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Enzyme engineering has allowed not only de novo creation of active sites catalysing known 22 

biological reactions with rates close to diffusion limits, but also the generation of abiological sites 23 

performing new-to-nature reactions. However, catalytic advantages of engineering multiple 24 

active sites into a single protein scaffold are yet to be established. Here, we report on proteins 25 

with two active sites of biological and/or abiological origin, for improved natural and non-26 

natural catalysis. The approach increased catalytic properties, such as enzyme efficiency, 27 

substrate scope, stereo-selectivity, and optimal temperature window of an esterase when 28 

containing two biological sites. Then, one of the active sites was metamorphosed into a metal-29 

complex chemocatalytic site for oxidation and Friedel-Crafts alkylation reactions facilitating 30 

synergistic chemo- and biocatalysis in a single protein. The transformation of 1-naphthyl acetate 31 

to 1,4-naphthoquinone (conversion ca. 100%) and vinyl crotonate/benzene to 3-phenylbutyric 32 

acid (≥83%; e.e. >99.9%) was achieved in one-pot by this artificial multi-functional 33 

metalloenzyme. 34 

The field of enzyme engineering has developed considerably over the last decade, opening great 35 

potential for applications ranging from greener production processes and diagnostics to therapeutic 36 

usage and biomedicine. Directed evolution and computation-driven rational mutagenesis are fostering 37 

such developments1-4. These techniques allow optimization of biocatalysts by tuning substrate 38 

specificity and improving the activity and/or stability under operational conditions. In addition, 39 

significant efforts in de novo enzymatic active site design are being undertaken, although directed 40 

evolution and protein engineering are required to boost the activity of the original computational 41 

design. The introduction of biocatalytic sites into non-catalytic protein scaffolds also opens new 42 

opportunities5-9. As such, certain artificial enzymes approach the diffusion limit while still catalysing 43 

the desired reaction using a single artificial active site, with turnover rates as high as those of some 44 

natural enzymes (1-5 s-1)10-12.  45 

There are also examples in which catalytically competent organometallic complexes have been 46 

introduced in proteins that serve as scaffolds to generate artificial metalloenzymes (ArMs). The first 47 

examples of ArMs date back to the late 1970s, when Wilson and Whitesides introduced a diphosphine 48 

rhodium (I) biotin derivative into a streptavidin scaffold. The authors demonstrated that this achiral 49 

chemocatalyst, located in the asymmetric environment of the biotin-binding site of streptavidin, was 50 

capable of chiral hydrogenation of α-acetamido-acrylic acid13. However, this work, possibly owing to 51 

the unenthusiastic conclusions drawn by the authors, did not attract the attention of the scientific 52 

community. It was only the early 2000s that a resurgence of interest in ArMs began, fuelled by 53 

advances in both organometallic catalysis and protein engineering14. Since then, a large number of 54 

ArMs, created through the docking of catalytically competent molecules into protein scaffolds by 55 

covalent, supramolecular, dative, and metal substitution, have been described. While the catalytic 56 

performance of such ArMs, shown to be competent for catalytic reactions including hydrolysis, 57 
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reduction, oxidation, C-C bond-forming and C-heteroatom bond-forming, has long been inferior to 58 

that of their natural counterparts, recent efforts combining catalyst design and modern protein 59 

engineering allowed bridging of this gap14,15. For example, the Ward group developed a directed 60 

mutation strategy to produce thousands of protein variants and selected the most active one capable of 61 

catalysing metathesis reactions in cells16. Additionally, the Roelfes group developed artificial copper-62 

bipyridine catalysts capable of enantioselective Friedel-Crafts alkylation by in vivo incorporation, in a 63 

protein scaffold, of metal-binding unnatural amino acids17 or by the creation of an artificial active site 64 

capable of copper-binding18. 65 

Despite significant efforts directed at introducing single artificial biological5-12 or abiological13-18 66 

catalytic entities into a protein scaffold, the introduction of multiple active sites, either biological or 67 

non-natural, and the analysis of the catalytic advantages it can have, is rare. The only examples are 68 

protein scaffolds with two heme, Fe-S or copper sites catalysing the same chemistry14,18-22, or a recent 69 

engineered lipase into which a catalytic metal has been introduced23. Although, this last design can 70 

potentially confer the capacity for cascade reactions, the catalysis was done in a two-step fashion, 71 

changing the reaction conditions, precluding synergistic effects. 72 

Here, we report an approach that exploits the possibility to genetically engineer proteins with two 73 

biological actives sites, and furthermore, its expansion allowing its further metamorphosis into a 74 

protein with both biological and abiological active sites (Fig. 1). Results are presented demonstrating 75 

the broad potential and versatility of the presented procedure to create biocatalysts with improved 76 

catalytic properties, and metallo-enzymes capable of cascade reactions where an active synergy of 77 

both biological and abiological catalytic entities exists. 78 

 79 
 80 

Fig. 1 General concept for engineering proteins with two active sites. The concept consists of 81 

the following sequential workflow. First, a target natural enzyme (e.g. a serine ester hydrolase in this 82 

study), containing a biological active site (BIO-SITE 1 in figure), is selected. Second, by applying 83 

Protein Energy Landscape Exploration (PELE) software, an extra potential binding pocket to 84 

introduce an artificial biological active site (e.g. a nucleophilic serine in this study) is identified, which 85 
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can be further remodelled to achieve an optimal configuration (BIO-SITE 2). Third, through the 86 

differential affinity for a suicide phosphonate inhibitor bearing a metal-organic complex, one of the 87 

biological sites is metamorphosed into a copper-based chemocatalytic (or abiological) site (CHEMO-88 

SITE), while the other site retains its own biological activity. 89 

 90 

Results  91 

Design of a protein with two biological active sites and its catalytic advantages 92 

Improving the efficiency of enzymes is rapidly becoming a necessity. One could imagine attacking the 93 

problem by engineering more and more reactive sites into a single enzyme scaffold, which by a 94 

synergetic effect may improve catalysis. We named this concept as plurizyme (the Latin root pluri: 95 

multiplicity). However, the first trial of introducing a second artificial active site into a serine esterase 96 

containing a natural one could not bring in catalytic advantages (Supplementary Note 1)24. Here, 97 

through providing a better spatial configuration we designed a new artificial design (EH1B1; 98 

Supplementary Figure 1) with boosted catalytic performance, in such a way that its incorporation to 99 

the natural enzyme (EH1A1) intensified the kcat (average: ca. 3.4-fold; max.: ca. 74-fold) and kcat/Km 100 

(average: ca. 94-fold; max.: ca. 5000-fold) for ester hydrolysis, increased the stereo-selectivity by ca. 101 

1100-fold (e.e. >99.9%), and broadened by ca. 20ºC the temperature at which the enzyme retained 102 

more than 80% of the optimal (Fig. 2). It also expanded the substrate spectra, as the resulting 103 

plurizyme with the two sites (EH1AB1) has the ability to hydrolyze all substrates (78, in total) that each 104 

site, combined, convert (Supplementary Figure 2).   105 

 106 
Fig. 2 Bio-catalytic advantages of having two biological active sites. a, The artificial site 107 

(EH1B1) intensifies the catalytic efficiency. Shown is the blox plot illustrating the relative increase of 108 

kcat (left axis) and kcat/Km (right axis) values of the EH1AB1 plurizyme with the two sites vs the original 109 

EH1A1 enzyme with a single active site, for all substrates converted. b, The artificial site introduces 110 

stereo-specificity. Shown are the average E-values and e.e., determined by gas chromatography, for 111 
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the kinetic resolution of a racemic mixture of methyl (2R/S)-2-phenylpropanoate (R-specificity) by the 112 

three sub-enzymes. Experimental conditions, raw data and standard deviations for these and other 113 

substrates are given in Supplementary Note 2 (Supplementary Figures 2-3, Supplementary Tables 1-114 

2). c, The artificial site expands the optimal temperature window. Shown are the temperature profiles 115 

of the three sub-enzymes. For Topt determination, calculated on a continuous pH indicator assay24, 116 

conditions are as follows - [protein]: 4.5 μg/ml; [glyceryl tripropionate]: 50 mM; reaction volume: 44 117 

μl; T: 4-55ºC; pH: 8.0. The data, calculated from three independent assays ± standard deviations 118 

(calculated using Excel version 2019) and not fitted to any model, represent the relative percentages 119 

(%) of specific activity expressed as U mg-1, compared with the maximum. 120 

 121 

Together, engineering multiple active sites with identical chemistry catalyzed can thus help, 122 

through differences in specificity, affinity, turnover rates and local stabilities, intensifying the original 123 

bio-catalytic properties of, or conferring new properties (e.g. stereo-specificity and expanded working 124 

temperature) to, a natural enzyme, herein exemplified by a serine ester-hydrolase. For detailed 125 

description of the engineering approach, and detailed experimental and results information see 126 

Supplementary Note 2 (Supplementary Figures 2-3, Supplementary Tables 1-2). 127 

 128 

Structural evidences of a plurizyme with two biological active sites 129 

To prove that both active sites of our plurizyme (EH1AB1) are capable of substrate binding and that 130 

conversion can occur in both sites, we performed a structural analysis. We obtained crystals from 131 

EH1AB1 diffracting at 2.1 Å resolution. These crystals were cocrystallized with the suicide inhibitor 132 

methyl 4-nitrophenyl hexylphosphonate (M4-4NHP) to obtain the corresponding derivative complex, 133 

with two molecules of the inhibitor bound at the catalytic Ser161 (original nucleophile) and Ser211 134 

(artificial nucleophile) sites (Fig. 3a; see Supplementary Note 3, Supplementary Figures 4-6). The 4-135 

nitrophenyl phosphonate inhibitor is susceptible to nucleophilic attack by the catalytic Ser, leading to 136 

covalent modification and complete inactivation of the enzyme (see Supplementary Note 4, 137 

Supplementary Figure 7)25,26. 138 

The solved three-dimensional structures show high flexibility in a region (which resembles but 139 

does not equal a typical lid of lipases) containing the two N-terminal helical regions, Pro4-Gly19 and 140 

Ala30-Gly43, which give access to the active-site pocket. Conformational changes are observed at the 141 

secondary Ser211 catalytic site, the artificially remodelled site, upon inhibitor binding, as shown in 142 

Fig. 3b, which introduce distortions in the packing arrangement within the soaked crystals, explaining 143 

the decreased resolution observed (not shown). Nevertheless, the atomic interaction of the inhibitor 144 

bound at the two sites can be depicted and is displayed in Fig. 3c-f. 145 

 146 
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 147 

Fig. 3 Crystal structure of EH1AB1. a, Cartoon of the crystallized complex coloured by B factors, 148 

from low (blue) to high (red) with the two bound molecules from the suicide inhibitor M4-4NHP 149 

represented as magenta sticks. b, Details of the comparison between the free (orange) and complexed 150 

(slate) EH1AB1 showing the conformational changes observed in the environment of Ser211 upon 151 

inhibitor binding. Polder omit maps calculated at the Ser161 and Ser211 catalytic sites displayed at 3.0 152 

σ cut-off. c-f, Detail of the Ser161 and Ser 211 binding sites in the free (c, e) and complexed (d, f) 153 

crystals showing relevant distances as dashed lines. 154 

Metamorphosis of a plurizyme into a protein with biological and abiological active sites  155 
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We further designed an approach to build a protein with both biological and abiological sites 156 

supporting different chemistries. For this purpose, here, we used our EH1AB1 plurizyme as a platform 157 

and a suicide inhibition strategy. This approach, also called mechanism-based inhibition, occurs when 158 

an enzyme covalently binds a substrate analogue through a reaction similar to that normally catalysed 159 

by the enzyme. This reaction is specific and typically occurs with amino acids involved in a catalytic 160 

reaction, resulting in enzyme activity loss25. In the particular case of ester-hydrolases, esters of 161 

phosphonate are long known to stoichiometrically bind to the serine residue of a catalytic triad26. Here, 162 

a Suicide Inhibitor (SI), 3'-hydroxy-[2,2'-bipyridin]-3-yl methyl hexylphosphonate, equipped with a 163 

transition metal-chelating moiety (e.g. a bipyridine ligand) was synthesized and used (see 164 

Supplementary Note 5, Supplementary Scheme 1, Supplementary Figures 8-10). This approach is 165 

expected to confer the inhibitor unit with transition metal-based catalytic function17,18,27,28, which will 166 

be brought into one of the two active sites of a plurizyme, while the other remains intact (see Fig. 1). 167 

As in the case of M4-4NHP used for cocrystallization, we found that SI binds to the native 168 

(Ser161) and artificial (Ser211) nucleophiles, as the treatment of EH1A1, EH1B1 and EH1AB1 sub-169 

enzymes with an excess of SI resulted in inactivation of >99% in less than 10 min (see Supplementary 170 

Note 6, Supplementary Figure 11). To verify the bio-conjugation, the SI-modified sub-enzymes were 171 

incubated for 24 h with an excess of Cu(NO3)2, and the resulting Cu2+-modified sub-enzymes were 172 

extensively dialyzed to remove the uncoupled inhibitor and copper (see Supplementary Methods). 173 

Further, they were analysed by recording λmax at 386 nm, the redox properties of the Cu2+-organic 174 

complex, and the molecular mass by electrospray ionization mass spectrometry (ESI-MS). 175 

We first observed the presence of a λmax at 386 nm in all three modified sub-enzymes (Fig. 4a), 176 

which is characteristic of a Cu2+-bipyridine complex (Fig. 4b)17,18; this signal was not detected for the 177 

proteins without copper addition (Fig. 4a). 178 

 179 
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Fig. 4 Absorption spectra of modified and un-modified sub-enzymes. a, Incorporation of Cu2+-SI 180 

(SICu) as detected by UV-vis spectroscopy. Spectra were recorded in 96-well plates using Cu2+-181 

modified sub-enzymes (15 μM) prepared with an excess (120 μM) of inhibitor and Cu2+ (see 182 

Supplementary Methods) in a total volume of 200 µl. Modified sub-enzymes prepared with an excess 183 

(120 μM) of inhibitor but without copper salt are shown as a control. b, The UV-vis spectra of SI and 184 

Cu-modified SI inhibitor (SICu) at 15 µM in a total volume of 200 µl. Shown are average values with 185 

a standard deviation of triplicates (calculated using Excel version 2019) shown as shadows; in the case 186 

of the control sample, the average value and standard deviation of all three sub-enzymes measured in 187 

triplicate are shown. 188 

 189 

By recording the cyclic voltammetry electrochemical response on 3-mercaptopropanoic acid 190 

(MPA)-modified gold electrodes (Supplementary Note 6, Supplementary Figure 12), we further 191 

observed a different behaviour between the free Cu2+-organic complex and the SICu complex, which 192 

shows an expected lower electrochemical reversibility due to the chelation of the Cu2+ cation in the SI 193 

chelating pocket (Supplementary Note 6, Supplementary Figure 13). When SICu was located in the 194 

protein scaffold (Fig. 6a) the copper electrochemical signal became more reversible. Results not only 195 

showed that the copper complex is effectively inside the corresponding sub-enzymes active sites, but 196 

that the electrochemical peaks have shifted and the copper redox signals differs when located in each 197 

sub-enzyme (Fig. 6a). Such differences are better spotted in the sub-enzyme with two active sites 198 

(EH1AB1) which, due to the presence of two binding Cu2+ sites, has an extra increase in the signal of 199 

Cu2+ compared to sub-enzymes A1 (EH1A1) and B1 (EH1B1) which contains only one. It is also worth 200 

pointing out that there is no electrochemical response at the free SICu potentials, suggesting that the 201 

inhibitor does not leak out of the binding pocket. The recording of the oxidation of catechol also 202 

showed a higher catechol oxidation activity of the EH1AB1-SICu biocatalyst compared EH1A1-CuSI 203 

and EH1B1-CuSI (Fig. 6b), not observed in the absence of CuSI (Fig. 6b inset). Catechol did not 204 

behave as electrochemical substrate and the process does not fulfil all the requirements to be 205 

considered a bioelectrocatalytic oxidation process; however, the enzymes behave as an electron 206 

transfer relay that allows the oxidation of catechol at its non-catalytic potential (0.25V vs Ag/AgCl; 207 

see Supplementary Note 6). Impedance spectroscopy measurements were also performed using 208 

catechol as the redox electrochemical probe. Impedance spectroscopy showed a similar trend for each 209 

sub-enzyme: modified sub-enzymes displayed in every case a lower electron transfer resistance than 210 

non-modified ones. Nyquist plots allow calculating the charge transfer resistance (Rct) between the 211 

electrodes modified with each sub-enzyme and the catechol (Fig. 6c). Remarkably, the EH1AB1–SICu 212 

sub-enzyme offered a 10-fold reduction in the Rct when compared to that of EH1AB1 in the absence of 213 

SICu, a 3-fold reduction in the Rct when compared to that of EH1A1–SICu and a 4-fold reduction in 214 

the Rct when compared to that of EH1B1–SICu. These results suggest that the two active sites of the 215 

EH1AB1 sub-enzymes contain Cu2+-organic complexes which, because their proximity, facilitates 216 
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intramolecular electron transfer at levels higher than those shown by modified EH1A1 and EH1B1 sub-217 

enzymes containing only one site and one complex (Fig. 6c). Control experiments recorded with the 218 

electrodes modified with enzymes lacking CuSI, which yielded no electrochemical response of 219 

catechol, support the need of CuSI-socketed enzymes to allow an electronic path to the electrode 220 

surface. Such electronic path is more likely intramolecular, as there is no sign of CuSI leakage, and an 221 

extramolecular electron path would imply the cooperation of different enzymes, a less likely 222 

mechanism. For detailed description of the electrochemical characterization and electrode and probe 223 

design see Supplementary Note 6 (Supplementary Figures 12-18). 224 

 225 
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 226 

Fig. 5 Electrochemical characterization of the chemo-bio catalysts. a, Electrochemical signals of 227 

MPA-gold electrodes modified with (A) CuSI, (B) EH1A1-CuSI, (C) EH1B1-CuSI and (D) EH1AB1-228 

CuSI. The CuSI concentration added was ca. 0.43 mM. All measurements were recorded using a 20 229 

mV·s-1 scan rate and 50 mM phosphate buffer pH 6.5 electrolyte. The working electrode was a gold 230 

disk with a 0.2 cm2 diameter modified with an MPA SAM. The reference electrode was 3 M Ag/AgCl, 231 

and the counter electrode was Pt wire. b, Oxidation of catechol (1 mM) by MPA-gold electrodes 232 

modified with (A) EH1A1-CuSI, (B) EH1B1-CuSI and (C) EH1AB1-CuSI (process from 0.3 to 0.5 V). 233 

Inset: electrochemical responses to catechol measured with MPA-gold electrodes modified with (A) 234 

CuSI, (B) EH1AB1 in absence of CuSI and (C) EH1AB1 in presence of CuSI. c, Impedance spectroscopy 235 

showing that EH1AB1-CuSI presents a much lower electron transfer resistance than any other 236 

combination of sub-enzymes with or without CuSI. Impedance measurements were performed using 237 

catechol 1 mM, a bias potential of 0.35 V vs Ag/AgCl. The experimental setup (sub-enzyme 238 

concentration ca. 0.43 mM) was the same 3-electrode configuration used for cyclic voltammetry. 239 

 240 

Together, results confirm that the SI herein synthesized can be used as a platform to introduce a 241 

Cu2+-organic complex into our genetically engineered plurizyme through the elimination of the 242 

methoxy group of the suicide inhibitor and the coupling of a 3'-hydroxy-[2,2'-bipyridin]-3-yl moiety 243 

capable of copper binding. The bio-conjugation of two organic complexes to EH1AB1 and one to 244 

EH1A1 and EH1B1 was also confirmed by ESI-MS (Supplementary Note 6, Supplementary Figure 19).  245 

The fact that, under excess conditions, the conjugation occurs at both active sites might be a 246 

disadvantage, as our primary objective was to create a plurizyme variant, hereafter referred to as 247 

EH1AB1 chemo-biocatalyst (EH1AB1C-B), in which one of the active sites is replaced by a Cu2+-catalyst 248 

and the other remains unaltered. To remedy this shortcoming, we evaluated the possibility that both 249 

sites have different affinities for the inhibitor; the different affinities for multiple other substrates (see 250 

Supplementary Note 2, Supplementary Figure 2) and the differences in catalytic environments of each 251 

active site (Fig. 3) indicated such a possible differentiation. This hypothesis was evaluated by 252 

measuring the loss of hydrolytic activity of each sub-enzyme (EH1A1, EH1B1 and EH1AB1) in the 253 

presence of different concentrations of the inhibitor. As shown in Supplementary Note 7 (see 254 

Supplementary Figure 20), whereas the native site could be inhibited at very low concentrations (ca. 5 255 

µM), the artificial one was only inhibited at concentrations above 35 µM. On the basis of the 256 

differential active-site affinity, a dose-dependent inhibition strategy was designed that allowed the 257 

specific bio-conjugation of the Cu2+-organic complex to Ser161 but not to Ser 211 (see Supplementary 258 

Methods; Supplementary Note 7, Supplementary Figure 21). As such, an EH1AB1 variant in which the 259 

Cu2+-organic complex was bio-conjugated at the native active site but not the artificial site could be 260 

obtained (Fig. 6), with a coupling efficiency and purity higher than 98% (see Supplementary Note 7, 261 
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Supplementary Figures 22-23). This result was confirmed by applying this strategy to each of the sub-262 

enzymes and by confirming the increase in mass by ESI-MS and the λmax at 386 nm by UV/vis 263 

absorption spectroscopy (see Supplementary Note 7, Supplementary Figures 22-24). As an additional 264 

experimental confirmation, we cocrystallized EH1AB1 with the CuSI complex (see Supplementary Note 265 

3, Supplementary Figure 6). Despite its moderate resolution (2.79 Å), the electron density confirmed 266 

binding of the ligand only to the native active site. However, the poor quality at the copper-bipyridine 267 

moiety impeded modelling of this portion, which might be attributed to disorder or partial occupancy. 268 

 269 

  270 
 271 

Fig. 6 Image representing the chemo-biocatalyst EH1AB1C-B generated in this study and its 272 

utilization in two model reactions. a, Schematic representation of the EH1AB1C-B design. Colour code 273 
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as follows: green, the artificial enzymatic site; red: the native site; black: copper-bipyridine molecule 274 

placed in the native site. In grey colour, the one-pot conversion of 1-naphthyl acetate (1) to naphthol 275 

(2) by the enzymatic site and its further oxidation to 1,4-naphthoquinone (3) by the metal-complex site 276 

are illustrated. b, Model one-pot conversion of vinyl crotonate (4) to crotonic acid (5) by the 277 

enzymatic site, and its further Friedel-Crafts alkylation to β-phenylbutyric acid (7) by the metal-278 

complex site in the presence of benzene (6). 279 

 280 

Synergistic catalysis of the biological with the abiological active site 281 

The catalytic activity of EH1AB1C-B (Fig. 6a) was evaluated in 2 cascade reactions, which consist of the 282 

enzymatic hydrolysis of an ester, followed by a copper-bipyridine oxidation (Fig. 6a, in grey colour) 283 

or a Friedel-Crafts alkylation reaction (Fig. 6b). In the first target reaction, enzymatic hydrolysis of 284 

ester 1 will produce alcohol 2, which may be oxidized by the copper-bipyridine catalyst to quinone 3. 285 

This reaction was selected based on the fact that electrochemical tests demonstrated an electron 286 

transfer capacity by copper-bipyridine. Ester 1 was selected because it is a polyphenol ester for which 287 

the artificial esterase site shows a high conversion rate (see Supplementary Note 2, Supplementary 288 

Figure 2, Supplementary Table 1). In the second target reaction, enzymatic hydrolysis of ester 4 will 289 

produce the alkenyl fatty acid 5, which in the presence of benzene (6) may yield β-phenylbutyric acid 290 

(7)40. This model reaction was selected because copper-bipyridine catalysts have been shown to 291 

perform vinylogous Friedel-Crafts alkylation reactions17,18; ester 4 was selected because it was well 292 

converted by the artificial site (see Supplementary Note 2, Supplementary Figure 2, Supplementary 293 

Table 1), and the resulting hydrolysis product can be coupled with benzene. 294 

The first reaction (Fig. 6a) was carried out at pH 8.0 and 25ºC using 10 mM ester 1. Using a 295 

modified protein not containing Cu2+, no quinone 3 was formed, but formation of alcohol 2 (100% 296 

conversion) was found (Fig. 7a). This result was expected because the only active site was the 297 

biocatalytic site. However, in the presence of the chemo-biocatalyst, the conversion to quinone 3 298 

reached 100% after a 2 h reaction (Fig. 7b). The second reaction (Fig. 6b) was carried out at 4ºC for 3 299 

days following conditions described elsewhere17,18. Using a modified protein not containing Cu2+, only 300 

crotonic acid (5) was formed, and benzene (6) remained without consumption (Fig. 8a), whereas in the 301 

presence of the chemo-biocatalyst, the conversion reached 83% for product 7 after 3 days (Fig. 8b). 302 

The high activity level of the artificial ester-hydrolase active site (Fig. 2c; see Supplementary Note 2, 303 

Supplementary Figure 3) at 4ºC helps achieve a high conversion rate for the enzymatic step and the 304 

concomitant production of product 7. Interestingly, the product was obtained with a 99% e.e. for (S)-3-305 

phenylbutyric acid (see Supplementary Methods). Reaction mixtures obtained in all cases were 306 

analysed by ESI–MS (see Supplementary Methods), and the existence of the reaction products was 307 

confirmed in each case. We would like to mention that the reaction conditions were not optimized. 308 
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 309 
Fig. 7 One-pot synthesis of 1,4-naphthoquinone from 1-napthyl acetate catalysed by EH1AB1C-310 

B. a, Control reaction performed with modified sub-enzyme not containing Cu2+. b, Reaction in the 311 

presence of EH1AB1C-B containing Cu2+. Reaction conditions as follows: - [1-naphthyl acetate]: 10 mM; 312 

[sub-enzyme]: 80 μM; T: 25ºC; pH: 7.0. Reactions were performed in triplicates with average value 313 

and standard deviations (calculated using Excel version 2019) indicated. 314 
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 315 
Fig. 8 One-pot synthesis of 3-phenylbutyric acid from vinyl crotonate and benzene catalysed 316 

by EH1AB1C-B. a, Control reaction performed with modified sub-enzyme not containing Cu2+. b, 317 

Reaction in the presence of EH1AB1C-B containing Cu2+. Reaction conditions as follows: - [vinyl 318 
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crotonate]: 10 mM; [benzene]: 10 mM; [sub-enzyme]: 80 μM; T: 4ºC; pH: 7.0. Crotonic acid 319 

(intermediate reaction product) is not detected under our analytical method and is not shown. 320 

Reactions were performed in triplicates with average value and standard deviations (calculated using 321 

Excel version 2019) indicated. 322 

 323 

 The above two examples demonstrated that a protein scaffold with both biological and abiological 324 

sites is capable of performing hydrolytic-oxidative and hydrolytic-alkylation one-pot reactions with 325 

excellent conversion and enantio-selectivity. From a catalytic point of view, the approach for creating 326 

such hybrid catalysts opens novel opportunities compared to previous designs of bio-inspired chemo-327 

catalysts, in which the protein scaffold is mostly a container of a transition metal-complex whose 328 

properties are influenced by the microenvironment where it is positioned within the protein scaffold18. 329 

Here, the enzyme also contributes to the catalytic activity. Also, compared to the recent design of a 330 

lipase with a Cu2+ catalyst23, where the synergy is not direct and requires, after a first hydrolytic step 331 

mediated by the lipase activity, a second reduction reaction just requiring Cu2+ and NaBH4 added to a 332 

concentration (ca. 15 mg/ml) which may compromise protein integrity and catalyst reutilization41; 333 

thus, in the second reaction the protein does not play an active catalytic role except to immobilize the 334 

Cu2+ catalyst. In contrast, in our design the reaction is done in one step allowing synergetic catalysis 335 

and easy handling; also the cascade reaction produce products in high e.e. that cannot be achieved by 336 

the metal cofactor without the protein scaffold.  337 

 From a methodological point of view, the strategy designed herein to introduce transition metal-338 

complexes can complement the ones previously described, including the metal-binding utilizing 339 

cysteine conjugation18,23 or unnatural amino acids17. It is worth mentioning the following advantages. 340 

First, our strategy, requiring only side chain replacement, is expected to be versatile in that it can 341 

potentially be applied to a large range of enzymes. Second, through the application of PELE 342 

simulations, we ensure that the metal-catalyst is located in an area capable of substrate binding42. 343 

Third, the metal-catalyst is incorporated through a well stablished suicide inhibition mechanism only 344 

requiring the presence of a nucleophilic serine. While introducing two nucleophilic serine may create 345 

selectivity problems that do not exist for other bio-conjugation approaches18,23, it is also true that both 346 

may have different affinities by which one can control the coupling specificity, as it was shown in the 347 

plurizyme herein designed. It is also plausible that both sites may have different specificity for other 348 

metal-complexes allowing specific bio-conjugation, yet to be investigated, or that in other plurizymes 349 

to be developed such selectivity problems may not occur because different active site configurations. 350 

For additional remarks see Supplementary Note 7. 351 

 352 

Conclusions 353 

Recent progress in (bio)chemical sciences has enabled the design and production of protein scaffolds 354 

artificially endowed with either biocatalytic or chemocatalytic activities. While this is plausible when 355 
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a single artificial catalytic entity is introduced into a protein scaffold, it is however challenging to 356 

introduce multiple sites and activities, including natural and non-natural ones. To what extend can 357 

additional sites and activities, either biological and/or abiological, intensify the catalytic performance 358 

of protein scaffolds? Overcoming this challenge and finding answers to this question would allow the 359 

design of more efficient biocatalysts with improved natural activities and multi-catalytic systems for 360 

performing non-natural concerted cascade reactions. 361 

Here, an approach to design catalytically active proteins equipped with two enzymatic active sites 362 

or an enzymatic and a chemocatalytic site is described, and consists of the following sequential 363 

workflow: production of a genetically engineered plurizyme with two distinct active sites (e.g. two 364 

sites supporting ester hydrolysis in this study) through structure-based modelling – chemical design of 365 

a synthetic catalytic suicide inhibitor capable of coordinating a transition metal ion – metamorphosis 366 

of one of the serine hydrolytic biological sites into a versatile metal-complex chemocatalytic site 367 

through suicide inhibition. We hypothesized this approach may provide technical advantages, 368 

including expansion of the diversity of artificial catalysts, and new catalytic opportunities. This was 369 

showed by a first example demonstrating that the catalytic properties of a natural serine hydrolase can 370 

be significantly boosted by adding an artificial site with an appropriate catalytic configuration, because 371 

the additive effect of the two biological (natural and artificial) sites. Results provided in 372 

Supplementary Note 8 (Supplementary Figures 25-28, Supplementary Table 3) further demonstrated 373 

that the plurizyme approach and the catalytic enhancement associated to the introduction of multiple 374 

biological sites is reproducible and can be easily extended to other serine ester-hydrolase. A second 375 

example is also exemplified by the design of hybrid homogeneous catalysts integrating multi-catalytic 376 

units in one, which are capable of performing chemical and biological catalysis in synergy (e.g., 377 

sequential reactions) with excellent conversion and enantio-selectivity. Results provided in 378 

Supplementary Note 9 (Supplementary Figures 29-31, Supplementary Table 4) further demonstrated 379 

that our design offers advantages compared to traditional multi-catalyst systems23, as the co-380 

localization of both biological and abiological catalytic entities in a single scaffold was shown to 381 

favour substrate and product transfer of one to another and to expand the performance under 382 

conditions at which the native catalysts are sub-optimal. 383 

 384 

Methods 385 

A full description of the methods is available in the Supplementary Information (see Supplementary 386 

Methods, and Supplementary Note 10, Supplementary Figures 32-36).  387 

 388 

Data availability: The atomic coordinates have been deposited in the Protein Data Bank under 389 

accession numbers 6I8F, 6RB0 and 6RKY. All other data is available from the authors upon 390 

reasonable request. 391 

 392 
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