
Mode hopping in oscillating systems with stochastic delays

Vladimir Klinshov, Dmitry Shchapin
Institute of Applied Physics of the Russian Academy of Sciences,

46 Ul'yanov Street, 603950, Nizhny Novgorod, Russia

Otti D'Huys
Department of Mathematics, Aston University, B4 7ET Birmingham, United Kingdom

(Dated: June 2, 2020)

We study a noisy oscillator with pulse delayed feedback, theoretically and in an electronic ex-
perimental implementation. Without noise, this system has multiple stable periodic regimes. We
consider two types of noise: i) phase noise acting on the oscillator state variable and ii) stochastic
�uctuations of the coupling delay. For both types of stochastic perturbations the system hops be-
tween the deterministic regimes, but it shows dramatically di�erent scaling properties for di�erent
types of noise. The robustness to conventional phase noise increases with coupling strength. How-
ever for stochastic variations in the coupling delay, the lifetimes decrease exponentially with the
coupling strength. We provide an analytic explanation for these scaling properties in a linearised
model. Our �ndings thus indicate that the robustness of a system to stochastic perturbations
strongly depends on the nature of these perturbations.

Many networks of various nature exhibit temporal de-
lays accounting for the traveling time of a propagating
signal. Coupling delays arise in laser physics [1�3], neu-
roscience [4, 5], gene regulatory networks [6, 7], tra�c
and population dynamics [8, 9], communication networks
[10], etc. A typical e�ect of time delays is multistability:
di�erent types of dynamics are possible for the same pa-
rameter values [11�14]. Hence, stochastic perturbations,
which are present in any real-life system, can cause hop-
ping between coexisting stable states [15�19].

In this Letter, we investigate the hopping dynamics in
the most basic time-delayed network: a single node with
delayed feedback. We utilize a model of a phase oscillator
with pulse coupling which is widely used for biological
oscillators [20�22], wireless networks [23], chemical and
electronic oscillators [24�26] and optical systems [27]. We
consider two di�erent types of stochastic perturbations.
First, we consider �phase noise�, an additive stochastic
term in the equation for the oscillator phase. This is the
canonical implementation of stochastic e�ects [15, 28, 29,
31, 32]. Second, we investigate the in�uence of noise not
on the node, but on the link by letting the coupling delay
�uctuate.

Stochastic delays are rarely taken into account due
to the mathematical complexity of their implementation
[33, 34]. Nevertheless, they arise naturally in various
systems such as gene regulatory networks [35], networked
control and communication systems [36�38] and networks
of electronic gates [39]. Fluctuations in the coupling de-
lay may signi�cantly in�uence network dynamics: for ex-
ample they may deteriorate the performance and stabil-
ity of communication networks [40] or increase signaling
speed in gene regulatory networks [35].

While most research so far focuses on the linear stabil-
ity of discrete-time [38, 41] or continuous-time systems
[42, 43], our major interest is to study the switching be-
tween di�erent attractors of the deterministic system in-
duced by the �uctuations. In the following, we provide

a numerical study of a pulse-coupled oscillator together
with an electronic experiment. Moreover, we develop
an analytic theory describing the noise-induced switch-
ing between di�erent states. Our main result is that the
robustness of the system towards both types of stochas-
tic perturbations � in the oscillator or in the coupling
delay � follows opposite scaling laws: an increased cou-
pling strength makes the system less susceptible to phase
noise, but at the same time it becomes more sensitive to
the �uctuations of the delay.
We consider the following model of a single phase os-

cillator with pulse delayed feedback

dφ

dt
= 1 + εZ(φ)

∑
ts

δ(t− ts − τ) . (1)

The motion along the limit cycle is modeled as dφ/dt = 1.
When the phase reaches unity, it resets to zero and the
oscillator emits a spike. The moments of spike emission
are denoted as ts. The spike is received after a delay
τ , at a reception phase ψ = φ(ts + τ), and causes an
instantaneous shift ∆φ = εZ(ψ), where ε is the coupling
strength and Z(φ) is the phase response curve (PRC,
[44]).
The deterministic dynamics of this system (1) has been

studied in detail in Ref. [13]. The basic regime of the sys-
tem is the so-called regular spiking regime, characterized
by a constant inter-spike interval (ISI) between consec-
utive spikes. This regime is characterized by a capacity
C, the number of full inter-spike intervals within a delay
interval. The oscillator receives exactly one pulse in each
ISI. The deterministic reception phase ψC , the determin-
istic period TC and the delay τ are related by

ψC = τ − CTC , TC = 1− εZ(ψC). (2)

For large enough delays several regular spiking solutions
with di�erent capacities coexist, each characterized by
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di�erent reception phase ψC and period TC . The stabil-
ity condition of each solution is given by −1 < εZ ′(ψC) <
1/C. Their number grows with the delay and the cou-
pling strength, N ∼ ετ , and their di�erence decreases as
TC−1 − TC ∼ 1

τ .
We consider two di�erent types of stochastic perturba-

tions to system (1):
i) The stochastic perturbation is applied to the oscil-

lator as an additive noise term:

dφ

dt
= 1 + εZ(φ)

∑
ts

δ(t− ts − τ) + σpξ(t) . (3)

Here, ξ(t) is standard white Gaussian noise, and σp is
the noise strength. We refer to this scenario as �phase
noise�. We integrate this system (Eq. (3)) using an Euler-
Mayurama scheme [45] with a step size of dt = 10−3.
ii) The perturbation is applied to the coupling delay.

Stochastic delays are implemented by adding random un-
correlated variations σdξs to the delay of a pulse emitted
at ts:

dφ

dt
= 1 + εZ(φ)

∑
ts

δ(t− ts − τ + σdξs) . (4)

where ξs is a discrete standard normally distributed noise
term, and σd measures the �uctuations intensity. We
always chose the noise strength small enough and trun-
cate the distribution, so that the delay reamins positive
and the pulse order preserves. Taking advantage of the
discrete nature of the coupling, the system Eq. (4) is
integrated using an event-based method.
In the following we compare those two scenarios. We

select large enough delay so that the system is multi-
stable, and analyse the noise-induced switching between
di�erent regimes of regular spiking (Fig. 1). As a PRC,
we choose

Z(φ) =
1

2π
sin(2πφ) , (5)

which is characteristic for oscillators close to Hopf bifur-
cation [46]. We choose the coupling delay τ = C0 + 1

2 , so
that there is always a central solution with capacity C0,
reception phase ψC0 = 1

2 and period TC0 = 1. This choice
of delay does not a�ect the general switching properties,
but facilitates the comparison of the switching statistics
for varying delay and coupling strength. For weak enough
coupling, this central solution with ψC0 = 1

2 is the most
stable one, and it is surrounded by two unstable solutions
with ψC ≈ 0 and ψC ≈ 1.
The natural, and in experiments the only observables

of our system, are the spike times and the inter-spike
intervals T . However, for both types of stochastic per-
turbations neither the time series of the consecutive ISIs
(Fig. 1a), nor the distribution of ISIs (Fig. 1b) reveal any
signs of switching. Clearly, for large delays the di�erence
between the periods of neighboring regimes TC −TC±1 is
much smaller than the typical ISI �uctuations. Neverthe-
less, after applying a moving average �lter with a width
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Figure 1. Noise-induced switching. (a) Temporal dynamics
and (b) the distributions of the inter-spike intervals. Black
dashed lines correspond to the periods of the deterministic
solutions. (c) Temporal dynamics of the ISIs after applying a
moving average �lter with a width τ (blue) and the capacity
(red). (d) Distribution of the �ltered ISIs. (e) The dynamics
of the input phase ψ when the system switches to the state
with the lower capacity. (f) The same for the switching to
the higher capacity. The switching moments are indicated
by arrows. The system parameters: phase noise, τ = 100.5,
ε = 0.1, σp = 0.06.

τ one sees clearly pronounced mode hopping (Fig. 1c),
while the distribution of �ltered ISIs 〈T 〉 shows multiple
peaks corresponding to di�erent regular regimes (Fig.1d).
In the numerical simulations, the switching events

can also be inferred from the dynamics of the reception
phases ψ. If the phase decreases and passes the unstable
state at ψ ≈ 0, a switch to a solution with lower capac-
ity is observed (Fig. 1e). If the phase ψ increases and
passes through the unstable state ψ ≈ 1, this coincides
with a switch to a solution with a higher capacity (Fig.
1f). Thus, the variable ψ +C = φ(ts + τ)− φ(ts), which
corresponds to the delay phase di�erence at the reception
of the spike, provides an indicator for the switching dy-
namics. Because of our choice of a sinusoidal PRC, with
the unstable states located around 0 and 1, the capacity
C itself is a straightforward indicator of the regime in
which the system resides (cf. Fig. 1c).
We characterize the mode hopping statistics by two

measures. First, we are interested in the the typical num-
ber of states with di�erent capacity that are visited; an
exemplary distribution of capacities is shown in Fig. 2a.
This number is related to the standard deviation M of
the distribution of the capacities, M =

√
〈C2〉 − 〈C〉2.

Second, the lifetimes of the stable states provide an in-
dication of the robustness of the system to noise and
the memory capacity. We �nd that the lifetimes are
distributed exponentially for both types of noise, with
additional peaks at multiples of the delay time, as can
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be expected [15, 47, 48]. An exemplary distribution is
shown in Fig. 2b. The lifetime are typically maximal
for the central state with capacity C0, and lower for the
other states, the average lifetimes for states with di�erent
capacity is shown in Fig. 2c. We consider the average
lifetime L of the central state as the temporal character-
istic of the switching.
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Figure 2. An exemplary capacity distribution (a), distribution
of the lifetime of the central solution (e), and the average life-
times of the solutions with di�erent capacity (c) due to mode
hopping. Parameters for (a-c): stochastic delays, ε = 0.65,
τ = 200.5 and σd = 0.17.
Panels (d-f) show the characteristics of switching for phase
noise (blue circles) and stochastic delays (red squares). The
average lifetime L of the central solution (d,e) and the
width M of the capacity distribution (f,g) versus the cou-
pling strength ε (d,f) and the delay τ (e,g) Parameters are
σp = 0.07, σd = 0.17 and τ = 100.5 (d,f) and ε = 0.15 (phase
noise) and ε = 0.5 (stochastic delays) (e,g). The full lines
correspond to the scaling laws (6) (blue, for phase noise) and
(15) and (17) (red, for stochastic delays).

Figure 2 (d-g) compares the numerical results for phase
noise (Eq. (3)) and stochastic delays (Eq. (4)) applied to
the oscillator. For phase noise, the widthM of the capac-
ity distribution increases with the delay time τ and only
weakly depends on the coupling strength ε. The lifetime
L weakly depends on the delay and increases quickly with
the coupling strength. It is instructive to compare these
numerical results with the theory for continuous coupling
[48], which predicts the following scaling for large delays:

L ∼ 1

ε
exp

(
ε

2π2σ2
p

)
, M ∼ σp

√
τ . (6)

This predicted scaling (indicated by the full blue lines
in Fig. 2 (d-g)) is in good agreement with our results for
weak coupling when pulsatile coupling can be approxi-
mated by continuous coupling [49]. As the coupling in-

creases, the approximation is no longer valid, and the
agreement with the scaling laws (6) deteriorates.
For stochastic delays, similarly to phase noise, the dis-

tribution widthM scales as
√
τ , while the lifetime L does

not change much with τ . However, the di�erence in the
role of the coupling strength ε is striking. In contrast
to phase noise, under in�uence of stochastic delays the
distribution width M grows with ε, while the lifetime
L decreases almost exponentially. These results suggest
that strengthening the coupling unexpectedly makes the
system more susceptible to stochastic �uctuations of the
delay.
In order to explain these numerical results we develop

a theory, based on the PRC (Eq. (5)) linearized around
the central phase z(φ) = 1

2 − φ. A linear approximation
of the PRC will not provide a quantitative explanation
about the mode hopping characteristics, as these depend
on system behavior far from the deterministic solutions.
Nevertheless, the analysis with a linear PRC allows in-
sight into the scaling laws governing the mode hopping
due to stochastic delays. For large delays τ � ε−1, the
stable regimes close to the central solution are approxi-
mated as ψC ≈ 1

2 −
C−C0

εC0
, TC ≈ 1− C−C0

C0
.

We start by rewriting Eq. (4) as a stochastic map.
Assuming a capacity C at the time ts of a pulse emis-
sion, the next pulse to arrive was emitted at ts−C . The
reception phase ψs+1 (the index refers to the spike time
following this pulse) is then given by the time elapsed
between ts and the arrival of this pulse:

ψs+1 = τ+σξs+1−(ts− ts−C) = τ−
s∑

p=s−C+1

Tp+σξs+1,

(7)
where Tp = tp − tp−1 are the inter-spike intervals. The
phase grows uniformly except at the moment of the pulse
reception, and the oscillator receives one pulse per inter-
spike interval, thus the inter-spike interval equals Ts+1 =
1− εz(ψs+1). It is convenient to introduce the deviation
of the reception phase from its steady state value xs =
ψs−ψC , then the stochastic map Eq. (7) can be rewritten
as

xs+1 = −ε
s∑

p=s−C+1

xp + σdξs. (8)

This is an autoregressive process of order C. Using the
Yule-Walker equations [50], it is straightforward to show
that 〈xs〉 = 0 and to calculate the variance and the au-
tocorrelation coe�cients:

v = 〈x2s〉 = σ2
d

1 + (C − 1)ε

1 + (C − 1)ε− Cε2
, (9)

ρn =
〈xsxs−n〉
〈x2s〉

= − ε

1 + (C − 1)ε
for 1 ≤ n ≤ C.(10)

The typical capacity C is close to the delay, as can be
deduced from Eq. (2); hence for large delays the auto-
correlation coe�cients vanish, while the variance tends
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to the limit v =
σ2
d

1−ε . Thus, the reception phases ψs
are, approximately, normally distributed around the de-
terministic value ψC with a variance v. A hopping to
a di�erent solution corresponds to the reception phase
crossing the boundary ψs = 1 (if the capacity increases)
or ψs = 0 (if the capacity decreases). The switching
statistics can be derived from solving the �rst passage
time problem, which is not trivial for an autoregressive
process [51]. However, due to the low correlation for large
delays it is possible to estimate the switching rate as the
probability to �nd the value of ψs beyond the boundary:

r+(C) ≈ P (ψs > 1) = 1− Φ

(
1− ψC√

v

)
, (11)

r−(C) ≈ P (ψs < 0) = Φ

(
−ψC√
v

)
. (12)

where Φ(x) = 1
2 (1 + erf(x/

√
2)). For weak noise these

probabilities are small, and using an approximation for
the tails of the error function, we obtain

r± ≈
√
v

2
√
π∆±

exp

(
−

∆2
±

2v

)
, (13)

where ∆+ = 1 − ψC and ∆− = ψC are the distances
from ψC to 1 or 0, respectively. The average lifetime
equals L(C) = ((r+(C) + r−(C))

−1
, and for the solutions

not far from the central one (ψC − 1
2 � 1) it can be

approximated by

L(C) ≈ 1

2

√
π

v
exp

(
1

8v

)[
cosh

(
C − C0

2εvτ

)]−1
. (14)

Thus, the average lifetime L of the central solution is
given by

L ∼
√

(1− ε)
σd

exp

(
1− ε
8σ2

d

)
, (15)

which provides a qualitative explanation for the almost
exponential decrease of L with ε shown in Fig. 2d.
From the switching rates one can calculate the dis-

tribution of the capacities: assuming detailed balance
p(C)r+(C) = p(C + 1)r−(C + 1) we �nd

p(C) ≈ p(C0) exp

(
− (C − C0)2

2εvτ

)
. (16)

This is a discrete normal distribution whose standard de-
viation can be estimated as [52]

M ∼
√
εvτ = σd

√
ετ

1− ε
. (17)

The numerical results shown in Fig. 2(f,g) indeed show
a square root scaling of M with τ . While Eq. (17) ex-
plains the increase of M with ε, the correspondence is
only qualitative.
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Figure 3. Average lifetime of the most stable solution versus
the coupling strength for the phase noise (blue circles) and
stochastic delay (red boxes) in (a) a numerically simulated
neural oscillator and (b) an experimentally studied electronic
circuit. The curves connecting the datapoints are �ts. Details
are given in the Supplemental materials.

Comparing the theoretical approximations for phase
noise (Eq. (6)) and stochastic delays (Eqs. (15) and
(17)), we �nd that the scaling of the switching statistics
with the coupling delay and the noise strengths are sim-
ilar for both types of noise. However, the scaling with
the coupling strength is completely di�erent. While the
lifetime exponentially increases with ε for phase noise, it
exponentially decreases for stochastic delays. While for
phase noise the distribution width M does not depend
on ε, it increases with ε for stochastic delays. Intuitively
the opposite role of the coupling strength for di�erent
types of noise can be understood as follows. The �uc-
tuations in the phase due to phase noise only depend
on the noise strength σp. When increasing the coupling
strength ε, these �uctuations are more e�ectively sup-
pressed since the Lyapunov exponents of the stable peri-
odic states scale with the coupling strength. In contrast,
for the stochastic delays the perturbation enters through
the coupling, and its e�ect increases with the coupling
strength.

For our analysis we have considered delays much larger
than the intrinsic period, and a simpli�ed oscillator
model; this allows to develop an analytic theory. To
show the relevance of our results for more realistic oscil-
lator models and shorter delays, we performed a limited
study of a Wang-Buzsaki neuron [55] with an excitatory
synapse projecting onto itself (see Supplemental materi-
als for the details). For strong enough synaptic strength
g, the system is bistable even for synaptic delays shorter
than the intrinsic period. The results are presented in
Fig. 3a and show the same tendency: lifetimes increase
with coupling for phase noise but decrease for stochastic
delays.

In order to corroborate our theoretical predictions and
numerical simulations we carried out an experimental
study with an electronic circuit. The experimental setup
is described in detail in the Supplemental materials. It
was based on the electronic FitzHugh-Nagumo oscilla-
tor [53, 54]. When the output voltage exceeds a thresh-
old value, a spike is produced and sent to a delay line.
When the spike has passed through the delay line, a short
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square voltage pulse is applied to the oscillator. To con-
trol the coupling strength we varied the pulse amplitude
E. To implement the stochastic delay, the initial posi-
tion of each spike in the delay line was randomly shifted.
The phase noise was implemented as a white Gaussian
noise applied to the oscillator. For either type of the
noise, the switching is clearly seen from the multi-peak
distribution of the averaged inter-spike intervals (see Fig.
S7 in the Supplemental materials). In Fig. 3b the aver-
age lifetime of the central solution is plotted versus the
coupling strength for both types of noise. In agreement
with our theoretical prediction, it grows with the cou-
pling strength for phase noise and decreases for stochastic
delay.
The results reported in this Letter show that the ef-

fect of stochastic perturbations on oscillatory systems
with coupling delay may di�er depending on whether
they are applied on the oscillator or on the delay line.
Our main �nding is the unusual scaling properties of the
switching dynamics for stochastic delays: the lifetimes
decrease exponentially with the coupling strength. Our
results emphasize the importance of studying stochastic

delays which may cause unexpected dynamical e�ects. In
a broader context, a system considered here is the most
simple form of a network, with one node and one link. It
might also be seen as an analogue of a larger network with
ring topology [56�59]. Our �ndings suggest that network
robustness may strongly depend on whether stochastic
perturbations a�ect the nodes or the links in a network.
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