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Abstract 
Prospective memory (PM) refers to the cognitive processes associated with remembering to perform an 

intended action after a delay. Varying the salience of PM cues while keeping the intended response 

constant, we investigated the extent to which participants relied on strategic monitoring, through 

sustained, top-down, control, or on spontaneous retrieval via transient bottom-up processes. There is 

mixed evidence regarding developmental improvements in event-based PM performance after age 13. 

We compared PM performance and associated sustained and transient neural correlates in 28 typically 

developing adolescents (12-17 years) and 19 adults (23-30 years). Lower PM cue salience associated 

with slower ongoing task (OT) reaction times, reflected by increased μ Ex-Gaussian parameter, and 

sustained increases in frontoparietal activation during OT blocks, both thought to reflect greater 

proactive control supporting cue monitoring. Behavioural and neural correlates of PM trials were not 

specifically modulated by cue salience, revealing little difference in reactive control between conditions. 

The effect of cue salience was similar across age groups, suggesting that adolescents are able to adapt 

proactive control engagement to PM tasks demands. Exploratory analyses showed that younger, but not 

older, adolescents were less accurate and slower in PM trials relative to OT trials than adults and 

showed greater transient activation in PM trials in an occipito-temporal cluster. These results provide 

evidence of both mature and still maturing aspects of cognitive processes associated with 

implementation of an intention after a delay during early adolescence.  

Keywords: prospective memory, ex-Gaussian function, sustained and transient processes, adolescence, fMRI 
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Introduction 
Prospective memory (PM) enables the execution of intended actions after a delay, e.g. remembering to 

respond to an email after reading this paper (Meacham & Singer, 1977). Event-based PM refers to 

instances in which the action needs to be performed in response to a cue (event) in the environment, 

such as remembering to send the email when you see your laptop (Einstein et al., 1992). An event-based 

laboratory task typically embeds a PM task, in which participants are instructed to do a different action 

in response to a target cue, in an ongoing task, which already requires a certain response to stimuli. 

Event-PM can be split into two components: cue identification (e.g., the email icon on your computer) 

and intention retrieval (e.g., what to do in response to the cue – write and send email; Simons et al., 

2006).  

PM performance is influenced by the degree to which several task factors rely on more or less top-down 

executive control processes, as has been proposed by the Multiprocess framework (McDaniel & 

Einstein, 2000), the preparatory attentional and memory (PAM) processes model (Smith, 2003), and 

more recently the Dual Mechanisms of Control framework (DMC; Braver 2012). The PAM theory posits 

that intention retrieval is only possible with non-automatic monitoring of the PM cue (Smith, 2003). In 

contrast, according to the Multiprocess Framework (McDaniel & Einstein, 2000), PM is supported by 

both strategic monitoring, which includes top-down sustained processes of intention maintenance and 

monitoring to detect a PM cue (McDaniel & Einstein, 2000), and spontaneous retrieval, associated with 

more transient bottom-up processes in which intentions “pop to mind” (McDaniel & Einstein, 2007; 

Scullin et al., 2013). Scullin and colleagues (2013) have proposed an extension, the Dynamic 

Multiprocess Framework, whereby strategic monitoring and spontaneous retrieval could be both 

recruited in the same PM task, but at different times and/or in distinct contexts. The extent to which 

individuals rely on strategic monitoring or spontaneous retrieval depends on: (1) characteristics of PM 

cues, including salience (how perceptually distinct PM cues are), valence, or focality (whether PM cue 

features are also the focus of the ongoing task), (2) characteristics of the task, including cognitive load 

and importance, and (3) characteristics of the individual, such as cognitive capacity and personality traits  

(Cona et al., 2015; Einstein et al., 2005).  

The DMC framework (Braver, 2012) separates proactive and reactive dimensions of cognitive control, 

which are associated with sustained and transient activity in the frontoparietal and salience networks 

respectively (Braver, 2012; Jiang et al., 2015).  Mapping these aspects of cognitive control to prospective 

memory processes may generate predictions at the brain-level and lead to improved understanding of 
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the cognitive processes supporting PM (McDaniel et al., 2013). Proactive control supports the 

cognitively demanding active maintenance of goals in working memory and attending to the 

environment (Braver, 2012; Koslov et al., 2019). While it is resource consuming, proactive engagement 

of preparatory attentional and memory processes would allow monitoring of the environment to detect 

PM cues that are non-salient or less important (Einstein et al., 2005; McDaniel & Einstein, 2000; Smith, 

2003). Reactive control would match with the less demanding retrieval of the intention from episodic 

memory (Koslov et al., 2019).  

Salient PM cues facilitate performance (Altgassen et al., 2010; Brandimonte & Passolunghi, 1994; 

Einstein et al., 2005; Kliegel et al., 2013; Mahy et al., 2014; Smith et al., 2007), reducing monitoring 

demands by encouraging spontaneous, automatic retrieval (Mahy et al., 2014), which does not load as 

much on cognitive demands and relies on reactive control triggered by the cue. The first aim of the 

present study was to investigate the effects of manipulating cue salience on strategic monitoring, 

mapped onto proactive and reactive cognitive control processes (Braver, 2012; McDaniel et al., 2013), 

and how this relates to the facilitation effect of cue salience on performance. 

PM in Adolescence 
Age-related differences are apparent in PM performance across the lifespan. Most studies to date have 

focused on improvements in childhood and impairments in aging. Cross-sectional studies have found 

evidence of improvement in performance until age 13 -14 years, when performance appears to level off 

through early adulthood, and later worsens in older adulthood (Kliegel et al., 2008; Zimmermann & 

Meier, 2006; Zöllig et al., 2007). By age 4, PM capacity is evident (Kvavilashvili et al., 2001) and continues 

to increase during preschool years (Ford et al., 2012; Guajardo & Best, 2000; Kliegel et al., 2008; Mahy et 

al., 2014). In middle childhood, performance continues to improve (Kerns, 2000; Mackinlay, Kliegel, & 

Mäntylä, 2009; Smith, Bayen, & Martin, 2010; Voigt et al., 2014). Not many studies have focused on 

adolescent and young adulthood samples however, and the evidence regarding continued development 

in this age group is mixed. Some studies show further improvement of PM performance in adolescence 

(from 12 to 16 years) compared to adults (Altgassen et al., 2014, 2017; Bowman et al., 2015; Wang et 

al., 2006, 2011; Zöllig et al., 2007), particularly when PM cues are not focal to the processes involved in 

the ongoing task. In contrast, some studies do not find strong evidence for development after early 

adolescence (Bowman et al., 2015; Wang et al., 2011; Ward et al., 2005; Zimmermann & Meier, 2006) 

with adolescents (over 13 years) and adults performing similarly better than children, and later on quite 

stable performance in young to mid- adulthood (Kliegel et al., 2008).  
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Other executive control processes that could contribute to PM, such as working memory and inhibitory 

control, develop extensively during childhood and adolescence (Best & Miller, 2010; Humphrey & 

Dumontheil, 2016; Munakata et al., 2012; Zanolie & Crone, 2018). Performance in prospective tasks that 

are particularly demanding might therefore be specifically impaired in adolescents, compared to adults 

(Altgassen et al., 2014; Bowman et al., 2015; Kliegel et al., 2013; Mahy et al., 2014). For example, 

adolescents have poorer PM performance than adults on tasks that use non-focal cues (Altgassen et al., 

2014; Wang et al., 2011; Zöllig et al., 2007). In contrast, manipulation of cue salience to lessen cognitive 

demands can reduce age-related differences as has been shown in children (Kliegel et al., 2013) and also 

older adults (Altgassen et al., 2010). 

Specifically, developmental differences in PM performance might be related to an immature ability to 

sustain cognitive control in adolescence, as it has been suggested adolescent participants rely more on 

reactive strategies than do adults in some contexts (Andrews-Hanna et al., 2011; Munakata et al., 2012), 

although see Magis-Weinberg et al. (2019) for evidence of flexible reactive and proactive control 

engagement in adolescence.  This imbalance might impact the ability to monitor for PM cues, as salient 

and non-salient cues may recruit reactive and proactive control differentially and particularly challenge 

developing adolescent cognitive resources. Another driver of developmental differences may be 

orientation towards the future, which matures during adolescence (Steinberg et al., 2009) and has 

previously been shown to enhance PM function in adolescents (Altgassen et al., 2017) and adults 

(Altgassen et al., 2014). 

The second aim of this study was therefore to directly test whether adolescents differed from adults in 

their ability to flexibility recruit proactive and reactive control of prospective memory as a function of 

cue salience, and whether age-related differences may be accounted for by developmental differences 

in executive functioning or future orienting.  

Neural bases of PM  
In adults, PM performance is robustly associated with a series of frontoparietal regions (for a review see 

Burgess, Gonen-Yaacovi, & Volle, 2011; Cona et al., 2015). The rostrolateral prefrontal cortex (RLPFC), 

approximating Brodmann area (BA) 10 has been the main region implicated in intention maintenance 

(Burgess et al., 2007; Gilbert et al., 2006). The dorsolateral prefrontal cortex (DLPFC) and precuneus 

have been associated with monitoring (Kalpouzos et al., 2010; McDaniel et al., 2013), while more ventral 

frontoparietal and temporoparietal networks have been related to PM cue attention capture and 

intention retrieval (Beck et al., 2014; Kalpouzos et al., 2010; McDaniel et al., 2013). Cue detection and 
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intention retrieval have been associated with transient activity in the anterior cingulate cortex (ACC), 

posterior cingulate cortex (PCC) and temporal cortex (Beck et al., 2014; Gilbert et al., 2006, 2012; 

Gonneaud et al., 2014; Rusted et al., 2011). The anterior insula is frequently associated with prospective 

memory, with reports of both sustained and transient activation (Beck et al., 2014; Gilbert et al., 2009; 

Rea et al., 2011; Simons et al., 2006), suggesting a role in cue monitoring as well as increased cue 

salience (Cona et al., 2015).  

A few studies using electrophysiology across the life span report differences with age in behavioural 

measures of PM and differences in neural activity measured through electroencephalography (EEG) 

between children, adolescents and adults (Mattli et al., 2011; Zöllig et al., 2007). Event-related 

potentials (ERPs) generated in PM error trials have different sources in children and adolescents 

compared to adults. This suggests that various processes might have contributed to PM errors in 

younger participants (Mattli et al., 2011; Zöllig et al., 2007). Bowman and colleagues (2015) described 

development of two key PM ERP components (N300 and parietal positivity) across the whole range of 

adolescence (age 12 to 19 years) in an ongoing task of lexical decision with PM targets cued by different 

coloured stimuli. They did not find age differences in N300 amplitude, but the parietal positivity was 

higher for the youngest (12-13 years) compared to the oldest adolescent group (18 -19 years), 

suggesting that cognitive processes associated with parietal positivity, such as general cognitive control 

capacities and working memory, are still developing.  

Functional magnetic resonance imaging (MRI) neural correlates of PM function in adolescence remain 

insufficiently investigated (Dumontheil, 2014). However, studies investigating other aspects of cognitive 

control related to PM, such as abstract processing, integration and coordination of information have 

shown protracted development of their neural correlates in the RLPFC and parietal cortex during 

adolescence (Dumontheil, 2014; Dumontheil et al., 2008). This led us to hypothesise that adolescents 

would show poorer PM performance and associated differences in brain activity compared to adults. As 

for the behavioural measures, we further investigated whether developmental differences in PM may be 

related to developmental differences in executive function, using tasks previously shown to be sensitive 

to development during adolescence (Digit Span task for working memory, Go/No Go task for inhibitory 

control). 

The present study 
Here, we adapted an event-based PM paradigm designed by Simons et al. (2006) to focus on cue 

identification. In this version of the task, we kept intention retrieval demands constant, but manipulated 
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cue salience, which is thought to modulate the degree of strategic, proactive monitoring, to investigate 

proactive and reactive processes in PM. The DMC framework ties behavioural strategic monitoring with 

neural traces of proactive sustained cognitive control processes, and automatic retrieval to reactive 

transient cognitive control. Participants performed an ongoing task in which they indicated whether a 

triangle was to the left or right of another shape. Infrequent PM trials required pressing a different key if 

the shapes were the same colour (salient cue condition), or if they were a chess knight move apart (non-

salient cue condition). Our aims were to (1) investigate the effects of manipulating the salience of the 

cue on strategic monitoring and recruitment of proactive vs. reactive control, and (2) to test whether 

adolescents differed from adults in behavioural and neural measures of prospective memory, and in 

their ability to flexibility recruit proactive and reactive control as a function of cue salience. Behavioural 

data were analysed with a distribution modelling technique using Ex-Gaussian functions, which has been 

used to characterize sustained and transient PM-induced cost effects (Abney et al., 2013; Ball & Brewer, 

2017; Loft et al., 2014). A mixed block-event functional MRI (fMRI) design allowed us to investigate 

sustained and transient changes in blood oxygen-level dependent (BOLD) signal associated with 

intention maintenance across the task block and PM trials execution, respectively (Magis-Weinberg, 

Custers & Dumontheil, 2019).   

We predicted that non-salient PM cues would be associated with worse PM performance than salient 

cues (McDaniel & Einstein, 2000). In the neuroimaging data, we expected activations associated with 

prospective memory in the RLPFC, dorsolateral PFC and parietal cortex in adults (in line with Simons et 

al., 2006), and modulation of sustained and transient activity by cue salience, with greater sustained 

activation in the low cue salience condition, associated with greater proactive monitoring, and reversely 

greater transient activation during PM trials in the high cue salience condition, reflecting reactive 

control and bottom-up target detection processes. We predicted age-related differences in PM 

performance, with better performance in adulthood than adolescence. We explored to what extent age 

group differences in Ex-Gaussian parameters related to overall reaction time (μ parameter), variability (σ 

parameter) and abnormally slow responses (τ parameter) contributed to reaction time interference 

costs associated with maintaining an intention. We explored whether adolescents exhibited different 

patterns of sustained and transient activation. We expected adolescents may show greater engagement 

of reactive control than adults, reflected in greater transient activation in PM trials. Adults were further 

expected to show greater differences in proactive control as a function of cue salience, which would 

reflect greater flexibility in proactive control engagement as a function of task demands. Finally, we 

explored whether lab-based behavioural and neural indices of prospective memory associated with 
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“real-life” subjective reports of PM and retrospective memory (RM) (Smith, Del Sala, Logie, & Maylor, 

2000) and executive function failures (Buchanan et al., 2010), and whether neural and behavioural 

developmental differences in PM could be accounted for by developmental differences in executive 

functioning or future thinking.  

Method  

Participants 
Nineteen adults (9 females, 22 – 30 years old, M = 27.1 ± 1.9 years (SD)) and 28 adolescents (15 females, 

12 – 17, M = 14.6 ± 1.4) participated in the study. Data from two additional adolescents were not 

included in the analyses as they had less than three correct PM trials, and data from one additional adult 

participant were discarded due to technical problems with stimuli presentation during scanning. 

Participants did not have any developmental or neurological disorders and were recruited through 

advertising, social media, word of mouth and local participant volunteer databases. Participants were 

reimbursed £20 and their travel expenses for taking part in the study. This study was approved by the 

University College London Research Ethics Committee. Consent was obtained according to the 

Declaration of Helsinki, adults and the parents of adolescents provided written consent while adolescent 

themselves gave verbal consent. Adolescents and adults did not differ in their age-normed scores on the 

Vocabulary subtest of the Wechsler Abbreviated Scale of Intelligence II (WASI; Wechsler, 2011) 

(Madolescents = 67.2 ± 4.8 (SD); Madults = 65.0 ± 7.7; t(27.5) = 1.1, p = .29). 

Design and materials 

Shapes PM task  

We adapted the “shapes” experimental task from Simons et al. (2006). All prospective memory trials 

were given the same intention retrieval demands whereas the cues remained either salient or non-

salient. On each trial, two coloured shapes, a triangle and another shape, appeared in various positions 

in a 4 × 4 grid (Figure 1A). Each shape had one of six possible colours. In the ongoing task (OT), 

participants had to indicate whether the triangle shape was located to the left or the right of the other 

shape. In the salient cue PM condition, if the shapes were the same colour, participants had to press a 

third key (Colour PM). In the non-salient cue PM condition, participants had to press the third key if the 

shapes were one chess knight’s move away from each other (Knight PM). Responses were indicated by 

pressing one of three buttons on a handheld response box (right index finger = left, right middle finger = 

right, right thumb = PM trial). Shapes were never the same colour in the Knight PM condition, nor in a 

knight configuration in the Colour PM condition, to avoid competing cues and confusion for the 

participants. Each trial started with 500 ms of a fixation cross, followed by presentation of the stimulus 
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(the two shapes in the 4x4 grid) for a maximum of 3000 ms, followed by 250 ms of a fixation cross at the 

inter-trial interval. The tasks were self-paced to prevent instruction rehearsal (Burgess et al., 2003). 

An unrelated X task was used as an active baseline across all scanning runs (as in Simons et al., 2006). In 

this task, participants were asked to indicate as quickly as possible whether a series of X’s were shown 

on the 4x4 grid along a vertical or horizontal axis (Figure 1A). Reponses were given using the right index 

and middle finger keys. Vertical and horizontal X’s stimuli alternated. Each trial presented the stimulus 

(the row of X’s) until a response was made or for a maximum of 2000 ms. A fixation cross was shown 

during the inter-trial intervals, which varied randomly along a uniform distribution between 0 and 400 

ms. The tasks were programmed in Cogent (www.vislab.ucl.ac.uk/cogent_graphics.php) running in 

MATLAB (The MathWorks, Inc., Natick, MA). 

     Insert Figure 1 about here 

Procedure 

The tasks were administered in three runs (Figure 1B). All runs were preceded by instructions and a 

practice round. The first run consisted of “uncontaminated” OT trials without any expectation of a PM 

trial, as the PM conditions were not mentioned in the instructions of this first run. Two PM runs 

followed, one run containing “contaminated” OT trials and Colour PM trials (salient cue), and one run 

containing “contaminated” OT trials and Knight (non-salient cue) PM trials. The order of the PM runs 

was counterbalanced between subjects. Each run consisted of five blocks of approximately 29 s of the 

shapes task alternating with approximately 14 s of the unrelated X task, with a 2 s pause between blocks 

which displayed an indication of the nature of the upcoming block (“Triangle task”, “X task”, “Colour 

task” or “Knight task”). Given the self-paced nature of the design, participants differed in total number 

of completed ongoing trials. Blocks of the two PM runs included up to two PM trials, which appeared no 

earlier than after 10 s of OT, to ensure that the participant would be fully engaged in the ongoing task 

and to control for the time between PM trials of successive blocks. In total, 10 PM trials were presented 

per run for both adolescents and adults. On average, adolescents completed 110 OT trials in the 

uncontaminated run, 94 OT trials in the Colour run, and 84 OT trials in the Knight run. Adults completed 

113 OT trials in the uncontaminated run, 97 OT trials in the Colour run, and 88 OT trials in the Knight 

run.   

Other behavioural measures 

Participants completed the (1) Prospective and Retrospective Memory Questionnaire (PRMQ; Smith et 

al., 2000), (2) Future Orientation and Delayed Discounting Scale (FOS; Steinberg et al., 2009), and (3) 

http://www.vislab.ucl.ac.uk/cogent_graphics.php
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Webex, a web-based short self-report of executive functions  (Buchanan et al., 2010). Participants also 

completed a computerised simple Go/No Go task (Simmonds et al., 2008) in which a “Go” stimulus 

(green square) is presented in high frequency and requires a rapid, dominant, response, which needs to 

be inhibited when a less frequent “No Go” stimulus (red square) is shown (Humphrey & Dumontheil, 

2016). Lastly, participants were administered the Forward and Backward Digit Span task in which they 

were required to listen to a sequence of numbers and repeat them in the same or reversed order.1  

Image acquisition  

Functional data were acquired using the Center for Magnetic Resonance Research multiband echo 

planar imaging sequence (Xu et al., 2013) 2x acceleration, leak block on (Cauley et al., 2014) with BOLD 

contrast (44 axial slices with a voxel resolution of 3 × 3 × 3 mm covering most of the cerebrum; 

repetition time = 2 s; echo time = 45 ms; acquisition time = 2 s) in a 1.5 T MRI scanner with a 30-channel 

head coil (Siemens TIM Avanto, Erlangen, Germany). Functional images were acquired in three scanning 

runs lasting approximately 4 min each in which around 125 volumes were obtained (time and number of 

volumes varied per participant given the self-paced nature of the task). The first four volumes of each 

run were discarded to allow for T1 equilibrium effects. A T1-weighted Magnetization Prepared - RApid 

Gradient Echo (MPRAGE) with 2x GeneRalized Autocalibrating Partial Parallel Acquisition (GRAPPA) 

acceleration anatomical image lasting 5 min 30 s was acquired before the acquisition of the three shapes 

task functional runs for each participant.  

Data Analysis 

Behavioural data 

Mean RT and accuracy analyses 

Mean accuracy and RT data were analysed using mixed repeated measures ANOVA (rmANOVA). In all RT 

analyses we only used correct ongoing trials within 2.5 SDs of each participant’s mean, and excluded 

two trials after PM trial presentation, since participants might have still been engaged in PM processes 

(Ball & Brewer, 2017). First, the OT trials of the three runs were compared, using Run (Uncontaminated, 

Colour, Knight) x Age group (Adolescents, Adults) mixed rmANOVAs, to assess age group differences in 

ongoing task performance. Second, OT and PM trials of the PM runs were analysed with two within-

subjects factors (Run: Colour, Knight; Condition: OT, PM) and Age group (Adolescents, Adults) as a 

                                                           
1 In the scanner, participants completed the shapes task following the administration of two 8 min runs of a 
working-memory and reward task, for an unrelated study (Magis-Weinberg, Custers, & Dumontheil, 2019). 
Associated with the working memory and reward task study, participants completed computerised versions of the 
Behavioural Activation Scale (Carver & White, 1994) and Sensitivity to Punishment and Sensitivity to Reward 
Questionnaire (Torrubia et al., 2001). 
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between-subjects factor. This allowed us to assess whether age groups differed in PM trials 

performance, accounting for differences in ongoing task performance. Models were fitted in R (R 

Development Core Team, 2020) using the afex package (Singmann et al., 2020). Where necessary, 

Greenhouse-Geisser correction was employed for violation of sphericity and Tukey correction for 

multiple comparisons.  

Distributional RT analyses 

In addition to typical analyses of RT means, modelling RT distribution has been proposed as a useful 

technique to better characterize underlying profiles of cognitive control dynamics related to different 

processes (for details see Ball et al., 2015; Ball & Brewer, 2017). In PM, Ex-Gaussian parameters can help 

investigate processes underlying monitoring and better reflect whether slower RTs are observed across 

task conditions (e.g., continuous monitoring, associated with the μ parameter), or whether a particular 

task condition has greater relative frequency of slower RTs (e.g., transient monitoring, associated with 

the τ parameter).  We applied the Ex-Gaussian model to the ongoing task trials RT data, using Quantile 

Maximum Probability Estimation (QMPE) software (Heathcote et al., 2004) to obtain parameters 

estimates (μ, τ, σ) for each participant, separately for Uncontaminated, Colour and Knight runs, using 

the maximum possible number of quantiles (N-1). Acceptable model fits were obtained within 30 

iterations for all participants. Parameters estimates were then analysed using Run (Uncontaminated, 

Colour, Knight) x Age group (Adolescents, Adults) mixed rmANOVAs. Visualization of the differential 

impact of Ex-Gaussian parameters on RT can be achieved with vincentile plots of the raw RT distribution 

(Andrews & Heathcote, 2001; Balota & Yap, 2011). These plots were obtained separately for each run 

(Uncontaminated, Colour and Knight) by rank ordering raw RTs from shortest to longest for each 

individual and calculating the mean of the first 20%, the second 20%, and so forth.  

Individual differences analyses 

Exploratory Spearman correlations partialling out age were ran across age groups to assess whether 

measures of performance on the PM task (PM accuracy, PM RT, OT μ, OT τ and OT σ) were associated 

with experimental executive function measures and questionnaire measures of PM failures and future 

orientation using the psych package (Revelle, 2019).  In addition, to assess whether age-related 

differences in PM may be related to developmental differences in executive functioning or future 

orientation, original rmANOVAs were repeated with the inclusion, separately, of the forward digit score, 

backwards digit score, No Go accuracy or future orientation score as a mean centred covariate. 
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MRI data 

MRI data preprocessing 

MRI data were preprocessed and analysed using SPM12 (Statistical Parametric Mapping, Wellcome 

Trust Centre for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm/). Images were realigned to the first 

analysed volume with a second-degree B-spline interpolation to correct for movement during the run. 

The bias-field corrected structural image was coregistered to the mean, realigned functional image and 

segmented based on International Consortium for Brain Mapping (ICBM) tissue probability maps using 

Montreal Neurological Institute (MNI) coordinates. Resulting spatial normalisation parameters were 

applied to the realigned images to obtain normalised functional images with a voxel size of 3 x 3 x 3 mm, 

which were smoothed with an 8-mm full width at half maximum Gaussian kernel.  

Realignment estimates were used to calculate framewise displacement (FD) for each volume, which is a 

composite, scalar measure of head motion across the six realignment estimates (Siegel et al., 2014). 

Volumes with an FD > 0.9 mm were censored and excluded from general linear model estimation by 

including a regressor of no interest for each censored volume. No run met criteria for exclusion, which 

were more than 10 % of volumes censored or a root mean square (RMS) movement over the whole run 

greater than 1.5 mm. Adolescent and adult participants did not differ significantly in mean RMS 

rotational movement (adolescents = 0.17 ± 0.01 (SE), adults = 0.18 ± 0.01; p = .605). There were 

however age group differences in the mean number of censored scans (Madolescents = 0.61 ± 0.16, 

Madults = 0.14 ± 0.08; p = .013), and mean FD (Madolescents = 0.11 mm ± 0.01, Madults = 0.09 mm ± 0.01; p = 

.023), and mean RMS translational movement (Madolescents = 0.17 mm ± 0.02, Madults = 0.24 mm ± 0.03; p = 

.042), with more censored scans and greater mean FD, but lower RMS of translations in adolescents 

than adults. 

FMRI general linear model 

The volumes acquired during the three sessions were treated as separate time series. For each series, 

the variance in the BOLD signal was decomposed with a set of regressors in a general linear model 

(GLM) that examined sustained (block-related) and transient (event-related) activity during task 

performance. Three boxcar regressors represented sustained ongoing task activity during the five blocks 

of each run: Uncontaminated OT, OT in Colour PM run (“Colour OT”), and OT in Knight PM run (“Knight 

OT”). Two event-related regressors represented transient PM activity in correct trials only: Colour PM, 

Knight PM. Two additional event-related regressors represented transient activity in ten randomly 

selected OT trials in each session (two per block, occurring before the PM trials), to serve as a 

comparison for the PM trials. Other regressors included for each run in the GLM were: an event-related 

http://www.fil.ion.ucl.ac.uk/spm/
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regressor representing the start instructions of each block and another representing the end of each 

block (Dumontheil et al., 2011); a boxcar regressor representing blocks of the X task, which served as the 

baseline for comparison across runs; regressors representing censored volumes as covariates of no 

interest; and the mean over scans. Both block and event-related regressors were convolved with the 

canonical haemodynamic response function. The data and model were high-pass filtered to a cut-off of 

1/128 Hz. 

Second-level whole-brain analyses were performed to assess sustained and transient PM-related brain 

activation. A first set of analyses investigated the sustained effects of maintaining intentions and 

compared the [OT block – X task block] contrasts from each of the three runs: Uncontaminated, Colour 

and Knight. A second set of analyses investigated transient effects in PM trials and analysed the Colour 

PM trials and Knight PM trials event-related first-level contrasts using the randomly selected OT trials as 

baseline: [Colour PM trials – OT trials] and [Knight PM trials – OT trials]. These contrasts were then 

entered into two flexible factorial random-effects analyses using two factors of interest with the design 

Subject x Age group (Adolescent, Adult) x Run type (Uncontaminated OT, Colour OT, Knight OT) or Trial 

type (Colour PM, Knight PM), modelling Subject as a main effect (to account for the repeated-measure 

nature of the data) and the Age group x Block type or Age group x Trial type interaction.  

Sustained activation in Colour and Knight OT blocks compared to Uncontaminated OT blocks, transient 

activation in Colour and Knight PM trials, and differences between Colour and Knight tasks and the 

interactions with Age group were determined using the t statistic on a voxel-by-voxel basis. Statistical 

contrasts were used to create SPM maps thresholded at p < .001 uncorrected at the voxel level and 

whole-brain cluster family-wise-error (FWE) correction at p < .05 (corresponding to a minimum cluster 

size of 60 voxels for event-related analyses and 91 voxels for block-related analyses). Voxels surviving 

whole-brain FWE correction p < .05 at the voxel-level are also reported. All coordinates are given in MNI 

space. Region labelling was done using automatic anatomical labelling (Tzourio-Mazoyer et al., 2002). BA 

labelling of peak of activations was done using MRIcron (Rorden & Brett, 2000) (. Statistical maps for all 

whole-brain, voxel-wise analyses are available at: https://neurovault.org/collections/6073/.  

Whole-brain correlations were run using two sample t-tests with a single covariate in SPM. In a first 

series of analyses, the contrast images were the average of [Colour OT block – X task block in Colour run] 

and [Knight OT block – X task block in Knight run], representing sustained activation associated with PM 

in the contaminated run, and the covariates were mean accuracy and RT in PM trials, FOS and PRMQ 

(PM), and μ. In a second series of analyses, the contrast images were the average of [Colour PM trials – 

https://neurovault.org/collections/PHYLUULA/
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OT trials] and [Knight PM trials – OT trials], representing transient activation associated with PM, and 

the covariate was τ. 

Exploratory analyses 

As other studies suggest improvement in performance until 13 to 14 years (Altgassen et al., 2014; 

Bowman et al., 2015; Wang et al., 2006, 2011; Zöllig et al., 2007), two series of exploratory analyses 

were carried out. First, the adolescent sample was split into fourteen younger adolescents from 12 to 14 

years (M = 13.1, SD = 0.7) and fourteen older adolescents from 15 to 17 years (M = 15.5, SD = 0.5) and 

their behavioural and fMRI data were compared with those of adults. Second, associations with age as a 

continuous measure were assessed within the adolescent sample. 
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Results 

Behavioural results 

Accuracy and RT analyses of trial type and cue salience 

First analyses compared the OT trials of the three runs (Uncontaminated, Colour, Knight) in Run x Age 

group mixed rmANOVAs (Table 1). Adolescents (M = 93.7% (SE = 0.8)) were less accurate than adults (M 

= 96.7% (0.8)) (Figure 2A) but accuracy was not affected by the PM tasks. In contrast, RTs were slower in 

OT trials in the Knight run (M = 762 ms (16)) than the Colour run (M = 650 ms (16); t(36) = 5.8, p < .0001) 

and fastest in the Uncontaminated run (M = 584 ms (16); t(36) = 9.9, p < .0001) (Figure 2B). There was 

no main effect of Run on accuracy, main effect of Age group on RT, or Run x Age group interaction on 

either accuracy or RT. Exploratory analyses indicated that the difference in accuracy between age groups 

was driven by trend-level poorer performance in younger (M = 94.6% (1.0), t(44) = 2.2, p = .08) and older 

adolescents (M = 93.9% (1.1), t(44) = 2.4, p = .05) than adults (M = 97.5% (1.0)). There was no significant 

effect or interaction of age (as a continuous predictor) within the adolescent sample for either accuracy 

or RT (all F’s < 0.2 and p’s > .15). 

 

Table 1: Statistical results of the behavioural age group analyses. Non-significant effects are put in square brackets. 

OT = ongoing task; PM = prospective memory. 

Measure Effects Age group: Adolescents, Adults Age group: Younger adolescents, 
Older adolescents, Adults 

Ongoing task trials: Run (Uncontaminated, Colour, Knight) x Age group 

Accuracy Age group F(1,45) = 7.3, p = .01, ηG
2 = .11 a F(2,44) = 3.7, p = .03, ηG

2 = .12 a 

Run [F(1.5,67.4) = 1.6, p = .33] [F(1.5,66.1) = 0.8, p = .43] 

Age group x Run [F(1.5,67.4) = 0.5, p = .55] [F(3,66.1) = 0.4, p = .76] 

RT Age group [F(1,45) = 2.6, p = .11]  [F(2,44) = 1.5, p = .25] 

Run F(1.2,51.6) = 96.1, p < .001, ηG
2 = .31 F(1.2,50.4) = 102.2, p < .001, ηG

2 = .33 

Age group x Run [F(1.5,51.6) = 1.3, p = .26] [F(2.3,50.4) = 0.9, p =  .44] 

Run (Colour, Knight) x Trial type (OT, PM) x Age group  

Accuracy Age group F(1,45) = 8.9, p = .005, ηG
2 = .06 a F(2,44) = 6.9, p < .002, ηG

2 = .09 a 

Trial type F(1,45) = 135.4, p < .001, ηG
2 = .43 F(1,44) = 148.5, p < .001, ηG

2 = .44 

Age group x Trial type [F(1,45) = 1.4, p = .25] F(2,44) = 4.2, p = .02, ηG
2 = .04  

Run [F(1,45) = 2.9, p = .10] [F(1,44) = 2.9, p = .09] 

Age group x Run [F(1,45) < 0.1, p = .86] [F(2,44) < 0.1, p = .98] 

Trial type x Run [F(1,45) = 2.0, p = .25] [F(1,44) = 2.0, p = .17] 

Age group x Run x Trial 
type 

[F(1,45) < 0.1, p = .97] [F(2,44) < 0.1, p = .99] 

RT Age group F(1,45) = 4.5, p = .04, ηG
2 = .07 b  [F(1,44) = 2.6, p = .09] 

Trial type F(1,45) = 183.1, p < .001, ηG
2 = .17 F(1,44) = 200.1, p < .0001, ηG

2 = .18 

Age group x Trial type F(1,45) = 5.5, p = .02 , ηG
2 = .006 a F(2,44) = 4.2, p = .02 , ηG

2 = .009 a 
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Run F(1,45) = 59.9, p < .001, ηG
2 =.19 F(1,44) = 61.9, p < .001, ηG

2 =.21 

Age group x Run [F(1,45) = 0.7, p = .41] [F(2,44) = 0.3, p = .71] 

Trial type x Run F(1,45) = 12.8, p < .001, ηG
2 = .008 F(1,44) = 9.9, p = .003, ηG

2 = .006 

Age group x Run x Trial 
type 

[F(1,45) = 0.2, p = .64]  [F(2,44) = 1.3, p = .30] 

a Effect remained significant when forward digit score, backwards digit score, No Go accuracy or future orientation score were 
included as a centred covariate. 
b Effect became non-significant when forward digit score, backwards digit score, No Go accuracy or future orientation score 
were included as a centred covariate. 

 

The second set of analyses compared PM and OT trials in the two PM runs in Run (Colour, Knight) x Trial 

type (PM, OT) x Age group mixed rmANOVAs. Participants were more accurate on OT trials (M = 95.5% 

(1.2)) than PM trials (M = 76.5% (1.2)), and adolescents (M = 83.2% (1.3)) were again overall less 

accurate than adults (M = 88.5% (1.3)) (Table 1), but there was no main effect of run or significant two 

or three-way interaction (Figure 2A). Exploratory analyses comparing younger and older adolescents to 

the adult group demonstrated that the main effect of age group was driven by younger adolescents (M 

= 81.8% (1.5)), who were less accurate than adults (M = 89.0% (1.4); t(44) = 3.7,  p = .0017), while older 

adolescents had intermediary accuracy (M = 86.6% (1.6)) and did not differ from younger adolescents or 

adults (p’s ≥ .10).  In addition, there was a significant Trial type x Age group interaction indicating that 

younger adolescents were less accurate in PM trials than older adolescents (ΔM = 9.9% (3.0), t(87) = 3.3, 

p = .003) and adults (ΔM = 11.2% (2.6), t(87) = 4.2, p = .0001) but did not differ from older adolescents 

on OT trials (p’s > .43). Older adolescents and adults did not differ on either PM or OT trials (p’s > .41). 

Consistent with these age group analyses, exploratory analyses within the adolescent group showed a 

significant linear increase in accuracy with Age (F(1,26) = 5.09, p  = .03, ηp
2 = .05), however the Trial type 

x Age interaction was not significant (F(1,26) = 0.02, p = .89). 

For RT data (Table 1) participants were faster on OT trials (M = 709 ms (18)) than PM trials (M = 834 ms 

(18)), and faster in the Colour (MColour = 703 ms (19)) than the Knight run (M = 839 ms (19)). In addition, 

the interaction between Trial type and Run was significant: the difference between Knight and Colour 

runs was greater for PM trials (ΔM = 159 ms (19)) than for OT trials (ΔM = 111 ms (18)) (Figure 2B). 

Adolescents (M = 809 ms (25)) were slower than adults (M = 733 ms (25)); but a significant Trial type x 

Age group interaction indicated that the age group difference was driven by PM trials (ΔM = 97 ms (37), 

t(51.1) = 2.6, p = .01), with no difference in OT trials (ΔM = 53 ms (37), t(51.1) = 1.5, p = .15) (Figure 2B). 

Neither the interaction between Run and Age group nor the three-way interaction was significant. 

Exploratory analyses with the split adolescent groups showed similar results. While the main effect of 

Age group did not reach significance (Table 1), the interaction between Trial type and Age group showed 



17 
 

that younger adolescents were significantly slower than adults on PM trials (ΔM = 120 ms (41), t(49.7) = 

2.9, p = .02) but not on OT trials (ΔM = 61 ms (41), t(49.7) = 1.5, p = .31). Older adolescents did not differ 

from either age group on either type of trials (all p’s > .38). Exploratory analyses within the adolescent 

group revealed no main effect of age (as a continuous predictor) or interactions with age (all F’s < 3.1 

and p’s > .09).  

Insert Figure 2 about here 

  

Ex-Gaussian analyses  

Ex-Gaussian analyses focused on the ongoing task RT data (Table 2). Run (Uncontaminated, Colour, 

Knight) x Age group (Adolescents, Adults) mixed rmANOVA revealed a main effect of Run for all three 

estimates (Table 2), but with different patterns. μ estimates were higher in the Knight than the Colour 

run (t(90) = 7.2, p = .007), and higher in both Knight (t(90) = 10.3, p < .0001) and Colour (t(90) = 3.1, p < 

.0001) than in the Uncontaminated run. There was therefore a modal shift of the overall RT distribution 

(μ) in ongoing trials of the PM runs that was greater in the Knight task than the Colour task (Figure 3).  τ 

was higher in the Knight than the Uncontaminated run (t(90) = 2.6, p = .025), and there was a trend for 

higher τ for the Colour than the Uncontaminated run (t(90) = 2.3, p = .054), but no difference between 

Knight and Colour runs (t(90) = 0.31, p = .94).  Colour and Knight tasks were therefore associated with a 

similar increased frequency of slow RTs (Figure 3).  σ estimates were higher in the Knight run than the 

Uncontaminated (t(90) = 7.3, p < .0001) and Colour runs (t(90) = 6.9, p < .0001), with no difference 

between Colour and Uncontaminated runs (t(90) = 0.3, p = .93), suggesting increased overall variability 

in the Knight ongoing task. There were no significant main effects of Age group or Run by Age group 

interaction (p’s > .08), except for the τ estimate. A main effect of Age group (F(1,45) = 7.7 p  = .008, ηG
2 = 

.08) indicated that adolescents had more frequent slow RTs (higher τ estimates, M = 115 ms (SE = 7)) 

than adults (M = 87 ms (7)). Exploratory analyses with the split adolescent groups indicated age group 

differences were driven by the younger adolescents. There was a main effect of Age group (F(2,44) = 7.1 

p  = .002, ηp
2 = .14): younger adolescents had overall higher τ estimates (M = 125 ms (8)) than older 

adolescents (M =  96 ms (8); t(90) = 3.7, p = 0.001) and adults (M = 82.2 (7.9); t(90) = 2.3, p = 0.05), while 

older adolescents and adults did not differ (t(44) = 1.2, p = .47). Exploratory analyses within the 

adolescent group revealed no significant main effect of age or interaction between Run and Age (all F’s < 

4.1 and p’s ≥ .05), although, consistent with the three age groups analyses, the effect of age on τ was at 

trend level (F(1,26)= 4.1, p = .05). 
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Table 2. Results of the Ex-Gaussian analyses of the ongoing trials RT data.  
 

 Uncontaminated 
run 
Mean (SE) 

Colour run  
Mean (SE) 

Knight run 
Mean (SE) 

Main effect of Run 

RT (ms) 584 (16) 650 (16) 762 (16) F(1.2,51.6) = 96.2, p < .001, ηG
2 = .31 

μ (ms) 497 (15) 544 (15) 653 (15) F(1.2,53.7) = 55.9, p < .001, ηG
2 = .29 

τ (ms) 87 (7) 106 (7) 109 (7) F(1.4,60.9) = 4.2, p < .03, ηG
2= .04 

σ (ms) 51 (5) 52 (5) 96 (5) F(1.3,58.2) = 33.6, p < .001, ηG
2= .27 

 

Insert Figure 3 about here 

 

Other behavioural measures of executive function, prospective memory failures and future orientation 

Adults had higher backwards digit span scores than adolescents and there was a trend for greater future 

orientation in adults than adolescents. The other measures did not show age group differences (Table 

3).  Spearman correlation analyses partialling out age showed that PM accuracy was negatively 

associated with Webexec (r = -.34, p = .02) and PRMQ (PM) (r = -.32, p = .03) scores, which are indices of 

executive functioning and PM failures in daily life, respectively. Correlations between PM RT, OT μ, OT τ, 

and OT σ and questionnaire measures of executive functioning and PM and future orientation were not 

significant (all p’s > .21).  

Table 3. Behavioural measures of executive functions, prospective memory and future orientation. Summary 
statistics of measures collected in adolescent and adult participants. The possible range for each measure is given 
in brackets. FOS: Future Orientation Scale; PM: prospective memory; PRMQ: Prospective and Retrospective 
Memory Questionnaire; RM: retrospective memory.  

 Adolescents 
Mean (SE) 

Adults 
Mean SE) 

Age group comparison 

Prospective memory a 

PRMQ (PM subscale) (8 – 40) 

PRMQ (RM subscale) (8 – 40) 

 

22.0 (0.7) 

19.1 (0.9) 

 

20.6 (0.8) 

19.4 (0.9) 

 

t(45) = 1.4, p = .17 

t(45) = 0.3, p = .76 

Future orientation 

FOS (1 – 4)b 

 

2.9 (0.1) 

 

3.1 (0.1) 

 

t(43)d = 1.9, p = .06 

Executive functions    
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Webexec (6 – 24)c  13.5 (0.5) 12.8 (0.7) t(45) = 0.9, p =.42 

Forward digit span score (1 – 22) 16.8 (0.7) 18.2 (0.8)  t(45) = 1.4, p = .18 

Backward digit span score (1 – 22) 9.0 (0.6) 12.2 (0.8) t(44) = 3.5, p = .001 

No Go accuracy (%) 87.7 (1.7) 91.2 (2.1) t(45) = 1.4, p = .16 

a Higher scores indicate more prospective and retrospective memory failures 
b Higher scores indicate stronger future orientation 
c Higher scores indicate more executive functioning failures 
d One adolescent participant did not complete the backwards digit span task 

 

To assess whether observed developmental differences in PM task measures may have been related to 

developmental differences in executive functioning or future orientation, the rmANOVAs ran above 

which showed significant main effects or interactions with age group (Adolescents, Adults) were 

repeated with the inclusion, separately, of the forward digit score, backwards digit score, No Go 

accuracy or future orientation score as a centred covariate. Results showed that the significant main 

effects of age on accuracy and interactions of age group with Run and Trial type on RT remained 

significant when these covariates were included. However, the main effect of age group on RT in 

contaminated runs, which indicated slower RTs in adolescents than adults across OT and PM trials, 

became non-significant when forward digit score, backwards digit score, No Go accuracy or future 

orientation were entered as a covariate (Table 1). 

 

Neuroimaging results 

Intention maintenance 

Sustained activation during the ongoing task blocks were compared between runs, using blocks of the X 

task, common across runs, as a baseline, for all comparisons. Compared to OT blocks in the 

Uncontaminated run, ongoing task blocks in the Colour run were associated with higher BOLD signal in a 

large cluster in the right hemisphere with peak activation in the insula, extending into the right lateral 

middle frontal gyrus cluster and rostrally into the frontal pole. The left insula/frontal operculum also 

showed increased BOLD signal in this contrast, as well as the left fusiform gyrus and the left cerebellum. 

The other observed clusters were bilateral and located in the inferior parietal lobules and along the 

medial wall in the pre-supplementary motor area (pre-SMA) (Table 4, Figure 4A). 
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Ongoing task blocks in the Knight run exhibited similar but greater overall activation than in the Colour 

run when compared to the Uncontaminated run. The right frontal and bilateral parietal clusters were 

larger and the latter extended to the medial wall and into the middle occipital gyri. There was also an 

additional cluster in the left precentral gyrus (Table 4, Figure 4B). 

Comparing Colour OT blocks to Knight OT revealed higher activation in bilateral angular gyri, left 

supramarginal gyrus and in a cluster in the superior medial frontal cortex, reflecting less decreases in 

BOLD signal compared to X-task baseline blocks in the Colour run than the Knight run (Table 4, Figure 

4C). Comparing Knight OT blocks to Colour OT revealed higher activations of the right superior frontal 

gyrus and bilateral superior and inferior parietal lobules, in regions that showed overall greater 

activation in the contaminated than the uncontaminated runs, and greater activation in OT task blocks 

than X task blocks (Table 5, Figure 4D).  

Table 4. Sustained neuroimaging results across age groups. Coordinates and t-values are listed for regions showing 
a significant difference in sustained BOLD signal for [Colour ongoing task (OT) block > Uncontaminated OT block], 
[Knight OT block > Uncontaminated OT block], and the comparison between the two. Blocks of the X-task were 
used as a baseline common across runs. BA = Brodmann area; L/R = left/right hemisphere; SMA = supplementary 
motoro area.  
 

Region L/R Extent t-value x y z BA 

Colour OT > Uncontaminated OT 

Insula R 1111b 8.21a 33 26 2 47 

Inferior frontal gyrus 
(operculum) 

R  7.16a 42 8 29 44 

Middle frontal gyrus R  5.82a 39 2 53 6 

Pre-SMA R 218b 6.09a 6 20 50 8 

Inferior parietal lobule L 505b 5.90a -45 -37 50 40 

Superior parietal lobule L  5.32a -27 -64 56 7 

Inferior parietal lobule R 546b 5.64a 33 -55 53 7 

Supramarginal gyrus R  5.26a 45 -34 44 40 

Insula L 147b 5.45a -30 26 -1 47 

Cerebellum L 186b 4.99a -6 -79 -19  

Cerebellum L  4.87a -27 -73 -22  

Knight OT > Uncontaminated OT 
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Inferior parietal lobule L 1515b 10.56a -45 -37 47 40/2 

Superior parietal lobule L  9.92a -15 -67 56 7 

Middle occipital gyrus L  6.81a -27 -70 29 19 

Supramarginal gyrus R 1944b 9.90 a 39 -37 44 40 

Superior parietal lobule R  9.26 a 27 -64 53 7 

Middle occipital gyrus R  5.87 a 33 -79 14 19 

Insula R 1703b 9.79 a 33 26 2 47 

Precentral gyrus R  9.19 a 45  8 29 44 

Middle frontal gyrus R  6.54 a 33  2 59 6 

Inferior frontal gyrus L 162b 7.38 a -30 20 -1 47 

Pre-SMA R 295 b 7.21 a 6 20 50 8 

Inferior frontal gyrus 
(operculum) 

L 189 b 6.88 a -42 5 26 44 

Inferior temporal gyrus R 751 b 6.75 a 48 -52 -7 37 

Fusiform L  6.42 a -30 -73 -19 19 

Cerebellum L  5.91 a -9 -79 -19  

Superior frontal gyrus L 244 b 6.29 a -24 2 62 6. 

Colour OT > Knight OT 

Mid cingulate cortex L 365 b 4.83 a -12 -49 35 23 

Mid cingulate cortex   3.97  0 -22 41 23 

Mid cingulate cortex R  3.93 12 -46 35 23 

Angular gyrus R 191 b 4.83 a 57 -58 35 39 

Angular gyrus R  4.07 45 -67 50 39 

Superior frontal gyrus L 108 b 4.68 -15 41 47 1 

Angular gyrus L 159 b 4.62 -45 -70 44 39 

Supramarginal gyrus L  3.71 -60 -55 32 40 

Knight OT > Colour OT 

Precuneus L 2067 b 7.37 a -15 -67 56 7 

Superior parietal lobule R  6.79 a 18 -61 56 7 

Supramarginal gyrus R  6.60 a 36 -40 44 40 
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Superior frontal gyrus R 95 b 4.63 24 8 56 6/8 
a Voxel significant at pFWE < .05. b Cluster significant at pFWE < .05, with a cluster-defining threshold of p < .001 
uncorrected at the voxel level. 

 

Insert Figure 4 about here 

 

PM trial execution  

Transient effects during PM trials were investigated by contrasting event-related changes in BOLD signal 

during PM trials to a randomly selected subset of OT trials performed within the same run. Colour PM 

trials were associated with strong activation along the precentral and postcentral gyri bilaterally, 

extending into the supramarginal gyri, frontal activation in the left inferior and middle frontal gyri, and 

bilateral anterior insula, and activation along the medial wall in clusters in the mid-cingulate cortex and 

pre-SMA or SMA, as well as in the right middle temporal gyrus (Table 5, Figure 5). Knight PM trials were 

associated with a similar but broader network of brain regions, with additional clusters in the frontal 

cortex bilaterally and in the right parietal and temporal cortex.  A more conservative threshold of p < 

.0001 uncorrected at the voxel-level was used to differentiate the clusters observed in this contrast 

presented Table 5 and Figure 5. There was bilateral activity in the frontal poles (RLPFC) which extended 

posteriorly into inferior and middle frontal gyri including DLPFC and VLPFC. There was activation of 

bilateral AI. On the medial wall, there was activation that extended from the anterior cingulate cortex to 

the SMA and mid-cingulate cortex. In the parietal lobes, bilateral superior and inferior activation was 

observed, as well as precentral and postcentral gyri activation. Finally, there was activation of the right 

middle temporal gyrus, as well as of subcortical structures: the caudate and putamen. No regions 

showed an impact of cue salience, i.e. differences in event-related BOLD signal between Colour PM and 

Knight PM trials, when controlling for contaminated OT trials.  

Insert Figure 5 about here 

Table 5. Transient neuroimaging results across age groups. Coordinates and t-values are listed for regions showing 
a significant difference in transient BOLD signal between Colour prospective memory (PM), Knight PM and ongoing 
task (OT) trials. BA = Brodmann area; L/R = left/right hemisphere; SMA = supplementary motor area  

Region L/R Extent t-score x y z BA 

Colour PM trials > Colour OT trials 

Postcentral gyrus L 1489 b 7.45a -60 -22 41 3 

Precentral gyrus L  6.61 a -33 -22 71 6 
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Postcentral gyrus L  6.13 a -48 -31 59 3/2 

Insula R 158 b 5.76 a 36 17 -1 48 

Postcentral gyrus R 574 b 5.60 a 57 -22 53 3 

Postcentral gyrus R  4.48 60 -16 32 43 

Postcentral gyrus R  4.43 42 -40 62 2 

Mid cingulate cortex L 274 b 4.98 -9 5 38 24 

SMA R  3.99 3 11 62 6 

Superior frontal gyrus R 94 b 4.95 33 -7 65 6 

Mid temporal gyrus R 166 b 4.84 48 -25 -7 21 

Mid temporal gyrus R  4.47 57 -43 2 22 

Precentral gyrus R 80 b 4.76 57 11 32 6/44 

Middle frontal gyrus L 99 b 4.46 -36 41 29 46 

Mid cingulate cortex L 72 b 4.23 -12 -28 47 23 

SMA R  3.96 9 -22 47 23 

Knight PM trials > Knight OT trials 

Insula R 3243b 7.82 a 39 17 -1 48 

Mid temporal gyrus R  6.87 a 57 -40 2 22 

Middle frontal gyrus R  6.61 a 42 50 8 46/10 

Postcentral gyrus L 1476 b 6.14 a -45 -28 50 3 

Postcentral gyrus L  6.01 a -57 -19 35 48 

Precentral gyrus L  5.25 -33 -22 71 6 

Mid cingulate cortex R 1379 b 6.35 a 9 29 32 32 

Mid cingulate cortex L  5.52 a 0 -10 32 23 

SMA R  4.87 6 17 56 6 

Insula L 700 b 9.40 a -33 20 -7 47 

Insula L  5.44 a -36 -1 2 48 

Middle frontal gyrus L 444 b 5.59 a -33 47 17 5 

Middle frontal gyrus L  5.13 -39 32 35 46 

Precentral gyrus L  4.70 -45 5 44 6 

Fusiform gyrus R 269 b 5.27 24 -58 -16 37 
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Vermis   3.83 3 -67 -28  

Caudate R 100 b 5.61 a 12 2 17  

Thalamus R  3.84 9 -19 8  

a Voxel significant at pFWE < .05. b Cluster significant at pFWE < .05 at the cluster level, with a cluster-defining 
threshold of p < .001 uncorrected at the voxel level for the Colour PM trials > Colour OT trials, and p < .0001 
uncorrected for the Knight PM trials > Knight OT trials contrast. This more stringent contrast was used to better 
differentiate the observed clusters.  

 

Age group differences 

Adolescents and adults did not show differences in patterns of activation in any of the sustained or 

transient BOLD signal changes contrasts.  Exploratory analyses comparing the younger, older adolescent 

and adult groups showed greater activation in the young adolescent group compared to the adult group 

in PM trials than in contaminated OT trials in a posterior cluster (119 voxels) located in the right fusiform 

([36, -52, -13], BA 37, t = 5.24), inferior temporal gyrus ([48, -49, -7], BA 17, t = 4.54) and inferior 

occipital gyrus ([36, -67, -10], BA 19, t = 3.99) (Figure 6). There were no other significant differences 

between these age groups. Additional exploratory analyses assessed whether brain activation was 

associated with age as a continuous measure in the adolescent sample. No significant associations were 

observed. 

Insert Figure 6 about here 

Covariate analyses 

Whole-brain analyses were performed to investigate correlations between the self-reported measure of 

FOS, PRMQ (PM) and μ and sustained BOLD signal during contaminated trials in OT blocks (averaging 

across cue salience), and τ and transient BOLD signal during PM trials. No significant association was 

observed. 
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Discussion 
We examined the impact of cue salience on event-based prospective memory and whether differences 

exist between adolescents and adults. To characterise sustained and transient processes associated with 

prospective memory, we supplemented analyses of mean indices of performance. We used Ex-Gaussian 

modelling of RT distribution to distinguish patterns of slowing associated with PM interference. We also 

used a mixed block/event-related fMRI design, which allowed the investigation of sustained effects 

associated with maintaining PM intentions, and transient effects associated with PM trial execution. We 

show that adults remember to execute delayed intentions better than young adolescents and provide 

some evidence that this ability develops somewhat across the adolescent age range in this study (12 – 

17 yo). High cue salience facilitated prospective memory performance and influenced sustained 

activation during the ongoing task. However, contrary to predictions, cue salience did not interact with 

age. Adolescents and adults showed similar modulation of performance and neural activity by cue 

salience, and broadly similar behavioural and neural correlates of PM. 

Behavioural results 

PM intention maintenance (OT trials) 

In comparison to the uncontaminated run, intention maintenance throughout contaminated runs was 

associated with slower mean RTs, but similar accuracy. We manipulated one of the main retrieval-based 

factors, cue salience, to explore the underlying cognitive processes related to its facilitation effect on 

performance. The two PM conditions were designed to elicit a greater need for proactive monitoring of 

the Knight PM cues than the Colour PM cues, and, reversely, the possibility to rely to a greater extent on 

reactive control for the detection of the salient Colour PM cues. Consistent with the task design, 

monitoring costs varied as a function of cue salience, with relatively slower RTs for ongoing trials of the 

Knight run, with non-salient PM cues, than the Colour run, with salient PM cues. There was no 

difference in OT accuracy between PM conditions.  This suggests that non-salient cues had higher 

intention maintenance and cue monitoring demands that detracted from speed, but not accuracy, 

performance of the ongoing task. To the extent that perceptually salient cues can elicit an orienting 

response (Kliegel et al., 2013, McDaniel & Einstein, 2000) they can be more reliant on bottom-up 

attentional processes (Smith, 2003; Smith & Bayen, 2004), reducing the need for controlled monitoring. 

In contrast, low cue salience can cause shifts towards the use of proactive above reactive control 

mechanisms, as more strategic monitoring (versus automatic retrieval) is needed for successful 

performance.  
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Mean RT interference costs have been well documented in PM paradigms (Smith, 2003) and can been 

interpreted as evidence for monitoring activities in the context of competition for limited cognitive 

control resources (Altgassen et al., 2017). Alternative interpretations posit that increased latencies can 

be related to target-checking strategies before and after the ongoing decision (Horn & Bayen, 2015), or 

that they could relate to lapses in attention (Ball & Brewer, 2017). 

Standard RT cost analyses were followed up with Ex-Gaussian distribution modelling, which has been 

suggested to differentiate between sustained (associated with the μ parameter) and transient PM-

induced cost effects (associated with the τ parameter) (Abney et al., 2013; Ball & Brewer, 2017; Loft et 

al., 2014). Intention maintenance was associated with an overall shift in the distribution (μ) which was 

highest for the condition with non-salient PM cues, and is reflective of the increased RTs described 

above. A μ cost has been proposed as an important indicator of slowing due to PM processes (Ball & 

Brewer, 2017), which suggests that sustained monitoring is particularly increased in ongoing trials of the 

Knight task, when the PM cue is less salient. However, the μ parameter was not correlated with 

sustained BOLD activity in the contaminated runs. A second parameter, σ, which captures variability of 

the normal distribution (Gmehlin et al., 2016; Vaurio et al., 2009), was increased in the Knight run 

compared to the Colour and Uncontaminated runs, which did not differ. This increased variability may 

reflect fluctuations in recruitment of proactive control and cue monitoring in this more demanding task. 

Increased σ has previously been observed in children with and without attention deficit and 

hyperactivity disorder (ADHD) when the complexity of a Go/No-go inhibitory control task was increased 

(Vaurio, et al. 2009). Sigma is also increased in ADHD vs. typically developing children, which has been 

interpreted as reflecting impaired response preparation (Vaurio et al., 2009). In contrast, τ was 

increased in the contaminated runs, but not sensitive to cue-salience, and not associated with transient 

BOLD changes. The greater frequency of slower RTs may be related to transient increases in periodical 

checking (Guynn, 2003; Scullin et al., 2013), or the fact that participants needed extra time on 

ambiguous trials to check whether the position of the two shapes matched a chess knight’s move. Tau 

has also been associated with lapses in attention both in children (Vaurio et al., 2009) and in adults with 

ADHD (Gmehlin et al., 2014). These Ex-Gaussian analyses suggest that a variety of mechanisms, related 

to proactive anticipation, lapses in attention, and reactive processes triggered by the cue are underlying 

differences in RT between uncontaminated and PM runs varying in PM cue salience.  

PM execution (PM trials) 

Participants were slower and less accurate for PM trials than OT trials, in line with similar performance 

differences observed by Simons et al. (2006). This pattern is consistent with the additional demands of 



27 
 

PM trials including cue identification, intention retrieval, inhibition of the ongoing task, and branching 

into subtasks necessary for successful performance. The slowing down observed for OT trials in the 

Knight run relative to the Colour run was larger for PM trials, i.e. participants were relatively slower to 

respond to non-salient PM cues than salient PM cues. There was no difference in accuracy. The current 

results align with reports of strong influence of cue manipulations on PM (Kliegel et al., 2013; McGann 

et al., 2003). For example, high PM cue salience has been demonstrated to enhance PM in younger 

adults (Brandimonte & Passolunghi, 1994; Einstein et al., 2005; Einstein & McDaniel, 1990), older adults 

(Altgassen et al., 2010), and children (Kliegel et al., 2013). Overall, our results are consistent with the 

well-documented facilitation effect of salient cues and suggest a variety of cognitive mechanisms 

underlie this effect, including strategic monitoring as well as spontaneous retrieval. 

Across age groups, PM accuracy was negatively correlated with PRMQ (PM), which assesses PM failures 

in daily life (Smith et al., 2000). Similarly, PM accuracy was negatively correlated with Webexec, 

indicating that more executive function failures were associated with lower PM accuracy. While these 

exploratory correlation analyses would need to be replicated in a larger sample, our results suggest that 

general executive functioning might be important individual traits associated with PM performance, as 

has been reported in adolescents (Robey et al., 2014) and adults (Gonneaud et al., 2011). 

Adolescent performance 

Adolescents were overall less accurate on the task, both on OT and PM trials, and had a greater 

frequency of particularly slow responses, as is indicated by higher τ in OT trials across conditions. These 

results were mostly driven by the younger adolescents in the sample. Combined, these results may 

reflect lapses in attention leading to a higher frequency of slower RTs and a higher frequency of errors in 

adolescents than in adults. This is consistent with findings that sustained attention continues to improve 

during adolescence (Brocki & Bohlin, 2004). 

Focusing on ongoing task trials, our results showed that adolescents and adults showed similar patterns 

of RT costs related to the maintenance of the PM intention, and PM cue salience effects on RT. These 

results suggest that the capacity to flexibly engage proactive and reactive control to maintain PM 

intentions and monitor for salient vs. non-salient PM cues are similar in adolescents than adults. High 

PM cue salience has been demonstrated to enhance PM in pre-school (Kliegel et al., 2013) and school-

aged children (Mahy et al., 2014) as well as in young and older adults (Brandimonte & Passolunghi, 

1994; Einstein & McDaniel, 1990, Altgassen et al., 2010). Here, we demonstrate similar enhancement 

effects of salient cues for both adolescents and adults. Contrary to our hypothesis, the interaction 
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between cue salience and age was not significant. Thus, the current study appears to suggest that there 

may be similar facilitation mechanisms driven by cue salience across adolescence and into adulthood. In 

line with results in children (Kliegel et al., 2013), cue salience might not be the key mechanism 

underlying prospective memory development.    

Previous studies did observe age differences in ongoing task performance. For example, lower accuracy 

in a contaminated ongoing task was reported in adolescents (13 – 16 years) compared to adults when 

the OT task had high, but not low cognitive demand (Ward et al., 2005). Similarly, 12 to 13-year-olds and 

14 to 15-year-olds had lower accuracy than 18 to 19-year-olds in a contaminated ongoing lexical 

decision task, where 12 to 13-year-olds were also slower than other age groups (Bowman et al., 2015). 

Exploratory analyses across the adolescent age range indicated that accuracy, but not RT, increased 

linearly with age in the contaminated runs. Integrating the results of the present study to this previous 

research suggests that differences in performance on contaminated ongoing task trials between 

adolescents and adults may only be observed when the demands of the ongoing task are high. Such a 

pattern of greater developmental differences in most challenging conditions has been observed for 

example in working memory tasks with greater developmental differences for greater working memory 

loads (De Luca et al., 2003). 

Looking at PM trials performance, again effects of cue salience on PM trials RT were similar in 

adolescents and adults. However, across cue salience conditions, adolescents, and specifically younger 

adolescents aged 12-14 years, showed lower accuracy and slower RT in PM trials, relative to OT trials.  

Previous studies investigating differences in PM performance between adolescents and adults have 

found mixed findings. There have been reports of increased PM performance with age between 

adolescence and adulthood in terms of accuracy (Altgassen et al., 2014; Wang et al., 2006, 2011; Zöllig 

et al., 2007) and RTs (Bowman et al., 2015), but also of improvements between childhood and 

adolescence, with no further maturation of PM after adolescence, especially for focal cues (Ward et al., 

2005; Zimmermann & Meier, 2006), and particularly after age 13 (Bowman et al., 2015). Our results are 

broadly in line with this literature and suggest that adult PM performance is reached in mid-

adolescence.  

 

PM and OT performance are usually not directly compared in other developmental studies. Although 

PM and OT trials are not directly equivalent, we believe comparing PM trials performance to OT trials 

may be useful to distinguish between general (e.g. changes in processing speed) and PM-specific 
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improvements with age and suggest that future studies could benefit from including this analysis. We 

did not find differences in self-reported prospective memory failures in real-life settings between 

adolescents and adults. However, to our knowledge, the PRMQ has only been used in adult populations 

in the past (Smith et al., 2000). Although the PRMQ was piloted in adolescent participants, and the 

questions were screened for age-appropriateness, further studies could more systematically investigate 

how suitable the PRMQ is to detect developmental differences. There was a trend for adolescents to 

score lower in the FOS compared to adults. These results are in the direction of the pattern typically 

observed in the literature (Steinberg et al., 2009), in which adults are more oriented towards the future 

than adolescents.  

Differences in executive functioning (forward and backwards digits span, No Go accuracy) and future 

orientation were found to partially explain non-specific RT differences between adolescents and adults 

on contaminated Runs across OT and PM trials. However, age group differences in accuracy and specific 

differences in RT and accuracy on PM compared to OT trials between adolescents and adults remained 

significant when accounting for these variables, suggesting that there are specific mechanisms of PM 

that are still maturing, independent of the maturation of working memory, inhibitory control and future 

orientation.  

 

Neuroimaging findings 

Sustained changes in BOLD signal: PM intention maintenance 

Intention maintenance was associated with sustained activity in regions implicated in PM, with 

activation in similar regions, but to varying strength, for salient and non-salient PM cues conditions. The 

current findings are robustly aligned with reports of regions which respond in a sustained fashion in PM 

task blocks, notably RLPFC, DLPFC, ACC, and inferior parietal lobe (McDaniel et al., 2013, 2015; Reynolds, 

West, & Braver, 2009).  Administration of PM instructions, which leads to the maintenance of an internal 

representation of the delayed intention as well as cue monitoring, was associated with sustained higher 

BOLD signal in the right rostral aspects of the lateral PFC, including BA 46 and extending into BA 10, the 

key region implicated in PM  (Burgess et al., 2003; Gilbert et al., 2006; Momennejad & Haynes, 2012; 

Simons et al., 2006). 

In addition, there was activation of the ACC, and of the DLPFC (BA 46) extending into superior frontal 

cortex (BA 44) as well as VLPFC (BA 47/45). These results are in line with the increased recognition of 

involvement of more extended frontoparietal networks in PM processes (Cona et al., 2015; McDaniel et 
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al., 2013). The anterior insula was also recruited in both hemispheres. Activity in these regions has been 

reported in other PM studies in non-focal tasks (Beck et al., 2014; Burgess et al., 2001; Gilbert et al., 

2006, 2009; Rea et al., 2011) suggesting a role of the anterior insula in cue monitoring (Cona et al., 2015; 

McDaniel et al., 2015). Overall, and in line with previous accounts, activation of DLPFC, bilateral anterior 

insula, and superior parietal lobule, may relate to preparatory processes that include maintaining the 

task set (e.g. instructions for PM trial) in anticipation of cues to enable goal pursuit in the dual-

mechanisms of control framework (Braver, 2012; Jiang et al., 2015; Magis-Weinberg et al., 2019). 

There was considerable overlap in neuroimaging results between the salient and non-salient PM cues 

conditions, consistent with behavioural evidence of interference costs in both runs. However, 

contamination with non-salient cues did recruit more extensive regions overall. There were greater 

increases in BOLD signal during OT Knight run than OT Colour run blocks in the superior parietal lobules 

bilaterally (BA 7 and BA 40), a region which has been implicated in encoding and maintenance/retrieval 

of PM intentions (Gilbert, 2011; Poppenk et al., 2010; Reynolds et al., 2009). The reverse contrast 

revealed a set of regions, namely the angular gyri, superior frontal gyrus and mid-cingulate cortex, which 

showed greater decreases in BOLD signal during OT Knight run than OT Colour run blocks. These regions 

are typically considered as part of the default mode network, which shows decreases in BOLD signal 

when task demands increase (Raichle, 2015), which fits with the results observed here.   We did not find 

an association between either PRMQ or FOS and average activity in contaminated runs across cue 

salience.  

Transient changes in BOLD signal: PM trials execution 

The RLPFC exhibited transient changes in BOLD signal during PM trials as has been described in previous 

fMRI studies, which have reported higher activity in RLPFC when participants either anticipate or 

encounter PM cues (Burgess et al., 2003; Reynolds et al., 2009; Simons et al., 2006). Additional transient 

activation for salient and non-salient PM trials was observed in ACC, bilateral anterior insula, precentral 

gyrus, middle frontal gyri, and superior parietal lobe, results that are in line with transient activations in 

a non-focal PM task that investigated proactive and reactive strategies (McDaniel et al., 2013). Along 

with activity in VLPFC (BA 45) and anterior insula (BA 47), these results might speak to the involvement 

of bottom-up attention processes captured externally by the PM cue (Cona et al., 2015). 

While Knight PM trials overall seemed to elicit more widespread changes in BOLD signal than Colour PM 

trials, no significant differences emerged, which may reflect that, although the PM cues differed, the PM 

intention (pressing the thumb button) was the same for both. These results are in contrast with the 
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behavioural findings of slower RTs in Knight PM trials than Colour PM trials. Importantly however, OT 

trials served as a baseline for these contrasts, and RTs were also slower in Knight OT trials than Colour 

OT trials. Although this difference was greater in PM trials, this was by only 58 ms, a difference unlikely 

to be picked up by fMRI measures of neural activity. Overall these results indicate that cue salience was 

associated with differences in sustained activation, with greater sustained activation in the low cue 

salience condition in the right superior frontal gyrus and bilateral superior and inferior parietal lobules, 

but cue salience did not impact transient changes in activation associated with PM trials. 

The left anterior insula, right superior parietal lobule, DLPFC and precentral gyri and frontal eye fields 

(FEF), as well as middle aspect of ACC exhibited a mixed pattern of sustained and transient differences in 

BOLD signal as a function of the PM context or PM trials execution. The anterior insula has previously 

been found to show sustained and transient changes in a PM task (Cona et al., 2015; Gilbert et al., 

2009), suggestive of a role both in sustained task control as well an in increasing the salience of the cue 

(Cona et al., 2015). McDaniel et al. (2013) also found a mixed pattern of activation in precentral gyrus 

(BA 44) and FEF in the middle frontal gyrus (BA 6) for a non-focal PM task. More generally, these regions 

have been previously implicated as neural correlates of the Dual Mechanisms of Control (Jiang et al., 

2015; Magis-Weinberg et al., 2019), where temporal dynamic within some regions, in addition of 

activation of distinct brain networks, would enable the shift between modes of proactive and reactive 

cognitive control. The anterior insula has been suggested to monitor current control demands and 

sustain task control, and rostral ACC reactively monitors level of conflict and then signals DLPFC and 

dorsal ACC to mediate trial-by-trial conflict driven adjustments in control (Jiang et al., 2015; Magis-

Weinberg et al., 2019). When PM cues are detected, conflict may arise between the goal of continuing 

to perform the ongoing task and the retrieval of the relevant PM intention followed by execution of the 

PM response, giving rise to transient activity during PM trial (Hashimoto et al., 2011). 

Age-related differences 

No differences were observed in the planned analyses comparing sustained and transient BOLD signal 

changes between adolescents (12 – 17 years) and adults (23 – 31 years). Given that developmental 

investigations of PM using fMRI are limited, we further explored age differences between younger, older 

adolescents, and the adults. Age differences emerged for PM trials in which younger adolescents had 

higher transient BOLD signal in occipital regions than adults, with no differences with the older 

adolescents. These results indicate that overall adolescents recruit similar brain networks to adults, and 

to a similar extent, during event-related PM tasks, which is in line with the mostly similar behavioural 



32 
 

correlates of PM observed between the two age groups in the present study. The finding with the 

younger adolescents is consistent with the behavioural results of the current study, which revealed that 

younger, but not older, adolescents, showed lower accuracy and slower RTs in PM trials relative to OT 

trials than adults, as well as with previous research suggesting that PM performance stabilises by mid-

adolescence, around 13-14 years (Bowman et al., 2015; Ward et al., 2005; Zimmermann & Meier, 2006). 

While we expected to observe differences in prefrontal cortex functioning, possibly in the RLPFC, a 

region that has consistently been associated with PM and which continues to mature during 

adolescence (Dumontheil, 2014), we instead found increased recruitment of posterior regions in 

younger adolescents, in addition to commonly recruited brain regions, as has previously been observed 

in a Go/No-Go task (Jonkman et al., 2007). In this case the results were interpreted as reflecting the fact 

that younger children may bolster their performance with basic stimulus processing and attention 

mechanisms. A study in adults found that occipital areas show greater activation during event-based 

than time-based PM, and this was interpreted as reflecting target-checking (Gonneaud et al., 2014). Our 

results may therefore suggest that younger adolescents engaged in more extensive target-checking.  

Limitations and Future directions 
PM tasks are also dual tasks paradigms which require participants to execute the ongoing task and the 

PM task in parallel.  In this view, behavioural and neural correlates of PM tasks might be reflecting 

general dual task demands and associated cognitive processes (Dumontheil, 2014).  There is also a 

cognitive branching component (Hyafil et al., 2009), in which participants disengage momentarily from 

the ongoing task and switch to the internal representation of the PM intention. These explanations are 

in line with other proposed interpretations of RLPFC function (Koechlin, 2016) and ultimately PM 

processes cannot be entirely dissociated from branching performance processes with the current 

design. 

There was evidence for strategic monitoring for both salient and non-salient cues. This might be because 

the current paradigm employed a non-focal PM task, which has been shown to elicit strategic 

monitoring in previous studies (see McDaniel et al. 2015 for a review). Alternatively, as has been 

identified by McDaniel et al. (2015), isolating spontaneous retrieval is difficult in traditional laboratory 

settings. Contextual factors in the way experiments are set up and delivered might encourage 

monitoring even with focal cues. Monitoring which responds to instruction framing or high number of 

PM target cues could mask discovery of bottom–up spontaneous retrieval processes.  
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Exploratory analyses comparing the youngest with the oldest adolescents and adults hinted at 

maturation of prospective memory in early adolescence. Accuracy, but not RT, increased linearly with 

age in the adolescent group. Our sample size, however, might limit our ability to detect age-related 

changes. To fully capture age-related differences, future studies should include a larger number of 

participants and sample across a wider age range to include late childhood. In the current task, it seems 

that varying cue salience did not require high enough levels of monitoring that developmental 

differences were apparent. To further understand which aspects of controlled processes are targeted by 

cue salience during adolescence, it might be important to systematically manipulate complexity and 

cognitive demands. In addition, manipulations around cue-salience that align with adolescent 

sensitivities (such as socio-emotional processes) might be an interesting route going forward, especially 

since positively-valenced cues have been shown to improve prospective memory in adults (Altgassen et 

al., 2010; Hostler et al., 2018).  

Conclusion 
Our results show that when intention retrieval demands are matched, prospective memory cue salience 

modulates performance and sustained activation during the ongoing task. While accuracy did not vary 

as a function of cue salience, the low cue salience PM condition was associated with slower reaction 

times, with a shift in the mean distribution of RT, and greater sustained activation in the right superior 

frontal gyrus and bilateral superior and inferior parietal lobules. We add to the nascent body of 

literature of neural markers of different strategies, in the proactive/reactive control framework, in 

relation to maintaining intentions and task retrieval. We show that beyond the recruitment of regions 

typically implicated in PM, such as the RLPFC, regions that are typically associated with proactive control 

are recruited for intention maintenance, for both adolescents and adults. We found that neural 

correlates of PM trials were not specifically modulated by cue salience, revealing little difference in 

reactive control between conditions. These results underscore how retrieval and cue detection are 

separate processes that map onto different cognitive control strategies. Finally we show, for the first 

time, that adolescents and adults share similar modulation of performance and neural activity by cue 

salience. However, the younger adolescents showed specifically lower accuracy and slower RT on PM 

trials, as well as increased activation in a posterior occipito-temporal cluster, providing evidence that PM 

maturation continues during early adolescence.  
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