based pellets were successfully synthesized by a novel 

physical grinding technique, which exhibited significantly lower thermal conductivity of 7 W m-1 

K-1 at 1266 K compared to FLG values reported in the literature. Low figures of merit compared 

to inorganic thermoelectric materials of 0.0021 (at 1233 K) parallel to the pressing direction and 

0.0002 (at 1233 K) perpendicular to the pressing direction were observed due to the low Seebeck 

coefficients in the region of 10 µV K-1 being measured. A novel proof of concept TEG device was 

fabricated using the bulk-FLG nano-flakes onto a flexible polyester substrate. Owing to the 

realization of the bulk FLG nano-flakes fabrication, the TEG devices performed well compared to 

other organic TEGs, with the output power of a single and quadruple TEG units being 150 and 308 

nW, respectively. In addition to the good output power compared to other organic TEGs reported 

in the literature, it has excellent properties of flexibility (due to the substrate), lightweight and low-

cost, which has tremendous potential in the practical wearable applications. Although, the current 

device yields moderate output power, modules based on the current pellets can be utilized for low 

and medium power devices. Devices based on FLG could be used in self powered sensors that 

require little power but require a lightweight and non-toxic TEG. Moreover, the current 

performance can be improved by optimization of the pellet making process, doping the FLG to 

optimize the carrier concentration and reducing the contact resistance with better choice of 

conductive material and the device structure. Moreover, the presented TEG units were fabricated 

by conceptually simple, environmentally friendly, non-toxic, Earth abundant and scalable process 

using only organic components in bulk.       
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