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Abstract: Short-term water demand forecasting plays an important role in smart management and 
real-time simulation of water distribution systems (WDSs). This paper proposes a hybrid model for 
the short-term forecasting in the horizon of one day with 15 minute time steps, which improves the 
forecasting accuracy by adding an error correction module to the initial forecasting model. The 
initial forecasting model is firstly established based on the least square support vector machine 
(LSSVM), the errors time series obtained by comparing the observed values and the initial forecasted 
values is next transformed into chaotic time series, and then the error correction model is established 
by the LSSVM method to forecast errors at the next time step. The hybrid model is tested on three 
real-world district metering areas (DMAs) in Beijing, China, with different demand patterns. The 
results show that, with the help of the error correction module, the hybrid model reduced the mean 
absolute percentage error (MAPE) of forecasted demand from (5.64%, 4.06%, 5.84%) to (4.84%, 
3.15%, 3.47%) for the three DMAs, compared with using LSSVM without error correction. Therefore, 
the proposed hybrid model provides a better solution for short-term water demand forecasting on 
the tested cases. 

Keywords: water demand forecasting; hybrid model; error correction; chaotic time series; least 
square support vector machine 

 

1. Introduction 

One critical factor in planning, design, operation, and management of water distribution system 
(WDS) is satisfying quality water demand at reasonable pressure [1–3]. An accurate hydraulic model 
of WDS will help water utilities to improve their operation ability and management effectively. 
Because the WDS hydraulics are driven by consumer demands, it is necessary to estimate consumer 
demands prior to performing hydraulic evaluation [4]. Water demand at a given time in the future is 
usually related to historical water consumption and meteorological factors such as humidity, air 
temperature, and wind velocity [5]. Water demand forecasting plays an important role in activities 
of the WDS such as water production, pump station operation, real-time modeling, and other 
strategic decisions of water management [1,6]. 

The water demand forecasting models can be categorized into long-term and short-term models 
according to the forecast horizon (i.e., the time period that the water demand will be forecasted) and 
forecast frequency (i.e., the time step that the water demand forecasts are performed within the time 
period) [7]. The long-term forecasting model (1 to 10 years’ forecast horizon) pays more attention to 
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the plan and design of WDSs. The short-term forecasting model (1 day to 1 month’s forecast horizon) 
targets the real-time water demands of the existing WDSs, which is generally used for daily operation 
of water plants and pump stations [8]. In this study we focus on the short-term model. The accurate 
model for short-term water demand forecasting with a forecast frequency ranging from daily to sub-
hourly is an essential support for optimal scheduling and better decision marking for WDS 
management [9]. 

Many studies have proposed forecasting models for short-term water demand forecasting, 
which can be generally classified into traditional methods and learning algorithms [9]. Early works 
used traditional statistical models to settle this problem, such as liner regression, exponential 
smoothing, and auto regressive integrated moving average (ARIMA) [7]. These models have been 
widely applied in practice because they are simple to understand and implement. Whereas, the 
traditional models are not always able to accurately predict the nonlinear changes of water demands. 
Recently, more sophisticated models that use machine learning algorithms and artificial intelligence 
have been utilized to address this problem. The models utilizing machine learning algorithms are 
typical data-driven nonlinear models, which are mainly based on historical data to establish the 
relationships between water demand and related variables (e.g., previous water consumption, air 
humidity, and temperature). 

A number of data-driven models that use machine learning algorithms have been developed for 
short-term water demand forecasting, such as artificial neural networks (ANN) models [10–12], 
support vector machine models (SVM) [13–16], project pursuit regression models [1,17], and random 
forests [18]. Herrera et al. [1] conducted a comparison of these aforementioned models, and found 
that the SVM model has the most accurate results. Khan and Coulibaly [15] performed a comparison 
between SVM, ANN, and seasonal autoregressive model in forecasting lake water levels, and the 
results indicated the SVM model outperforms the other two. The main reason is because the SVM 
exhibits inherent advantages in formulating cost functions by using structural risk minimization 
principle instead of the empirical risk minimization of ANN [19]. 

SVM maps the nonlinear trends of input space to linear trends in a higher dimensional space 
and recognizes the subtle patterns in complex datasets by using a learning algorithm [20]. The least 
squares support vector machine (LSSVM) is an extension of SVM which involves equality constraints 
instead of inequality constraints and works with a least squares cost function [21,22]. Due to the 
equality constraints, the LSSVM reduces the computational complexity by solving a set of linear 
equations rather than the quadratic programming problem in standard SVM. Chen and Zhang [14], 
Herrera et al. [1], and Praveen and Bagavathi [23] established an LSSVM-based model to forecast 
hourly water demand; it was found that the LSSVM model has better generalization ability than 
ANN. Other examples of LSSVM applications include river flow estimation [24], discharge-
suspended sediment estimation [25], and pipeline network failure estimation [26]. When forecasting 
water demand with the LSSVM-based model, Chen and Zhang [13] utilized the Bayesian framework 
to determine the model parameters (namely, the regularization constant and the width of the RBF 
kernel). Their case study showed that parameter determination by Bayesian method is faster than 
that of cross-validation [26,27]. 

Both the traditional models and the learning algorithms have achieved promising results in their 
own linear or nonlinear domains, whereas, none of them are universally suitable for all 
circumstances. To improve the performance of the forecasting models, the hybrid models combining 
two or more different algorithms/models are developed by some studies. Zhang [28] established the 
hybrid model with ANN and ARIMA to forecast time series, in which the ARIMA model was firstly 
used to predict the linear part of the data, then ANN was performed to model the errors between the 
linear part and the observed data (i.e., the nonlinear part of the data). The application results of three 
benchmark time series data showed that the hybrid model improved forecasting accuracy more than 
the independent models. Odan and Reis [7] associated the Fourier series (FS) to ANN for hourly 
water demand forecasting. ANN were used to model the errors of the FS forecast (i.e., the difference 
between the FS model and the observed data). Brentan et al. [29] proposed a hybrid model based on 
SVM and adaptive FS, where SVM firstly provided the initial forecasting and then the adaptive FS 
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was utilized to model the errors between the initial forecasting and the observed data. Thus, the 
nonlinear and periodical behavior of water demand can be captured by the SVM and FS model, 
respectively.  

In addition to FS, the chaotic time series method gives the possibility of detecting instability 
phenomena hidden behind random-looking phenomena, which has been widely used in short-term 
time series forecasting of rainfall, traffic, and other fields. For example, Dhanya et al. [30] examined 
the chaotic characteristics of daily rainfall data of the Malaprabha basin, India, and they established 
a daily rainfall prediction model based on the theory of chaotic time series. Liu et al. [31] combined 
chaos theory with SVM to perform short-term prediction of network traffic. Yang et al. [32] proposed 
an improved fuzzy neural system based on chaotic reconstruction technology for short-term load 
forecasting of electric power systems, and the application showed that the chaotic technology-based 
model performs better than the conventional neural network model. So far, chaotic time series has 
rarely been implemented to forecast water demand, and its performance in this field is unknown.  

As aforementioned, with the help of error correction of the initial forecasting, hybrid models 
could perform better than any individual model [7,28,29]. Therefore, it is worthwhile to integrate the 
chaotic time series method in the hybrid forecasting model and investigate their performance. This 
paper aims to achieve better predictions of short-term water demand by presenting a hybrid 
forecasting model which couples the chaotic time series with LSSVM in the error correction module. 
Specifically, it will:  

 Present the framework, methods, and performance indicators of the hybrid forecasting 
model,  

 Test the hybrid model’s accuracy based on case studies of three real-world DMAs in Beijing 
WDSs,  

 Verify the effectiveness of the model by comparing it with the results of other models, 
including ARIMA, LSSVM without error correction, and LSSVM using Fourier series for 
error correction. 

2. Methodology 

2.1. Research Framework 

The historical water consumption and calendar data are used as the model inputs in this study, 
as many researchers have proved that the hourly and 15-min forecasting model only considering 
historical water consumption data is able to achieve reliable forecast results [9,33,34]. Further, this 
study tests the model’s capability of forecasting without real-time meteorological (e.g., temperature, 
humidity, and wind speed) data which is usually unavailable in real-time or highly uncertain. 
Admittedly, there are studies considering meteorological data for hourly water demand forecasting 
(e.g., Al-Zahrani et al. [35] and Brentan et al. [29]), but there is no proof that use of meteorological 
data can significantly improve the prediction accuracy without increasing the complexity of the 
method.  

This study addresses the problem of short-term water demand forecasting with the prediction 
horizon of 24 h with time intervals of 15 min. Firstly, historical water demand data from DMA cases 
are collected, and the features of the historical data are extracted to select valuable information as the 
inputs of the forecasting model. Then the forecasting model is trained and tested using the historical 
water demand data and will be rebuilt every 24 h on the basis of an updated data set. When applying 
the forecasting model, the newly observed water demand data are collected at 15-min intervals. The 
historical data set always maintains the same size and is updated once a day by adding the newly 
observed data and deleting the earliest data. 

There are 96 time steps in the water demand forecasting for one day ahead. The water demand 
forecasting for each time step in one day ahead is performed as follows: (1) Establish the forecasting 
model by LSSVM according to the historical water demand data (see Sections 2.2, 2.3, and 3.2). (2) 
Predict the water demand at the first future time step (15 min) on the forecasting day by the 
forecasting model; the model inputs for the 15-min prediction are provided by the historical data. (3) 
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Predict the water demand at the second future time step (30 min) on the forecasting day; the model 
inputs for the 30-min prediction are obtained from the newly observed data at 15 min and the 
historical data. (4) The input data for the 45-min prediction is obtained from the newly observed data 
at 30 min, the observed data at 15 min, and the historical data, and so on. This stepwise data updating 
procedure is shown Figure 1. It should be noted that the model parameters of the forecasting model 
remain unchanged for the 96 time steps, but the model inputs for different time steps are updated as 
illustrated in Figure 1. 

 
Figure 1. Water demand data processing procedure. 

The hybrid forecasting model is mainly constituted of two parts, namely the initial forecasting 
module and the error correction module. The framework of the hybrid model is shown in Figure 2. 
The outline of the initial forecasting module is actually similar to the traditional water demand 
forecasting model. The difference between the hybrid model and the traditional one is the error 
correction module. 

In the initial forecasting module, historical water demand data and other relevant information 
are firstly collected into a data set with the time step of 15 min. After identification and processing of 
abnormal data, data features are extracted to provide valuable information to the forecasting model 
inputs. Furthermore, the nonlinear relationship between the historical water demand data and the 
demand at the next time step is constructed by LSSVM training, which provides the initial forecasting 
model F(y) of water demand. Then, the forecasted water demand 1ˆty +  at the future time (target time) 
t + 1 is obtained by the initial forecasting model. The errors of the initial forecasting model on the 
training data at historical time steps (1, …, t) is expressed as: 𝑒 =  𝑦 − 𝑦  (1) 

where ei is the error of the initial forecasting model at the time step i (i = 1, …, t); yi is the observed 
water demand at time step i; 𝑦 is the output value of the initial forecasting model at time step i. Note 
that, t + 1 is the first target time step at which the water demand is unknown and needs forecasting.  
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Figure 2. Hybrid framework for water demand forecasting. 

The error correction module has three steps. Firstly, the error time series (e1, e2, …, ei, …, et) from 
the initial forecasting model is transformed into a chaotic time series. Secondly, the LSSVM is adopted 
to establish the relationship between the errors of the initial forecasting at next time step and the 
chaotic time series at current and previous time steps, which provides the error forecasting model 
f(e). Thirdly, the forecasted error for the target time t + 1 is obtained and used to correct the initially 
forecasted demand value as follows: 𝑦 , =  𝑦 + �̂�  

 (2) 

where 𝑦 ,  is the water demand forecasting by the hybrid model, in other words, the final output 
of water demand forecasting at the target time t + 1; 𝑦 is the forecasted water demand by the initial 
forecasting model F(y); and �̂�  is the forecasted error by the error forecasting model f(e).  

2.2. Initial Forecasting Model by LSSVM 

SVM has been widely applied in several areas including pattern recognition, regression, 
nonlinear classification, and function estimation. LSSVM is originated from SVM and first proposed 
by Suykens and Vandewalle [21], which is believed, takes a computational advantage over standard 
SVM by converting quadratic optimization problem into linear equations. In the field of water 
demand forecasting, the LSSVM is used to establish the nonlinear relationship between model inputs 
and outputs.  

Consider a given training set of N samples (xi; yi)(i = 1, …, N), where xi denotes the ith input 
vector in n-dimensional space (xi=(x1i, …, xni)∈Rn) and yi is the corresponding desired output value 
(i.e., the observed value) of the ith sample. The nonlinear function between the inputs and outputs 
can be given as below [19,26,36]: 
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𝑦 X =  𝛚 𝜑 X + 𝑏 (3) 

where 𝑦  is the model output corresponding to the sample i, the nonlinear transformation function 
φ(*) maps the xi to the m-dimensional feature space, ω is the m-dimensional weight parameter vector, 
and b is the bias parameter (ω∈Rm, b∈R).  

Equation (3) provides the initial forecasting model of water demand, in other words, the 
relationship between the model input and output, where the input data is xi= (Qt, Qt–1, Qt–2, Qt–95, Qt–
191, Qt–671) and the output iŷ is the forecasted water demand Qt+1 at the target time t + 1. Detailed 
description of model input data selection is presented the subsection 3.1.  

Considering the complexity of minimizing the model errors between yi and iŷ , in the LSSVM, 
the parameters ω and b in equation (3) can be estimated according to the structural risk minimization 
principle [19,36]: min 𝐽 𝝎, 𝝃 =  12 𝝎𝑻𝝎 + 12 𝛾 𝜉  (4) 

where γ is the regularization constant determining the tradeoff between the training error and the 
generalization performance, ξi is a slack variable denotes model error. 

The solution of the optimization problem (Equation (4)) can be obtained by Lagrange function 
[19,36]. Then the LSSVM model for the non-learner function in Equation (3) is finally turned into: 𝑦 𝐗 =  𝑓 𝑋 =  𝛼 𝐾 𝐗 , 𝐗 + 𝑏 (5) 

where αi (i = 1, …, N) is the Lagrange multiplier and can be evaluated by γ, K(xi, x) is the kernel 
function. The radial basis function (RBF) kernel is one of the most popular kernel functions, and is 
used in this study as below: 𝐾 𝐗𝒊, 𝐗 = exp −‖𝐗 − 𝐗‖2𝜎  (6) 

where σ is the width parameter that reflects the radius enclosed by the boundary closure.  
It is worth mentioning that, at this point, Equation (3) is transformed into Equation (5) which 

can be directly established though the training samples (xi; yi) (i = 1, …, N) and model parameters σ 
and γ. Therefore, establishing an LSSVM model with RBF kernel involves the selection of RBF kernel 
width σ and the regularization constant parameter γ. Among the available methods for parameter 
tuning of LSSVM such as the cross-validation method [19], the grid search method [26], and Bayesian 
framework-based inferring [13,37], the Bayesian approach with three levels of inference is chosen for 
parameter tuning of LSSVM in this study. 

2.3. Error Forecasting Model Based on Chaotic Time Series 

Chaos is a quasi-stochastic irregular motion possibly appearing in deterministic nonlinear 
dynamic systems [38]. Since various nonlinear systems exhibit chaotic features, chaos theory is 
widely used in nonlinear system analysis to detect deterministic relationships hidden behind 
random-looking phenomena, and has been increasingly used in time series analysis [30,31]. 
According to the delay coordinate embedding technique, the underlying dynamical system can be 
faithfully reconstructed from stochastic time series under fairly general conditions [39]. Therefore, a 
one-to-one correspondence can be established between the reconstructed and the true but unknown 
dynamical systems [40].  

Given a scalar time series of model errors e = (e1, e2, …, eN) with time step Δt, and N is the number 
of elements in the time series, the element ei (i = 1, …, N) is computed by Equation (1). According to 
the procedure of phase space reconstruction, the scalar time series e is transformed in phase space as 
follows: 𝐄 =  𝑒 , 𝑒 , 𝑒 , … , 𝑒  𝐄 =  𝑒 , 𝑒 , 𝑒 , … , 𝑒  … 𝐄 =  𝑒 , 𝑒 , 𝑒 , … , 𝑒  

(7) 
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where τ is the delay time, it could be several times of Δt; Ei (i = 1, …, M) is a chaotic vector in the 
phase space, m is the embedding dimension of the phase space, M = N–(m–1)τ is the number of phase 
point.  

Takens [39] has proved that the chaotic attractor of a time series would be revealed in the phase 
space if the parameters τ and m are properly selected. The dimension parameter m is usually larger 
than three, to entirely reveal the underlying information of the time series [31]. Among existing 
methods for determining parameters τ and m, the coupled-cluster (C-C) method [41] is used in this 
study. 

In the case of chaotic systems, the Lyapunov exponent (λ) gives a system the sensitivity to initial 
conditions and determines the total predictability of the system, and a positive λ indicates the system 
is chaotic [42]. Therefore, the reconstructed time series (E1, E2, … , EM) is tested for the chaotic 
signature through the maximum Lyapunov exponent which is evaluated by Wolf’s algorithm [43]. 

In the phase space of a chaotic system, the dynamic information could be interpreted in the form 
of m-dimensional mapping as [30]: 𝐄 = 𝑓 𝐄  (8) 

where EM is the state at current time, EM+1 = (eM+1, eM+1+τ, eM+1+2τ, …, eM+1+(m-1)τ) is the state at future time. 
Note that, the last element eM+1+(m-1)τ of EM+1 is exactly the next element ek+1 of the error series e which 
needs to be forecasted. Therefore, the phase point Ei（i = 1, 2, …, M） further evolves into Ei+1, and 
there is a determinism mapping function between ei+1+(m-1)τ (i.e., the last element of Ei+1) and Ei as 
follows: 𝑒 =  𝑓 𝐄 =  𝑓 𝑒 , 𝑒 , 𝑒 , … , 𝑒  (9) 

According to the properties shown in Equations (8) and (9), the chaotic time series can be utilized 
for prediction, and then the LSSVM approach described in section 2.3 can be used to establish the 
nonlinear functions in Equation (9). The model input data and output data for LSSVM training are 
shown as follows: 𝐗 =  𝐄𝐄𝟐𝐄 ; 𝐘 =  𝑒𝑒𝑒  (10) 

where Xerror is the input data with the dimension of (M–1) × m, Yerror is the output data with the 
dimension of (M–1) × 1. 

Note that, due to M = N–(m–1)τ, the last element of Yerror is actually eN, in other words, the last 
element of the error time series e. After the nonlinear function of Equation (9) is established by 
LSSVM, one can predict the future element of e at next time step through eN+1 = f(EM).  

2.4. Performance Indicators of Forecasting Models 

In terms of accuracy evaluation of water demand forecasting models, variety of measures are 
available to characterize the performance of the models [1,7,9]. This study adopts four widely used 
indicators as evaluation criteria, including the mean absolute error (MAE), the mean absolute 
percentage error (MAPE), the root means square error (RMSE), and the coefficient of determination 
(R2). The equations of these aforementioned indicators are shown as follows: MAE =  1𝑁 |𝑦 − 𝑦 | (11) 

MAPE =  1𝑁 |𝑦 − 𝑦 |𝑦  × 100% (12) 
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RMSE =  1𝑁 𝑦 − 𝑦  

 

(13) 

𝑅 = 1 −  ∑ 𝑦 − 𝑦∑ 𝑦 −  𝑦  

 

(14) 

where yi and ˆiy  are the observed value and the predicted value of water demand at time i, 

respectively; y  and ŷ  are the corresponding mean values; Nf is the number of forecasted time 
steps, which is equal to 96 for the water demand forecasting problem with a one day horizon and a 
frequency of 15 min. 

3. Case Study 

3.1. Data Feature Extraction and Model Inputs 

The historical water demand data from three actual DMAs (namely, DMA1, DMA2, and DMA3) 
in Beijing, China, were collected and used to train and test the forecasting model. On the inlet of the 
DMA, the water demand data were metered with the unit of m3 and recorded every 15 min; then the 
data were transferred to the database of the Beijing Water Works in real time. The water consumption 
pattern and the composition of customers in DMA1 is very different from that in DMA2 and DMA3; 
DMA1 includes more than 10,000 residential customers, 168 business customers, and 68 industrial 
customers. The number of water customers in DMA2 and DMA3 are 1822 and 1936, respectively; 
water customers in DMA2 and DMA3 are mostly residential and there are also some business 
customers. The statistics of the three DMAs’ water consumption data are show in Table 1. The three 
DMAs’ water consumptions at different times in one week are shown in Figure 3. From the weekly 
curves of water demands in Figure 3, one can see the different demand patterns of the three DMAs, 
for example, there is no obvious peak hour in the evening for DMA1, and there are no obvious 
morning peak hours on weekends for DMA3. 

In total, 8 weeks’ data were collected from the water demand record in 2018 for training and 
testing the forecasting model. The data set contains 5376 observations for each DMA. Seven weeks’ 
data were used as training data, while the last week’s data were used for model testing. When using 
the hybrid framework to predict the water demand at 96 time steps on the next day, the water 
demand data of the current day and previous days were used for model training, for example, the 
historical water demand data of the previous 49 days were used for model training to predict the 
demand on the 50th day, and the water demand data of the previous 50 days were used for model 
training to predict the demand on day 51, and so on.  

Table 1. Characteristics of water demand data in 2018 for the three case study district metering areas 
(DMAs). 

DMAs Date of Data Minimum  
(m³/h) 

Maximum  
（m³/h） 

Mean  
（m³/h） 

Standard  
Deviation 
（m³/h） 

Coefficient 
of Variation 

DMA1 Nov. 1 – Dec. 26 120.00 2224.00 1192.03 467.81 0.39 
DMA2 Nov. 1 – Dec. 26 16.88 67.04 35.85 19.97 0.30 
DMA3 Jun. 17 – Aug. 11 28.48 95.12 63.45 15.14 0.24 
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Figure 3. One-week water consumption curves of the case study DMAs. (a) DMA1; (b) DMA2, and 
(c) DMA3. 

When selecting the input data for the forecasting model from the historical water demand data, 
Guo et al. [9] categorized the historical data into three fragments, namely, recent time, near time, and 
distant time, and selected five time-steps in each time fragment as the input data. Herrera et al. [1] 
selected the historical water demand data at three time-steps including the current time, the previous 
time, and the target time in the previous week as the input data. Ordan and Reis [7] selected six time-
steps including four continuous time-steps before the target time, the target time on the previous day, 
and previous week. According to these literatures, the historical water demand at the current time, 
the previous time, the target time on the previous day, and the previous week are usually adopted as 
the model input data in the short-term water demand forecasting. In this study, to better model the 
characteristics of the water demand time series, a correlation analysis [7] is performed based on the 
data of three DMAs to find the data that is highly related to the water demand data at the target time 
from the historical water demand data. Furthermore, various combinations of the related data are 
tested as the input for the forecasting model, and the following combination is identified as having 
the best performance, in other words, three continuous time-steps before the target time (Qt, Qt–1, Qt–
2), the target time on the previous one day and two days (Qt–95 and Qt–191), and the target time on the 
previous week (Qt–671). Therefore, the historical data set (Qt, Qt–1, Qt–2, Qt–95, Qt–191, Qt–671) is adopted 
as the input data for the initial forecasting model in this study.  

3.2. Model Setup 

In addition to the hybrid forecasting model proposed in this study, two other forecasting models 
are established to make comparisons with and to validate the performance of the proposed hybrid 
forecasting approach. As summarized in Table 2, the hybrid model H_LSSVM_Chaos is the one 
established by the hybrid framework of this study (see Figure 2), and the other two are a single 
forecasting (S_LSSVM) and a hybrid forecasting model (H_LSSSVM_FS), respectively. The single 
forecasting model S_LSSVM uses the traditional prediction procedure without error correction 
module, in other words, only the initial forecasting module is used. The hybrid forecasting model 
(H_LSSVM_Chaos and H_LSSSVM_FS) adopts both the initial forecasting module and the error 
correction module. The model inputs of the initial forecasting module are the feature data extracted 
from the historical water demand data, while the model inputs of the error correction module are the 
error series of the initial forecasting model. The error series can be evaluated according to Equation 
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(1) and the flowchart in Figure 2. In the hybrid forecasting model, the initial forecasting module is 
the same one applied in the single forecasting model.  

The hybrid model H_LSSSVM_FS uses the Fourier series as the forecasting model of the error 
time series in the error correction module, which is similar to the approach used by Brentan et al. [29] 
and Ordan and Reis [7]. Model inputs of the hybrid models’ error correction modules are based on 
the errors of the initial forecasting by the S_LSSVM model. 

Table 2. Characteristics of forecasting models. 

Models Forecasting Category Model Inputs 

S_LSSVM Single forecasting 
Feature values of 

historical water demand 
data 

H_LSSVM_Chaos Hybrid forecasting 
Chaotic time series of 
the errors of the initial 

forecasting 

H_LSSVM_FS Hybrid forecasting 
Scalar time series of 

the errors of the initial 
forecasting 

For the error correction module in the H_LSSVM_FS model, the error time series of the previous 
seven days (i.e., 672 values) is used to compute the coefficients of the Fourier series; the number of 
harmonics of FS is set to 336. The LS-SVMlab Toolbox developed by Brabanter et al. [44] is used to 
train the forecasting models by LSSVM, and the three-Level Bayesian inferring method is adopted 
for parameter tuning of the LSSVM. Table 3 displays the model parameters for the application of 
LSSVM and chaos methods. Parameters γ and δ2 in Table 3 were obtained by Bayesian method for 
the LSSVM model training. In addition, m and τ are the essential parameters for chaotic time series 
construction.  

Table 3. Model parameters for the application of LSSVM and chaos methods. 

Models DMA ID γ δ2 m τ 

S_LSSVM 
1 0.1431 5.7407 - - 
2 0.0378 12.5104 - - 
3 0.0457 13.4042 - - 

H_LSSVM_Chaos 
1 0.5827 5.7680 4 9 
2 2.7872 4.5586 4 8 
3 3.1269 6.1330 3 11 

3.3. Application Results 

3.3.1. Overall Performance 

Figure 4 compares the observed water demand with the forecasted water demand using the 
S_LSSVM, H_LSSVM_Chaos, and H_LSSVM_FS models at 15 min steps for one day ahead. It can be 
seen that the predicted water demand by the three models is consistent with the trend of the 
observations, and the hybrid models perform better than the single forecasting models (S_LSSVM) 
during the periods of water demand fluctuations. As quantified below by the model performance 
indicators, the H_LSSVM_Chaos models provide the closest estimates to the corresponding observed 
water demand during most of the peak periods.  

Table 4 gives the overall performance of the different forecasting models for the three DMAs in 
Beijing. It can be seen that the H_LSSVM_Chaos provides a higher accuracy than the other two 
models according to the performance indicators R2, MAE, MAPE, and RMSE. The single forecasting 
model S_LSSVM is the least accurate. 
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Figure 4. Water demand forecasting for one day ahead with the time step of 15 min. (a) Water demand 
of DMA1 on 26 December; (b) water demand of DMA2 on 26 December; and (c) water demand of 
DMA3 on 11 August. 

Table 4. Performance indicators of forecasting models on testing data. 

Models DMA ID R2 MAE(m3/h) MAPE (%) RMSE(m3/h) 

S_LSSVM 
1 0.9654 54.43 5.64 68.61 
2 0.9722 1.31 4.06 1.76 
3 0.9447 2.70 5.84 3.31 

H_LSSVM_Chaos 
1 0.9711 47.92 4.84 62.66 
2 0.9817 1.08 3.15 1.43 
3 0.9701 1.86 3.47 2.44 

H_LSSVM_FS 
1 0.9626 56.35 5.44 71.30 
2 0.9782 1.18 3.33 1.56 
3 0.9533 2.20 3.72 3.05 

Among the three DMAs, the prediction accuracy to DMA1 is slightly worse than to DMA2 and 
DMA3, for example, the MAPEs of (DMA1, DMA2, DMA3) of the H_LSSVM_Chaos models and the 
H_LSSVM_FS models are (4.84%, 3.15%, 3.47%) and (5.44%, 3.33%, 3.72%), respectively. The reason 
is that the composition of the water customers in DMA1 is relatively complex, not only including 
residential users, but also a large number of commercial and industrial users. The statistical 
parameter COV of DMA1’s water demand data is 0.39, which is the largest one among the three 
DMAs. Larger COV indicates a high level of water demand floating and makes the demand pattern 
more difficult to capture. As a result, even using the error correction module, the hybrid model 
H_LSSVM_Chaos only reduced the MAPE of DMA1 from 5.64% to 4.84%, which is less than the 
reductions for the other DMAs. Moreover, because the water consumptions in DMA2 are mostly 
residential demands which thus lead to a simple water demand pattern, the prediction results for 
DMA2 give the highest accuracy. Therefore, as for the error correction module performance on short-
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term water demand forecasting, the DMAs with simple customer composition have better prediction 
accuracy when using error correction module.  

3.3.2. Comparisons Between the Hybrid Forecasting Models 

Figure 5 shows the error forecasting by the error correction module in the hybrid models. 
Compared to the water demand data in Figure 4, the errors of initial forecasting in Figure 5 have a 
large number of fluctuations, in other words, the value of errors has a greater frequency of change. 
In addition, the complex and disorderly change in the peak values of the error data are also shown 
in Figure 5; there is no obvious rule on the occurrence time of the peak value, such as peaks at the 
time steps (7, 45, 71, 75) in Figure 5a. The results in Figure 5 can be summarized as follows: 
• The error forecasting models based on the chaos method and the FS method can both obtain 

more reasonable prediction results in some periods where the error data changes mildly, such 
as time steps 5 to 23 and 60 to 72 in DMA2, and 10 to 24 in DMA3. 

• The prediction accuracy of the two methods is relatively low in the periods where the error data 
change frequently, such as time steps 33 to 55 in DMA1, 24 to 34 in DMA2, and 35 to 53 in DMA3. 
It should be noted that even in these hardly predictable time steps, however, the predictions 
from the chaos method is closer to the errors of the initial prediction than the FS model, e.g., for 
the error predictions at time steps 30 to 55 in the three DMAs, the MAEs obtained by chaos 
method and FS model are (47.54, 1.17, 2.40) and (64.53, 1.84, 3.15), respectively. 

• At some time steps, the error predictions from the FS method are larger than the errors of initial 
prediction, which leads to misleading corrections to the initial forecasting, such as the time steps 
32, 33, and 62 to 64 in DMA1; time steps 32, 46, 55 and 50 in DMA2; time steps 30 to 35, 80 and 
86 in DMA3. While this kind of misleading correction is not much in the chaos method.  
In general, the chaos method performs better than the FS method in predicting such a complex 
fluctuated error time series, and the practice also proves that the errors predicted by the chaotic 
method are closer to the initial errors in the three DMAs. 

 
Figure 5. Comparison between the errors of the initial forecasting and the predicted errors. (a) DMA1 
on 26 December; (b) DMA2 on 26 December; and (c) DMA3 on 11 August. 



Water 2020, 12, 1683 13 of 17 

 

 
Figure 6. Statistics of the absolute relative errors for different forecasting models. 

The statistics of absolute percentage errors (APE) between the single forecasting model 
S_LSSVM and the hybrid models are provided in Figure 6. From the mean, median, maximum, and 
minimum values of APEs of the predictions for the three DMAs in Beijing, the H_LSSVM_Chaos 
models perform better than that of the S_LSSVM models. Therefore, the hybrid framework using the 
LSSVM and chaotic time series gives more accurate predictions. The hybrid models using LSSVM 
and Fourier series did not always perform as well as the H_LSSVM_Chaos. The MAPEs of the 
H_LSSVM_FS model for DMA1 is 5.44%, which is better than that of the single forecasting model 
S_LSSVM 5.68%. Whereas, other statistics of the H_LSSVM_FS model in DMA1, such as the 75-
percentile value and the maximum value of the APE, are similar or even worse than that of the 
S_LSSVM. The reason is that the H_LSSVM_FS model performs a misleading correction for the 
severely fluctuated time steps, as shown in Figure 5a. For DMA2, although the mean and median 
APEs of the H_LSSVM_FS models are similar to that of the H_LSSVM_Chaos models, the 
overestimates of the errors during the time steps 38 to 58 in Figure 5b by the FS method are still 
notable. Therefore, more attention should be paid when using the error correction module in short-
term water demand forecasting. 

3.4. Discussion  

In the initial forecasting module and error correction module of the hybrid forecasting 
framework, the forecasting models are established by LSSVM. The successful implementation of the 
LSSVM model depends on the precision of model parameters (i.e., γ and δ2). In this study, the three-
level Bayesian evidence inferring method is adopted to infer LSSVM model parameters. To 
investigate the influence of model parameters on the performance of LSSVM models, the application 
of the S_LSSVM model on DMA2 is taken as an example. With the same model input data, Table 5 
shows the model performances to different model parameters which are obtained by the 1-level 
Bayesian inferring, 3-level Bayesian inferring, and the grid search algorithm. These parameters are 
computed by the LS-SVMlab Toolbox [45]. As Table 5 shows, after 3-level inferring, the Bayesian 
evidence method catches reasonable model parameters with moderate computation burden. The grid 
search algorithm provides the best performance, but it takes the longest computation time. As shown 
in Table 4, the hybrid model H_LSSVM_Chaos model using 3-level Bayesian inferred parameters 
performs even better than the grid search algorithm built S_LSSVM model. The computation time of 
the H_LSSVM_Chaos model is about 1 time (including initial forecasting and error correction) longer 
than the 3-level Bayesian built S_LSSVM model, which is much shorter than that of the grid search 
algorithm built S_LSSVM model (Table 5). Therefore, the hybrid framework using 3-level Bayesian 
built LSSVM for initial forecasting and error time series forecasting is suitable for the short-term 
water demand forecasting. 
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Table 5. Performances of the S_LSSVM model with different parameters with application to DMA2. 

Methods 
Model Parameters Model Performance Indicators 

Computation 
Time (s) γ δ2 R2 

MAE 
(m3/h) 

MAPE 
(%) 

RMSE 
(m3/h) 

1-level 
Bayesian inferring  0.0183 13.6763 0.9632 1.56 4.98 2.03 179 

3-level 
Bayesian inferring  0.0378 12.5104 0.9722 1.31 4.06 1.76 1253 

Grid search 0.1097 0.7515 0.9809 1.13 3.38 1.46 3685 

Table 6. Performance comparison between the auto regressive integrated moving average (ARIMA) 
and the hybrid forecasting models. 

DMA  
ID 

Forecasting  
Date 

Forecasting 
Models R2 

MAE 
(m3/h) 

MAPE 
(%) 

RMSE 
(m3/h) 

1 Dec. 26 
ARIMA 0.9656  55.43  5.53 68.34  

H_LSSVM_Chaos 0.9711 47.92 4.84 62.66 

2 Dec. 26 
ARIMA 0.9723  1.31  3.83 1.76  

H_LSSVM_Chaos 0.9817 1.08 3.15 1.43 

3 
Aug. 11 ARIMA 0.9687  1.92  3.44 2.50  

H_LSSVM_Chaos 0.9701 1.86 3.47 2.44 
Aug. 8–10 

(mean values) 
ARIMA 0.9687 1.90 3.49 2.44 

H_LSSVM_Chaos 0.9772 1.64 3.00 2.08 

The hybrid model (H_LSSVM_Chaos) is also compared to the traditional ARIMA model, and 
Table 6 shows the results on the three DMAs. The development of the ARIMA models follows the 
procedure described by Adamowski [45]. The parameters of the ARIMA are trained and tested based 
on different combinations, the number of autoregressive parameters (p), the number of difference (d) 
and the number of moving average parameters (q) are set as (3, 1, 1). Note that, the same set of 
historical water demand data are used to build the H_LSSVM_Chaos and ARIMA forecasting models; 
the historical data before the forecasting day are used to establish the forecasting models.  

As shown in Table 6, the H_LSSVM_Chaos model perform better than the ARIMA model on 
DMA1 and DMA2, for example, the MAPEs (DMA1, DMA2) of the H_LSSVM_Chaos model and the 
ARIMA model are (4.84%, 3.15%) and (5.53%, 3.83%), respectively. Whereas, the application results 
of DMA3 show some variations: (i) on the forecasting day August 11, the H_LSSVM_Chaos has a 
similar result to the ARIMA, for example, the R2 and MAPEs of the two models are (0.9701, 0.9687) 
and (3.47%, 3.44%), respectively; (ii) on the forecasting days from August 8 to 10, the 
H_LSSVM_Chaos perform better than the ARIMA, for example, the three days’ MAPEs of the 
H_LSSVM_Chaos and the ARIMA are (3.48%, 2.81%, 2.71%) and (4.03%, 3.10%, 3.35%), respectively. 
The reason for the variations is that August 11 is Saturday while August 8 to 10 are weekdays. As 
shown in Figure 3c and Figure 4c, for DMA3, the water consumption curve on Saturday is different 
and more complex than that of weekdays. The distinctive water consumption curve on Saturday 
results in fewer training samples for establishing the forecasting model, which affects the forecasting 
accuracy for Saturday. However, the overall performance of the H_LSSVM_Chaos model is still 
better than the ARIMA model, despite the variations in the forecasting accuracy on Saturday. These 
comparisons verified the validity of the H_LSSVM_Chaos model.  

Generally, one single model could not identify the underlying patterns for every case, and the 
hybrid framework including different models is able to capture different aspects of the available 
information for prediction [5,46]. The LSSVM method in the initial prediction module captures 
nonlinear relationships between the discontinuous feature data (Qt, Qt–1, Qt–2, Qt–95, Qt–191, Qt–671) of 
the historical water demand data set and the water demand Qt+1 on the forecasting day; the chaotic 
time series method in the error correction module captures the continuous and periodic changes from 
the errors of the initial forecasting module. 
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4. Conclusions 

Short-term water demand forecasting with the horizon ranges from sub-hourly to daily plays an 
important role in the field of optimal operation of pump stations and online hydraulic simulation of 
water distribution systems. To obtain more accurate predictions, this study proposes a hybrid 
framework with the error correction module which uses the chaotic time series, and investigates the 
performance of the framework in the short-term water demand forecasting with one day ahead and 
a 15-min time step. The hybrid framework is developed by integrating two modules, namely, the 
initial forecasting module and the error correction module. The initial forecasting model is 
established by the least squares support vector machines (LSSVM). In the error correction module 
the errors forecasting model is established by LSSVM using chaotic time series of error data from 
initial forecasting.  

The hybrid model is implemented in the water demand forecasting of three actual district 
metering areas (DMAs) in Beijing, China, and the application results of the hybrid model are 
comparable to that of other two models including the forecasting model without error correction and 
the hybrid model using Fourier series for error correction. From the case study results, the following 
conclusions could be drawn:  
• In most instances, the hybrid models perform better than the forecasting model without error 

correction. The error correction module performs better in the short-term water demand 
forecasting than the DMAs whose composition of customers is simple. A simple composition of 
customers indicates a simple water consumption pattern and less peak fluctuations in the water 
consumption curves. 

• Due to the capability of detecting the underlying instability characteristics of time series, the 
error correction module using chaotic time series performs better than the Fourier series in 
predicting a complex disordered time series of errors. 

• For the periods of frequent and disordered peak fluctuations in the error time series, the 
performance of the error correction module is not good, and the error forecasting model based 
on Fourier series may lead to unreasonable forecasts by misleading the corrections to the initial 
forecasting. As a result, more attention should be paid to the features of the error time series 
when using the error correction module. 
In the presented study, the hybrid forecasting framework is tested by three actual DMAs in 

Beijing with different characteristics. Further work on other DMAs are needed to test and verify the 
robustness of the hybrid forecasting framework, and much more effort is needed to test the 
performance of chaotic methods in mining the characteristics of the disordered peak fluctuated data. 
This study only tested the proposed model for the 24 h forecast horizon, whereas, the hybrid 
forecasting framework is not limited to the forecast horizon of one day, there is a potential to 
implement the model to a much longer forecast horizon and frequency, such as one week ahead with 
a time step of 6 h. Then the feature data for model training obtained from the historical data set should 
be adjusted accordingly. 
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