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Abstract

We consider the problem of quantifying uncertainty for converging beam triple LIDAR when
the input uncertainty follows a uniform distribution. We determine expressions for the range
(i.e. set of reachable points) for the reconstructed velocity vector as a function of any particular
setting of the nominal input parameters and determine an explicit lower (and upper) bound on the
(averaged) volume (with respect to Lebesgue measure), in R3, of that range. We show that the size
of any such bound is inversely proportional to the absolute value of the triple scalar product of the
unit vectors characterizing the Doppler measurement directions (optimized over the uncertainty
region) in R6 associated with the nominal angle settings under consideration. This leads to the
conclusion that the nominal LIDAR configurations that minimize output uncertainty ought to be
those in which the value of the triple scalar product of the Doppler unit vectors is at its largest.

KEYWORDS: CONVERGING BEAM LIDAR; WIND VELOCITY MEASUREMENT; DOPPLER LIDAR; VELOCITY RE-

CONSTRUCTION; INPUT UNCERTAINTY; UNCERTAINTY PROPAGATION; GRID SEARCH OPTIMIZATION; GRADI-

ENT BOUNDS; HESSIAN BOUNDS

1 Introduction

It has been demonstrated that the angles subtended at the point of intersection in converging beam
triple LIDAR can have an important effect on the (estimated) standard deviations associated with
components of the reconstructed velocity vector in Cartesian coordinates (see Holtom & Brooms [6]).
It was shown that a lower bound on the (estimated) standard deviation on each component can
grow as fast as 1/|∆(θ0, ϕ0)| as |∆(θ0, ϕ0)| → 0, where |∆(θ0, ϕ0)| is the absolute value of the triple
scalar product of the three Doppler unit vectors and where (θ0, ϕ0) holds the nominal values of the
azimuthal, and elevation, angles characterizing those vectors. In view of the above fact, along with
the observation that |∆(θ0,ϕ0)| ≤ 1, then it is suggested that one avoids LIDAR placement locations
in conjunction with velocity measurement positions that would cause the value of |∆(θ0, ϕ0)| to be
close to 0. Subject to the size of its numerator, the lower bound for the (estimated) standard deviation
is minimized when ∆(θ0, ϕ0) = 1, which occurs when the Doppler unit vectors are perpendicular to
each other. However, that fact alone does not necessarily prove that opting for a configuration in
which |∆(θ0, ϕ0)| is at its largest, would lead to values for the (estimated) standard deviations which
are at their smallest.
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In order to further characterize how best to determine the LIDAR configurations that would likely
lead to the smallest possible reconstructed velocity output uncertainty, we take a different (albeit
complementary) approach to the one that was adopted in [6]. The basic approach used herein is to
assume that the input uncertainty has compact interval support in each dimension, but then proceed
to propagate that uncertainty forward (aided, where necessary, with the additional assumption of
uniformity and mutual independence of the input uncertainty components) in order to yield the range
of uncertainty around the nominal reconstructed Cartesian velocity vector, along with its volume.

In the case in which there is no uncertainty in the Doppler angles but uniform uncertainty in
the Doppler velocities, then the output uncertainty takes the form of Lebesgue measure within a
parallelepiped, whose volume can be expressed in terms of the volume of the input uncertainty range
and the value of |∆(θ0, ϕ0)|. In the case where the Doppler angles are also characterized by uniform
uncertainty, a lower bound on the volume of the reconstructed velocity uncertainty range, expressed
in terms of the volume of the Doppler velocity range, and the value of |∆(·, ·)| maximized over the
input uncertainty range, is presented. As an alternative, if we instead consider the volume conditioned
upon the angles governing the LIDAR orientations, and then average that across the angle uncertainty
range, then we are able to present both lower and upper bounds that are amenable to numerical
computation.

The forward propagation of input uncertainty in order to then obtain a description of the region
of output uncertainty has been considered by other authors for other physical systems under different
sets of conditions. Jiang et al. [7] consider the case in which the input uncertainty range is described
by an ellipsoid under the assumption that the joint distribution of the input variables adheres to
Lebesgue measure: - this is viewed upon in a later paper as corresponding to a pseudo-probability
approach to propagating uncertainty through to the output variable(s) (Liu et al. [10]). Systems
in which both the input and output vectors are each known to reside within their respective hyper-
rectangles, from which one then calculates the unknown output region from the known input region
(the forward problem), or vice versa (the inverse problem), was mentioned in the case of the former,
and explicitly considered in the latter, by Liu et al. [9]. A survey of the methods and techniques that
have been used in relation to both forward, and inverse, uncertainty propagation is presented in the
introduction to [11].

The rest of the paper is organized as follows. In the next section, we introduce and review the
notation, geometrical set-up, variables and various quantities of interest, as well as the statistical and
mathematical assumptions, that will be required in order to progress our analysis. In Section 3, we
determine bounds on the volume in R3 that could be occupied by the reconstructed velocity vector as
a result of trying to measure wind velocity at a specific position in space: this is first carried out in the
case in which the demanded angles are not subject to any uncertainty, and then in the case in which
they are subject to uncertainty. Being devoid of a closed form expression for the optimum values of
|∆(·, ·)| within a compact domain of R3 × R3, which are key for the calculation of the aforementioned
bounds, we present in Section 4 a technique, based on the concept of grid search optimization, for
either deducing a (small) under-estimate of the minimum value, or a (small) over-estimate of the
maximum value, of the objective function. We demonstrate our analytical deductions in Section 5
with some numerical examples, and then summarize and close out our discussion in Section 6.

2 Mathematical Preliminaries

Throughout we shall work with the index set I = {1, 2, 3}. Let {ei : i ∈ I} be the unit vectors for
the standard basis in R3, where e1, e2, and e3, correspond to the x, y, z directions in the right-handed
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Figure 1: Geometric set-up of the convergent triple-beam LIDAR technology

Cartesian system, respectively. Both equality and inequality relationships between pairs of vectors of
commensurate size are to be interpreted componentwise.

Let {r̂i : i ∈ I} be the unit vectors corresponding to the directions of each of the laser/LIDAR
beams i.e. the Doppler LIDAR basis vectors. Thus, from the point of location of each of the Doppler
LIDAR beams, the point of position in space for which a velocity measurement is being sought, is
represented by ri = r̃ir̂i, for each lidar beam i ∈ I, respectively.

A wind velocity, w, relative to the aformentioned standard basis may represented as

w = w1e1 + w2e2 + w3e3. (1)

To find the equivalent representation of w in terms of the Doppler basis vectors, namely w̃, one simply
takes the scalar product of the former with each member {r̂i} to yield

w̃i = r̂i.w =
∑

j∈I
rijwj for all i ∈ I, (2)

where r̂i = (ri1, ri2, ri3)
T , for i ∈ I, and thus w̃ = (w̃1, w̃2, w̃3)

T .
For each Doppler unit vector r̂i, i ∈ I, we may characterize its direction by:

θi ∈ [0, 2π), the azimuthal angle measured anti-clockwise from the x-axis; ϕi ∈ [−π/2, π/2], the
elevation angle from the (x, y)-plane, taken to be positive when the z-coordinate is positive (as would
normally be the case for a platform set on the ground measuring a point that is above ground). Each
of the Doppler unit vectors can therefore be re-expressed in terms of the standard basis as follows:

r̂i = cos(θi) cos(ϕi)e1 + sin(θi) cos(ϕi)e2 + sin(ϕi)e3 i ∈ I. (3)
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From the expressions of (2) and (3), one can move from Cartesian coordinates to the equivalent
Doppler coordinates via the following matrix equation:

w̃ = Mw (4)

where
Mi1 = ri1 = cos(θi) cos(ϕi), i ∈ I (5)

Mi2 = ri2 = sin(θi) cos(ϕi), i ∈ I (6)

Mi3 = ri3 = sin(ϕi), i ∈ I (7)

and
w̃i =

∑

j∈I
Mijwj = cos(θi) cos(ϕi)w1 + sin(θi) cos(ϕi)w2 + sin(ϕi)w3, i ∈ I (8)

where it will be assumed that M is of full rank.
Conversely, given the 6 Doppler angles and the 3 Doppler wind velocity coordinates, one can map

to the equivalent Cartesian coordinates via the following equation:

w = M−1w̃ (9)

which, componentwise, is given by

wj =
∑

k∈I
[M−1]jkw̃k j ∈ I. (10)

Generically, we set
θ = (θ1, θ2, θ3)

T ϕ = (ϕ1, ϕ2, ϕ3)
T

for the azimuthal angles and elevation angles, respectively.

The true (Cartesian) velocity vector (at a given measurement position) will be denoted by vtrue =
(vtrue

1 , vtrue
2 , vtrue

3 )T . Using the coordinate transformation equation (4), the Doppler velocity coordi-
nate vector that corresponds to vtrue when the angle orientations of the LIDARs, (θ, ϕ), are equal to
(θtrue,ϕtrue), namely

ṽc(vtrue; θtrue, ϕtrue) =
(
ṽc
1(v

true;θtrue, ϕtrue), ṽc
2(v

true; θtrue,ϕtrue), ṽc
3(v

true;θtrue, ϕtrue)
)T

,

is equal to
M(θtrue, ϕtrue)vtrue. (11)

The above argument motivates the following definition for reconstructing the (estimated) Cartesian
wind velocity, given some arbitrary angle and Doppler velocity settings.

Definition 1 (Reconstruction Mapping).
Suppose that each of a, b, and c, is a 3 × 1 vector such that

(a,b, c) ∈ [0, 2π)3 × [−π/2, π/2]3 × (−∞,∞)3.

Define
v(a,b, c) := M−1 (a,b) c. (12)
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As hinted at just prior to the above definition, v(θtrue, ϕtrue, ṽc(vtrue;θtrue, ϕtrue)) = vtrue.

In the context of a particular measurement scenario, let θ0 and ϕ0 represent the demanded azimuthal
angles and demanded elevation angles, respectively, and ṽ0(v

true;θ0, ϕ0) the Doppler velocities that
had been recorded on the premise that the angles specifying the LIDAR orientations were equal to
(θ0, ϕ0), and that the true wind velocity is given by vtrue.

We represent the uncertainty around θ0, ϕ0, and ṽ0(v
true; θ0, ϕ0) by δθ(θ0, ϕ0, ṽ0(v

true; θ0, ϕ0)),
δϕ(θ0, ϕ0, ṽ0(v

true; θ0,ϕ0)) and δṽ(θ0, ϕ0, ṽ0(v
true; θ0,ϕ0)), respectively; and set

δx(θ0, ϕ0, ṽ0(v
true; θ0, ϕ0))

T

:=
[
δθ(θ0, ϕ0, ṽ0(v

true;θ0, ϕ0))
T , δϕ(θ0, ϕ0, ṽ0(v

true; θ0, ϕ0))
T , δṽ(θ0, ϕ0, ṽ0(v

true; θ0, ϕ0))
T
]
.

The uncertainties are modelled as random variables, parameterized by θ0, ϕ0, and ṽ0(v
true;θ0, ϕ0).

The random variables that model the true azimuthal angles, true elevation angles, and true Doppler
velocities, are given by

θ∗(θ0, ϕ0, ṽ0(v
true;θ0, ϕ0)) := θ0 + δθ(θ0, ϕ0, ṽ0(v

true; θ0,ϕ0)); (13)

ϕ∗(θ0,ϕ0, ṽ0(v
true; θ0,ϕ0)) := ϕ0 + δϕ(θ0, ϕ0, ṽ0(v

true; θ0, ϕ0)); (14)

ṽ∗(θ0, ϕ0, ṽ0(v
true; θ0, ϕ0)) := ṽ0(v

true;θ0, ϕ0) + δṽ(θ0, ϕ0, ṽ0(v
true; θ0,ϕ0)). (15)

The assumptions that will be employed throughout the remainder of the analysis which, in essence,
encapsulate the physics of the problem, are presented below.

Assumption 1 (LIDAR beam convergence within a locale of the measurement position).
The LIDAR beams will be assumed to be converging at the originally intended measurement position,
(θ,ϕ, r̃1, r̃2, r̃3) say, for some sufficiently small region ϵlocale ⊆ R6 × R3 such that (θ, ϕ, r̃1, r̃2, r̃3) ∈
ϵlocale.

Assumption 2.
The components of δx(θ0, ϕ0, ṽ0(v

true;θ0, ϕ0)) are statistically independent of each other.

We will also be working extensively with the matrix M, and its determinant, ∆, throughout the
remainder of this paper.

Lemma 1 (determinant of the matrix M).
The determinant of the matrix M, denoted by ∆ = ∆(θ1, θ2, θ3, ϕ1, ϕ2, ϕ3), is given by

∆ = cos(θ1) cos(ϕ1) {sin(θ2) cos(ϕ2) sin(ϕ3) − sin(ϕ2) sin(θ3) cos(ϕ3)}

− sin(θ1) cos(ϕ1) {sin(ϕ3) cos(θ2) cos(ϕ2) − sin(ϕ2) cos(θ3) cos(ϕ3)}
+sin(ϕ1) {cos(θ2) cos(ϕ2) sin(θ3) cos(ϕ3) − sin(θ2) cos(ϕ2) cos(θ3) cos(ϕ3)} . (16)

or, equivalently,

∆ =
∑

π∈S3

sgn(π) cos
(
θπ(1)

)
sin

(
θπ(2)

)
cos

(
ϕπ(1)

)
cos

(
ϕπ(2)

)
sin

(
ϕπ(3)

)
(17)

where S3 is the set of all permutations on I.
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Proof
The results follow trivially by applying a cofactor expansion along the first row of M in order to
obtain (16), and the Leibniz formula to M for (17). 2

As, and when, it proves to be convenient, we will forgo mention of (vtrue; θ0,ϕ0) from ṽ0, for the sake
of notational simplicity. We will adopt a similar strategy for (θ0, ϕ0, ṽ0) in relation to (θ∗, ϕ∗, ṽ∗).

3 Distributional results for the reconstructed velocity vector

3.1 No uncertainty in the demanded angles but uniform uncertainty in the Doppler
velocity measurements

We first consider the case in which the LIDAR orientation angles can be selected to take particular
values without any uncertainty involved i.e. that (θ∗, ϕ∗) can be taken to be equal to (θ0, ϕ0), which
is encapsulated within the following assumption set that follows:

Assumption 3. For a given, nominal, parameter setting (θ0, ϕ0, ṽ0), the range for the Doppler
velocity ṽ∗ is given by

Rṽ∗(θ0, ϕ0, ṽ0) :=
{
z : ṽmin(θ0, ϕ0, ṽ0) ≤ z ≤ ṽmax(θ0, ϕ0, ṽ0)

}

where

z = (z1, z2, z3)
T ;

ṽmin(θ0, ϕ0, ṽ0) :=
(
ṽmin
1 (θ0,ϕ0, ṽ0), ṽ

min
2 (θ0, ϕ0, ṽ0), ṽ

min
3 (θ0, ϕ0, ṽ0)

)T

ṽmax(θ0, ϕ0, ṽ0) := (ṽmax
1 (θ0,ϕ0, ṽ0), ṽ

max
2 (θ0, ϕ0, ṽ0), ṽ

max
3 (θ0, ϕ0, ṽ0))

T

ṽmin(θ0, ϕ0, ṽ0) < ṽmax(θ0, ϕ0, ṽ0).

It is also assumed that there is no uncertainty in the values of θ∗ and ϕ∗ such that (θ∗, ϕ∗) = (θ0, ϕ0).

Denote the joint probability density function of ṽ∗ by fṽ∗(·), with aforementioned range Rṽ∗(θ0,ϕ0, ṽ0).

The reconstructed velocity vector, parameterized by (θ0,ϕ0, ṽ0), is given by

v∗(θ0,ϕ0, ṽ0) := v(θ0, ϕ0, ṽ
∗(θ0, ϕ0, ṽ0))

= M−1(θ0, ϕ0)ṽ
∗(θ0, ϕ0, ṽ0). (18)

Definition 2 (Range of v∗).
Under Assumption 3, the range of v∗, parameterized by (θ0, ϕ0, ṽ0), is given by

Rv∗(θ0, ϕ0, ṽ0) :=
{
w′ : ∃ ṽ′ ∈Rṽ∗(θ0, ϕ0, ṽ0) s.t. w′ = M−1(θ0, ϕ0)ṽ

′} . (19)

It should be clear from the above definition that Rv∗(θ0, ϕ0, ṽ0) encapsulates the set of points for v∗

that can be reached, under the parameter configuration (θ0, ϕ0, ṽ0), albeit the possibility that some
members of that set may have zero density is not precluded.

Denote the joint probability density function of v∗ by fv∗(·), with associated range Rv∗(θ0,ϕ0, ṽ0).

We will also work with the notion of Lebesgue measure and Lebesgue measurable sets (see [2] or
[16], for e.g.).
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Theorem 1.
Under Assumption 3, the following hold true:
(i)

Rv∗(θ0, ϕ0, ṽ0) ≡
{
w′ : ṽmin(θ0,ϕ0, ṽ0) ≤ M(θ0, ϕ0)w

′ ≤ ṽmax(θ0,ϕ0, ṽ0)
}

;

(ii)

vol(Rv∗(θ0, ϕ0, ṽ0)) =

∏3
i=1

(
ṽmax
i (θ0, ϕ0, ṽ0) − ṽmin

i (θ0, ϕ0, ṽ0)
)

|∆(θ0,ϕ0)|
=

vol(Rṽ∗(θ0, ϕ0, ṽ0))

|∆(θ0,ϕ0)|

where vol(·) denotes Lebesgue measure on R3 (thus representing volume in the “standard” way).

Proof
Define

Rcandidate
v∗ (θ0, ϕ0, ṽ0) :=

{
w′ : ṽmin(θ0, ϕ0, ṽ0) ≤ M(θ0, ϕ0)w

′ ≤ ṽmax(θ0, ϕ0, ṽ0)
}

. (20)

Suppose v′ ∈ Rv∗(θ0, ϕ0, ṽ0). By the definition of v∗, and Assumption 3, there must exist a ṽ′

satisfying
v′ = M(θ0, ϕ0)

−1ṽ′ (21)

such that ṽ′ ∈ Rṽ∗(θ0, ϕ0, ṽ0), i.e.

ṽmin(θ0, ϕ0, ṽ0) ≤ ṽ′ ≤ ṽmax(θ0,ϕ0, ṽ0). (22)

However, by (21) and (22), it follows that

ṽmin(θ0, ϕ0, ṽ0) ≤ M(θ0, ϕ0)v
′ ≤ ṽmax(θ0, ϕ0, ṽ0) (23)

as required to show that v′ ∈ Rcandidate
v∗ (θ0,ϕ0, ṽ0), and hence that

Rv∗(θ0,ϕ0, ṽ0) ⊆ Rcandidate
v∗ (θ0, ϕ0, ṽ0).

Conversely, suppose that v′ ∈ Rcandidate
v∗ (θ0, ϕ0, ṽ0): then (23) holds. Setting ṽnew := M(θ0, ϕ0)v

′,
it follows that ṽnew ∈ Rṽ∗(θ0, ϕ0, ṽ0). However, by the definition of ṽnew, it is also the case that
v′ = M−1(θ0, ϕ0)ṽ

new which, on account of the definition of (18), implies that v′ ∈ Rv∗(θ0, ϕ0, ṽ0),
and hence that Rcandidate

v∗ (θ0, ϕ0, ṽ0) ⊆ Rv∗(θ0, ϕ0, ṽ0). Thus (i) is established.

To establish (ii), whilst suppressing display of (θ0, ϕ0, ṽ0) for the sake of notational brevity, first
note that Rṽ∗ can be expressed as

Rṽ∗ =
{
z̃ ∈ R3 : z̃ = (ṽmin

1 , ṽmin
2 , ṽmin

3 )T

+λ1(ṽ
max
1 − ṽmin

1 )e1 + λ2(ṽ
max
2 − ṽmin

2 )e2 + λ3(ṽ
max
3 − ṽmin

3 )e3; λi ∈ [0, 1], i ∈ I
}

.

However, by (18),
Rv∗ =

{
z : z = M−1z̃; z̃ ∈ Rṽ∗

}
.

Defining
H := M−1diag(ṽmax

1 − ṽmin
1 , ṽmax

2 − ṽmin
2 , ṽmax

3 − ṽmin
3 ),

h0 := M−1




ṽmin
1

ṽmin
2

ṽmin
3


 ,
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and
h1 = He1, h2 = He2, h3 = He3,

then it follows that
Rv∗ =

{
z : z = M−1(ṽmin

1 , ṽmin
2 , ṽmin

3 )T

+λ1(ṽ
max
1 − ṽmin

1 )M−1e1 + λ2(ṽ
max
2 − ṽmin

2 )M−1e2 + λ3(ṽ
max
3 − ṽmin

3 )M−1e3; λi ∈ [0, 1], i ∈ I
}

= {z : z = h0 + λ1h1 + λ2h2 + λ3h3; λi ∈ [0, 1], i ∈ I}
which, on account of h1, h2 and h3 being linearly independent (recall that M is assumed to be of full
rank), delineates a parallelepiped.
Relative to h0, the position vectors of the vertices that are directly adjacent to h0, corresponding to
(λ1, λ2, λ3) ∈ {0, 1}3 such that

∑3
i=1 λi = 1, are given by h1, h2, and h3. Since H = [h1|h2|h3], then

it follows (from, for example, Theorem 3.5.4 (b) of [1], or Section 7.6.3 of [15]) that

vol(Rv∗) = |det(H)| = |det(M−1)||det(diag(ṽmax
1 − ṽmin

1 , ṽmax
2 − ṽmin

2 , ṽmax
3 − ṽmin

3 ))|

=
1

|det(M)|
3∏

i=1

(ṽmax
i − ṽmin

i ) =
1

|∆|
3∏

i=1

(ṽmax
i − ṽmin

i ).

2
Remark
It is perhaps worth noting that 0 < |∆| ≤ 1, and that 1/|∆| has the effect of multiplying the volume
of Rṽ∗ by a scale factor larger than 1 in order to yield the volume of Rv∗ (and hence acting as an
inflation factor that is applied to the volume of the Doppler velocity uncertainty range in order to
yield that of the reconstructed velocity uncertainty range), except when |∆| = 1 (in which case the
scale factor is unity whence there is no inflation). Where indeed the value of |∆| happens to fall
within the range (0, 1] will depend on the configuration of the LIDAR beams.

Corollary 1. Under Assumption 3, suppose that the components of ṽ∗ are uniform and mutually
independent. Then

fv∗(v′) =
|∆(θ0, ϕ0)|∏3

i=1

(
ṽmax
i (θ0, ϕ0, ṽ0) − ṽmin

i (θ0,ϕ0, ṽ0)
)

for v′ ∈ Rv∗(θ0, ϕ0, ṽ0).

Proof
Given that the coordinate sets Rṽ∗(θ0, ϕ0, ṽ0) and Rv∗(θ0, ϕ0, ṽ0) can both be delineated within the
same vector space in R3, then the result follows from standard properties regarding the application
of a linear transformation to a Lebesgue measurable set, so that for v′ ∈ Rv∗(θ0, ϕ0, ṽ0),
fv∗(v′) = 1

vol(Rv∗ ) . 2

3.2 Uniform uncertainty in both the demanded angles and Doppler velocity mea-
surements

We now generalize to the case in which all three of θ∗, ϕ∗ and ṽ∗ are considered to be uncertain.

Assumption 4. For a given, nominal, parameter setting (θ0, ϕ0, ṽ0), the ranges of θ∗, ϕ∗, and ṽ∗,
are given by

Rθ∗(θ0, ϕ0, ṽ0) :=
{
x : θmin(θ0, ϕ0, ṽ0) ≤ x ≤ θmax(θ0, ϕ0, ṽ0)

}
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Rϕ∗(θ0, ϕ0, ṽ0) :=
{
y : ϕmin(θ0, ϕ0, ṽ0) ≤ y ≤ ϕmax(θ0, ϕ0, ṽ0)

}

Rṽ∗(θ0, ϕ0, ṽ0) :=
{
z : ṽmin(θ0, ϕ0, ṽ0) ≤ z ≤ ṽmax(θ0, ϕ0, ṽ0)

}

where

x = (x1, x2, x3)
T , y = (y1, y2, y3)

T , z = (z1, z2, z3)
T ;

θmin(θ0, ϕ0, ṽ0) =
(
θmin
1 (θ0, ϕ0, ṽ0), θ

min
2 (θ0, ϕ0, ṽ0), θ

min
3 (θ0, ϕ0, ṽ0)

)T

θmax(θ0, ϕ0, ṽ0) = (θmax
1 (θ0, ϕ0, ṽ0), θ

max
2 (θ0, ϕ0, ṽ0), θ

max
3 (θ0, ϕ0, ṽ0))

T

θmin(θ0, ϕ0, ṽ0) < θmax(θ0, ϕ0, ṽ0);

ϕmin(θ0, ϕ0, ṽ0) =
(
ϕmin

1 (θ0, ϕ0, ṽ0), ϕ
min
2 (θ0, ϕ0, ṽ0), ϕ

min
3 (θ0, ϕ0, ṽ0)

)T

ϕmax(θ0, ϕ0, ṽ0) = (ϕmax
1 (θ0, ϕ0, ṽ0), ϕ

max
2 (θ0, ϕ0, ṽ0), ϕ

max
3 (θ0, ϕ0, ṽ0))

T

ϕmin(θ0, ϕ0, ṽ0) < ϕmax(θ0, ϕ0, ṽ0);

ṽmin(θ0, ϕ0, ṽ0) =
(
ṽmin
1 (θ0, ϕ0, ṽ0), ṽ

min
2 (θ0, ϕ0, ṽ0), ṽ

min
3 (θ0, ϕ0, ṽ0)

)T

ṽmax(θ0, ϕ0, ṽ0) = (ṽmax
1 (θ0, ϕ0, ṽ0), ṽ

max
2 (θ0,ϕ0, ṽ0), ṽ

max
3 (θ0, ϕ0, ṽ0))

T

ṽmin(θ0, ϕ0, ṽ0) < ṽmax(θ0, ϕ0, ṽ0).

Further,
the range of (θ∗, ϕ∗) is given by

R(θ
∗
,ϕ∗

)(θ0, ϕ0, ṽ0) := Rθ∗(θ0, ϕ0, ṽ0) × Rϕ∗(θ0, ϕ0, ṽ0)

and the range of (θ∗, ϕ∗, ṽ∗) is given by

R(θ
∗
,ϕ∗

,ṽ∗)(θ0, ϕ0, ṽ0) := R(θ
∗
,ϕ∗

)(θ0, ϕ0, ṽ0) × Rṽ∗(θ0, ϕ0, ṽ0).

In this section, we define
v∗(θ0, ϕ0, ṽ0(v

true;θ0, ϕ0))

:= v(θ∗(θ0, ϕ0, ṽ0(v
true; θ0, ϕ0)), ϕ

∗(θ0, ϕ0, ṽ0(v
true;θ0, ϕ0)), ṽ

∗(θ0, ϕ0, ṽ0(v
true; θ0, ϕ0)))

= M−1(θ∗(θ0,ϕ0, ṽ0(v
true; θ0, ϕ0)),ϕ

∗(θ0, ϕ0, ṽ0(v
true; θ0, ϕ0)))ṽ

∗(θ0, ϕ0, ṽ0(v
true;θ0, ϕ0)) (24)

and thus v∗ is parameterized by (θ0, ϕ0, ṽ0(v
true; θ0, ϕ0)); and denote the joint probability density

function of v∗ by fv∗(·), with associated range Rv∗(θ0, ϕ0, ṽ0).

In the next few definitions and following lemma, we describe the joint range of (θ∗,ϕ∗,v∗), along
with associated quantities.

Definition 3 (Ranges).
Under Assumption 4:
(i) the range of (θ∗, ϕ∗,v∗), parameterized by (θ0, ϕ0, ṽ0), is given by

R
(θ∗

,ϕ∗
,v∗)

(θ0, ϕ0, ṽ0) :=
{

(θ′, ϕ′,v′) : (θ′, ϕ′) ∈ R
(θ∗

,ϕ∗
)
(θ0,ϕ0, ṽ0);

∃ ṽ′ ∈ Rṽ∗(θ0,ϕ0, ṽ0) s.t. v′ = M−1(θ′, ϕ′)ṽ′} ; (25)

9



(ii) the range of v∗, parameterized by (θ0, ϕ0, ṽ0), is given by

Rv∗(θ0,ϕ0, ṽ0) :=
∪

(x′,y′)∈R
(θ∗

,ϕ∗
)
(θ0,ϕ0,ṽ0)

{
w′ : (x′,y′,w′) ∈ R

(θ∗
,ϕ∗

,v∗)
(θ0, ϕ0, ṽ0)

}
; (26)

(iii) the range of (θ∗,ϕ∗) conditional on v∗ = v′, parameterized by (θ0, ϕ0, ṽ0), is given by

R
(θ∗

,ϕ∗
)|v∗=v′(θ0, ϕ0, ṽ0) :=

{
(x′,y′) : (x′,y′,v′) ∈ R

(θ∗
,ϕ∗

,v∗)
(θ0, ϕ0, ṽ0)

}
. (27)

It should be clear that each of the quantities defined in (i) − (iii) above do indeed represent the
set of points that can be reached by (θ∗, ϕ∗,v∗), v∗, and (θ∗, ϕ∗) when v∗ is constrained to take the
value v′, respectively. Also, the possibility that there may exist points within any of those sets whose
values for the associated probability density function is zero is not precluded.

Next we consider the likely possible more explicit expression for R
(θ∗

,ϕ∗
,v∗)

(θ0, ϕ0, ṽ0).

Let
Rcandidate

(θ∗
,ϕ∗

,v∗)
(θ0, ϕ0, ṽ0) :=

{
(x′,y′,w′) : x′ ∈ Rθ∗(θ0, ϕ0, ṽ0); y′ ∈ Rϕ∗(θ0, ϕ0, ṽ0);

ṽmin(θ0, ϕ0, ṽ0) ≤ M(x′,y′)w′ ≤ ṽmax(θ0, ϕ0, ṽ0)
}

(28)

and define the mapping P such that

P : Rcandidate
(θ∗

,ϕ∗
,v∗)

(θ0, ϕ0, ṽ0) 7→ Rṽ∗(θ0, ϕ0, ṽ0)

and represented by the matrix equation ṽ′ = M(θ′, ϕ′)v′, for (θ′, ϕ′,v′) in the domain and ṽ′ in the
co-domain.
Thus P takes in a realization of the 9 variables held within θ∗, ϕ∗ and v∗ to yield a realization of the 3
variables held within ṽ∗. In order to (eventually) find the joint probability density function of v∗, we
need to augment the co-domain of P with that which is associated with suitable additional variables,
and adjust the matrix equation that maps from the domain to the new co-domain accordingly. To
that end, define the mapping Q, such that

Q : Rcandidate
(θ∗

,ϕ∗
,v∗)

(θ0, ϕ0, ṽ0) 7→ R
(θ∗

,ϕ∗
,ṽ∗)

(θ0,ϕ0, ṽ0)

represented by the matrix equation




θ′

ϕ′

ṽ′


 =

[
diag(1, 1, 1, 1, 1, 1) 06×3

03×6 M(θ′, ϕ′)

]


θ′

ϕ′

v′


 (29)

for (θ′, ϕ′,v′) in the domain and (θ′, ϕ′, ṽ′) in the co-domain.

Lemma 2.
Under Assumption 4,
(i) the range of (θ∗, ϕ∗,v∗), denoted by R

(θ∗
,ϕ∗

,v∗)
(θ0, ϕ0, ṽ0), is such that

R
(θ∗

,ϕ∗
,v∗)

(θ0,ϕ0, ṽ0) ≡ Rcandidate
(θ∗

,ϕ∗
,v∗)

(θ0,ϕ0, ṽ0)
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=
{

(x′,y′,w′) : x′ ∈ Rθ∗(θ0, ϕ0, ṽ0); y′ ∈ Rϕ∗(θ0,ϕ0, ṽ0);

ṽmin(θ0,ϕ0, ṽ0) ≤ M(x′,y′)w′ ≤ ṽmax(θ0, ϕ0, ṽ0)
}

; (30)

(ii) the range of v∗, denoted by Rv∗(θ0, ϕ0, ṽ0), is such that

Rv∗(θ0, ϕ0, ṽ0) ≡
∪

(x′,y′)∈Rθ∗ (θ0,ϕ0,ṽ0)×Rϕ∗ (θ0,ϕ0,ṽ0)

{
w′ : ṽmin(θ0, ϕ0, ṽ0) ≤ M(x′,y′)w′ ≤ ṽmax(θ0, ϕ0, ṽ0)

}
; (31)

(iii) the range of (θ∗,ϕ∗) conditional on v∗ = v′, denoted by R
(θ∗

,ϕ∗
)|v∗=v′(θ0, ϕ0, ṽ0), is such that

R
(θ∗

,ϕ∗
)|v∗=v′(θ0, ϕ0, ṽ0) ≡

{
(x′,y′) : x′ ∈ Rθ∗(θ0, ϕ0, ṽ0); y′ ∈ Rϕ∗(θ0, ϕ0, ṽ0);

ṽmin(θ0,ϕ0, ṽ0) ≤ M(x′,y′)v′ ≤ ṽmax(θ0, ϕ0, ṽ0)
}

. (32)

Proof
Suppose (θ′,ϕ′,v′) ∈ R

(θ∗
,ϕ∗

,v∗)
(θ0, ϕ0, ṽ0). Then by the definition of R

(θ∗
,ϕ∗

,v∗)
(θ0, ϕ0, ṽ0), there

must exist a ṽ′ satisfying
v′ = M(θ′, ϕ′)−1ṽ′ (33)

such that (θ′, ϕ′, ṽ′) ∈ R
(θ∗

,ϕ∗
,ṽ∗)

(θ0, ϕ0, ṽ0). By Assumption 4, it therefore follows that

θmin(θ0,ϕ0, ṽ0) ≤ θ′ ≤ θmax(θ0, ϕ0, ṽ0) (34)

ϕmin(θ0, ϕ0, ṽ0) ≤ ϕ′ ≤ ϕmax(θ0, ϕ0, ṽ0) (35)

ṽmin(θ0, ϕ0, ṽ0) ≤ ṽ′ ≤ ṽmax(θ0,ϕ0, ṽ0). (36)

However, (33) and (36) imply that

ṽmin(θ0, ϕ0, ṽ0) ≤ M(θ′, ϕ′)v′ ≤ ṽmax(θ0, ϕ0, ṽ0). (37)

The fact that (θ′, ϕ′,v′) satisfies (34), (35), and (37), suffices to show that
(θ′, ϕ′,v′) ∈ Rcandidate

(θ∗
,ϕ∗

,v∗)
(θ0, ϕ0, ṽ0). Hence R

(θ∗
,ϕ∗

,v∗)
(θ0, ϕ0, ṽ0) ⊆ Rcandidate

(θ∗
,ϕ∗

,v∗)
(θ0, ϕ0, ṽ0).

Conversely, suppose that (θ′, ϕ′,v′) ∈ Rcandidate
(θ∗

,ϕ∗
,v∗)

(θ0, ϕ0, ṽ0). Then

θmin(θ0,ϕ0, ṽ0) ≤ θ′ ≤ θmax(θ0, ϕ0, ṽ0)

ϕmin(θ0, ϕ0, ṽ0) ≤ ϕ′ ≤ ϕmax(θ0, ϕ0, ṽ0)

ṽmin(θ0, ϕ0, ṽ0) ≤ M(θ′,ϕ′)v′ ≤ ṽmax(θ0, ϕ0, ṽ0).

Setting ṽnew := M(θ′, ϕ′)v′, it follows that (θ′, ϕ′, ṽnew) ∈ R
(θ∗

,ϕ∗
,ṽ∗)

(θ0, ϕ0, ṽ0). Additionally, by

the definition of ṽnew, it also follows that v′ = M(θ′, ϕ′)−1ṽnew, and hence

(θ′, ϕ′,v′) ∈ R
(θ∗

,ϕ∗
,v∗)

(θ0, ϕ0, ṽ0).

Hence Rcandidate
(θ∗

,ϕ∗
,v∗)

(θ0,ϕ0, ṽ0) ⊆ R
(θ∗

,ϕ∗
,v∗)

(θ0, ϕ0, ṽ0). The result of (i) now follows. Part (ii) follows

from combining (26) with (30). Part (iii) follows from combining (27) with (30). 2

We are ultimately interested in bounding the volume occupied by the set of points within which v∗

could conceivably reside: this will be facilitated by our being able to access an expression for the
probability density function of v∗, which we shall extract from the joint probability density function
of (θ∗, ϕ∗,v∗).
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Proposition 1.
Under Assumption 4, suppose that all 9 components of θ∗, ϕ∗ and ṽ∗ are jointly uniform and inde-
pendent.

For (θ′, ϕ′,v′) ∈ R
(θ∗

,ϕ∗
,v∗)

(θ0, ϕ0, ṽ0),

f
(θ∗

,ϕ∗
,v∗)

(θ′,ϕ′,v′) =

∣∣∆(θ′, ϕ′)
∣∣

[∏3
i=1 Lθi

(θ0,ϕ0, ṽ0)
] [∏3

i=1 Lϕi
(θ0, ϕ0, ṽ0)

] [∏3
i=1 Lṽi

(θ0, ϕ0, ṽ0)
]

where
Lθi

(θ0, ϕ0, ṽ0) := θmax
i (θ0, ϕ0, ṽ0) − θmin

i (θ0, ϕ0, ṽ0), i ∈ I
Lϕi

(θ0,ϕ0, ṽ0) := ϕmax
i (θ0, ϕ0, ṽ0) − ϕmin

i (θ0,ϕ0, ṽ0), i ∈ I
Lṽi

(θ0, ϕ0, ṽ0) := ṽmax
i (θ0, ϕ0, ṽ0) − ṽmin

i (θ0, ϕ0, ṽ0), i ∈ I.

Proof
Suppose that (θ∗, ϕ∗,v∗) takes the value (θ′,ϕ′,v′)∈R

(θ∗
,ϕ∗

,v∗)
(θ0, ϕ0, ṽ0): then it follows that there

exists a unique (on account of M(θ′, ϕ′) being assumed to be of full rank) ṽ′ such that (θ∗, ϕ∗, ṽ∗)
takes the value (θ′, ϕ′, ṽ′)∈R

(θ∗
,ϕ∗

,ṽ∗)
for which v′ = M−1(θ′, ϕ′)ṽ′.

Define

∇(
θ′

,ϕ′
,v′

) =

(
∂

∂θ′
1

,
∂

∂θ′
2

,
∂

∂θ′
3

,
∂

∂ϕ′
1

,
∂

∂ϕ′
2

,
∂

∂ϕ′
3

,
∂

∂v′
1

,
∂

∂v′
2

,
∂

∂v′
3

)T

.

From standard distribution theory, it can be deduced that, for (θ′, ϕ′,v′)∈R
(θ∗

,ϕ∗
,v∗)

,

f
(θ∗

,ϕ∗
,v∗)

(θ′, ϕ′,v′) = f
(θ∗

,ϕ∗
,ṽ∗)

(θ′,ϕ′, ṽ′(θ′,ϕ′,v′))|J
(θ′

,ϕ′
,ṽ′(θ′

,ϕ′
,v′))(θ

′, ϕ′,v′)|

where, the Jacobian determinant, J
(θ′

,ϕ′
,ṽ′(θ′

,ϕ′
,v′))(θ

′, ϕ′,v′) = detG, such that G = DT and

D = ∇(
θ′

,ϕ′
,v′

)[(θ′)T |(ϕ′)T |(ṽ′(θ′, ϕ′,v′))T ]

(c.f. Section 2.7 of [5]).
It follows that

G =




diag(1, 1, 1) 03×3 03×3

03×3 diag(1, 1, 1) 03×3

Fθ′(θ′, ϕ′,v′) Fϕ′(θ′, ϕ′,v′) M(θ′, ϕ′)




where, for i,j ∈ I,
[
Fθ′(θ′, ϕ′,v′)

]
ij

=

3∑

k=1

v′
k

∂[M(θ′, ϕ′)]ik
∂θ

′
j

and
[
Fϕ′(θ′, ϕ′,v′)

]
ij

=

3∑

k=1

v′
k

∂[M(θ′, ϕ′)]ik
∂ϕ

′
j

.

By using a co-factor expansion along the first row of G, it is easy to see (notwithstanding the compo-
sition of Fθ′(θ′, ϕ′,v′) and Fϕ′(θ′, ϕ′,v′), other than to note that their components are well-defined

and finite) that
detG = detM.
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Thus, by independence of the 9 variables in (θ∗,ϕ∗, ṽ∗), one obtains

f
(θ∗

,ϕ∗
,v∗)

(θ′, ϕ′,v′) = |∆(θ′, ϕ′)|

×
[

3∏

i=1

1[θmin
i ,θmax

i ](θ
′
i)

Lθi

][
3∏

i=1

1[ϕmin
i ,ϕmax

i ](ϕ
′
i)

Lϕi

] 


3∏

i=1

1[ṽmin
i ,ṽmax

i ]

(∑3
j=1 Mij(θ

′, ϕ′)v′
j

)

Lṽi




where 1A(·) is the indicator function on the set A. Therefore

f
(θ∗

,ϕ∗
,v∗)

(θ′, ϕ′,v′) =
|∆(θ′, ϕ′)|[∏3

i=1 Lθi

] [∏3
i=1 Lϕi

] [∏3
i=1 Lṽi

]

since, by assumption, (θ′, ϕ′,v′) ∈ R
(θ∗

,ϕ∗
,v∗)

(θ0, ϕ0, ṽ0), and by recalling Lemma 2. 2

Lemma 3.
Under Assumption 4, and the parameter setting (θ0, ϕ0, ṽ0), suppose that all 9 components of θ∗, ϕ∗

and ṽ∗ are jointly uniform and independent. Then

fv∗(v′) =
1[∏3

i=1 Lθi
(θ0, ϕ0, ṽ0)

] [∏3
i=1 Lϕi

(θ0, ϕ0, ṽ0)
] [∏3

i=1 Lṽi
(θ0, ϕ0, ṽ0)

]

×
∫

R
(θ∗

,ϕ∗
)|v∗=v′

|∆(θ′, ϕ′)| d(θ′, ϕ′) (38)

for v′ ∈ Rv∗ .

Proof
This is just an exercise in using standard results for extracting the marginal p.d.f. of v∗, evaluated
at v′, from the joint p.d.f of (θ∗, ϕ∗,v∗) when v∗ = v′: this is done by integrating out the joint p.d.f.
of (θ∗, ϕ∗,v∗), when v∗ = v′, with respect to those values taken by (θ∗,ϕ∗), (θ′, ϕ′) say, for which
(θ′, ϕ′,v′) ∈ R

(θ∗
,ϕ∗

,v∗)
(θ0,ϕ0, ṽ0). 2

High dimensional integrals are commonplace in uncertainty quantification problems, of which their
calculation is sometimes circumvented by working with an integrand defined on a lower dimensional
space if such an approximation can be warranted: Wang [17] employed just such a technique in the
calculation of certain statistical moments. In our context and problem we end up bounding integrals of
the form that appear in (38) by maximizing/minimizing |∆(·, ·)| over an appropriate hyper-rectangular
domain.

Theorem 2.
Under Assumption 4, suppose that all 9 components of θ∗, ϕ∗ and ṽ∗ are jointly uniform and inde-
pendent. Then

vol (Rv∗(θ0, ϕ0, ṽ0)) ≥ vol (Rv∗(θ0, ϕ0, ṽ0)) (39)

where

vol (Rv∗(θ0, ϕ0, ṽ0)) :=
vol (Rṽ∗(θ0, ϕ0, ṽ0))

max
{

|∆(θ′′, ϕ′′)| : (θ′′, ϕ′′) ∈ Rθ∗(θ0, ϕ0, ṽ0) × Rϕ∗(θ0, ϕ0, ṽ0)
} . (40)
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Proof
From Lemma 2 (iii), one deduces that R

(θ∗
,ϕ∗

)|v∗=v′(θ0, ϕ0, ṽ0) ⊆ Rθ∗(θ0, ϕ0, ṽ0)×Rϕ∗(θ0, ϕ0, ṽ0),

and hence
∫

R
(θ∗

,ϕ∗
)|v∗=v′ (θ0,ϕ0,ṽ0)

|∆(θ′, ϕ′)| d(θ′,ϕ′) ≤
∫

Rθ∗ (θ0,ϕ0,ṽ0)×Rϕ∗ (θ0,ϕ0,ṽ0)

|∆(θ′,ϕ′)| d(θ′, ϕ′)

≤
∫

Rθ∗ (θ0,ϕ0,ṽ0)×Rϕ∗ (θ0,ϕ0,ṽ0)

max
{

|∆(θ′′, ϕ′′)| : (θ′′, ϕ′′) ∈ Rθ∗(θ0, ϕ0, ṽ0) × Rϕ∗(θ0, ϕ0, ṽ0)
}

d(θ′, ϕ′)

= vol(Rθ∗(θ0, ϕ0, ṽ0))vol(Rϕ∗(θ0, ϕ0, ṽ0))

× max
{

|∆(θ′′, ϕ′′)| : (θ′′, ϕ′′) ∈ Rθ∗(θ0, ϕ0, ṽ0) × Rϕ∗(θ0, ϕ0, ṽ0)
}

.

However, noting that

vol(Rθ∗(θ0, ϕ0, ṽ0)) =

3∏

i=1

Lθi
(θ0, ϕ0, ṽ0)

and

vol(Rϕ∗(θ0, ϕ0, ṽ0)) =

3∏

i=1

Lϕi
(θ0, ϕ0, ṽ0)

then it now follows that

fv∗(v′) ≤
max

{
|∆(θ′′, ϕ′′)| : (θ′′, ϕ′′) ∈ Rθ∗(θ0, ϕ0, ṽ0) × Rϕ∗(θ0, ϕ0, ṽ0)

}

∏3
i=1 Lṽi

(θ0, ϕ0, ṽ0)

for v′ ∈ Rv∗(θ0,ϕ0, ṽ0). On the other hand, since

∫

Rv∗ (θ0,ϕ0,ṽ0)

fv∗(v′)dv′ = 1

then

1 ≤
max

{
|∆(θ′′,ϕ′′)| : (θ′′, ϕ′′) ∈ Rθ∗(θ0, ϕ0, ṽ0) × Rϕ∗(θ0, ϕ0, ṽ0)

}

∏3
i=1 Lṽi

(θ0, ϕ0, ṽ0)
vol(Rv∗(θ0, ϕ0, ṽ0))

and on account of the fact that vol(Rṽ∗(θ0, ϕ0, ṽ0)) =
∏3

i=1 Lṽi
(θ0, ϕ0, ṽ0), then the result follows.2

For our uncertainty quantification exercise, we shall additionally consider working with a slightly
different metric which is readily amenable to finding both lower and upper bounds that are reason-
ably tight for the application scenarios that we have in mind.

Definition 4 (Conditional Range of v∗ given (θ∗, ϕ∗)).
Under Assumption 4, and (θ′,ϕ′) ∈ Rθ∗(θ0,ϕ0, ṽ0) × Rϕ∗(θ0, ϕ0, ṽ0), define

R
v∗|(θ′

,ϕ′
)
(θ0,ϕ0, ṽ0) :=

{
w′ : ṽmin(θ0, ϕ0, ṽ0) ≤ M(θ′, ϕ′)w′ ≤ ṽmax(θ0, ϕ0, ṽ0)

}
.
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Definition 5 (Volume of conditional range of v∗ “averaged” across the angle uncertainty range).
Under Assumption 4, define

volAv(Rv∗(θ0, ϕ0, ṽ0)) := E
[
vol

(
R

v∗|(θ∗
,ϕ∗

)
(θ0, ϕ0, ṽ0)

)]
. (41)

Theorem 3.
Under Assumption 4, suppose that all 6 components of θ∗ and ϕ∗ are jointly uniform and independent.
Then

volAv(Rv∗(θ0, ϕ0, ṽ0)) ≤ volAv(Rv∗(θ0, ϕ0, ṽ0)) ≤ volAv(Rv∗(θ0, ϕ0, ṽ0)) (42)

where

volAv(Rv∗(θ0, ϕ0, ṽ0)) :=
vol(Rṽ∗(θ∗, ϕ∗, ṽ0))

max
{

|∆(θ
′′
,ϕ

′′
)| : (θ

′′
, ϕ

′′
) ∈ Rθ∗(θ0, ϕ0, ṽ0) × Rϕ∗(θ0, ϕ0, ṽ0)

} (43)

and

volAv(Rv∗(θ0,ϕ0, ṽ0)) :=
vol(Rṽ∗(θ∗, ϕ∗, ṽ0))

min
{

|∆(θ
′′
, ϕ

′′
)| : (θ

′′
, ϕ

′′
) ∈ Rθ∗(θ0, ϕ0, ṽ0) × Rϕ∗(θ0, ϕ0, ṽ0)

} . (44)

Proof
volAv(Rv∗(θ0, ϕ0, ṽ0)) = E

[
vol

(
R

v∗|(θ∗
,ϕ∗

)
(θ0, ϕ0, ṽ0)

)]

=

∫

Rθ∗ (θ0,ϕ0,ṽ0)×Rϕ∗ (θ0,ϕ0,ṽ0)

vol
(
R

v∗|(θ′
,ϕ′

)
(θ0,ϕ0, ṽ0)

) d(θ′,ϕ′)
vol(Rθ∗(θ0, ϕ0, ṽ0))vol(Rϕ∗(θ0, ϕ0, ṽ0))

=

∫

Rθ∗ (θ0,ϕ0,ṽ0)×Rϕ∗ (θ0,ϕ0,ṽ0)

vol(Rṽ∗(θ0, ϕ0, ṽ0))

|∆(θ′, ϕ′)|
d(θ′,ϕ′)

vol(Rθ∗(θ0, ϕ0, ṽ0))vol(Rϕ∗(θ0,ϕ0, ṽ0))





≥ vol(Rṽ∗ (θ0,ϕ0,ṽ0))

max

{
|∆(θ

′′
,ϕ

′′
)|:(θ

′′
,ϕ

′′
)∈Rθ∗ (θ0,ϕ0,ṽ0)×Rϕ∗ (θ0,ϕ0,ṽ0)

}

≤ vol(Rṽ∗ (θ0,ϕ0,ṽ0))

min

{
|∆(θ

′′
,ϕ

′′
)|:(θ

′′
,ϕ

′′
)∈Rθ∗ (θ0,ϕ0,ṽ0)×Rϕ∗ (θ0,ϕ0,ṽ0)

}





×
∫

Rθ∗ (θ0,ϕ0,ṽ0)×Rϕ∗ (θ0,ϕ0,ṽ0)

d(θ′, ϕ′)
vol(Rθ∗(θ0, ϕ0, ṽ0))vol(Rϕ∗(θ0, ϕ0, ṽ0))

where the third line follows using an analogous argument to the proof of Theorem 1 part (ii). Noting
that the value of the integral in the final line is equal to 1, the claimed lower and upper bounds then
follow. 2
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4 Numerical optimization of |∆(·, ·)| across Rθ
∗(θ0,ϕ0, ṽ0)×Rϕ

∗(θ0, ϕ0, ṽ0)

In the absence of readily obtainable values for the global minimum and maximum of |∆(·, ·)| across
Rθ∗(θ0, ϕ0, ṽ0) × Rϕ∗(θ0, ϕ0, ṽ0), one may wish to employ numerical optimization techniques in

order to gauge their values. In particular, we seek to find the value of the global minimum/maximum
over the search region to within an acceptable tolerance level. There is an extensive literature that
addresses the topic of numerical techniques for global optimization ([3], [4], [13], [14]).

One could simply construct equally spaced grid points for Rθ∗(θ0, ϕ0, ṽ0) and Rϕ∗(θ0, ϕ0, ṽ0),

given by R̂θ∗(θ0, ϕ0, ṽ0) and R̂ϕ∗(θ0, ϕ0, ṽ0), respectively, and calculate the value of |∆(·, ·)| for each

point within R̂θ∗(θ0,ϕ0, ṽ0)×R̂ϕ∗(θ0,ϕ0, ṽ0), in order to yield the largest/smallest of these values in

the case of maximization/minimization. In using such a grid search approach, a determination needs
to made as to what the widest permissible spacing between adjacent points within the grid ought to
be in order to ensure that the optimum is correct to within a certain level of accuracy.

In view of the fact that ∆(·, ·) is twice continuously differentiable, then we derive meaningful
bounds on both its gradient and Hessian, in order to determine the appropriate spacing between the
grid points. To this end, we first introduce the following lemma.

Lemma 4.
Define

δθ′ := (δθ′
1, δθ

′
2, δθ

′
3)

T

δϕ′ := (δϕ′
1, δϕ

′
2, δϕ

′
3)

T

δy := (δθ′T , δϕ′T )T

∇(θ,ϕ) :=

(
∂

∂θ1
,

∂

∂θ2
,

∂

∂θ3
,

∂

∂ϕ1
,

∂

∂ϕ2
,

∂

∂ϕ3

)T

g(θ,ϕ)(θ
′,ϕ′) :=

[
∇(θ,ϕ)∆(θ,ϕ)

]∣∣∣
(θ′

,ϕ′
)

H(θ,ϕ)(θ
′,ϕ′) :=

[
∇(θ,ϕ)

[
∇T

(θ,ϕ)
∆(θ, ϕ)

]]∣∣∣
(θ′

,ϕ′
)
.

Suppose that, for κ > 0, δy ∈ [−κ, κ]6. Then

∣∣|∆(θ′ + δθ′, ϕ′ + δϕ′)| − |∆(θ′, ϕ′)|
∣∣

≤ ||δy||||g(θ,ϕ)(θ
′,ϕ′)|| +

1

2
||δy||2||H(θ,ϕ)(ξ, η)||

for some (ξ, η) ∈ [θ′−κ13×1, θ
′ +κ13×1]× [ϕ′−κ13×1, ϕ

′ +κ13×1] where 13×1 is a 3×1 vector of ones,
and || · || is the 2-norm for vectors on R6 (and the induced 2-norm in the case of the corresponding
matrix operators).

Proof
By the mean value theorem (c.f. Section A.6 of [12] for e.g.),

∆(θ′ + δθ′, ϕ′ + δϕ′) = ∆(θ′, ϕ′) + δyTg(θ,ϕ)(θ
′, ϕ′) +

1

2
δyTH(θ,ϕ)(ξ, η)δy (45)

for some (ξ, η) ∈ [θ′−κ13×1, θ
′ + κ13×1] × [ϕ′−κ13×1, ϕ

′ + κ13×1].
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Hence ∣∣|∆(θ′ + δθ′, ϕ′ + δϕ′)| − |∆(θ′, ϕ′)|
∣∣ ≤

∣∣∆(θ′ + δθ′, ϕ′ + δϕ′) − ∆(θ′, ϕ′)
∣∣

=

∣∣∣∣δyTg(θ,ϕ)(θ
′, ϕ′) +

1

2
δyTH(θ,ϕ)(ξ, η)δy

∣∣∣∣ ≤ ||δy||||g(θ,ϕ)(θ
′, ϕ′)|| +

1

2
||δy||2||H(θ,ϕ)(ξ, η)||

for some (ξ, η) ∈ [θ′−κ13×1, θ
′ + κ13×1] × [ϕ′−κ13×1, ϕ

′ + κ13×1], where:
the first inequality follows from the reverse triangle inequality; the equality from (45); and the final
inequality from the triangle inequality, Cauchy-Schwarz inequality and the compatibility property for
matrix norms ([8]). 2

We will make full use of Lemma 4 towards the end of the section: however, in the meantime, one
should take the hint from this result that bounds on both ||g(θ,ϕ)(·, ·)|| and ||H(θ,ϕ)(·, ·)|| will be
required.

Proposition 2 ([6]).
(i) for each n ∈ I,

∂∆

∂θn
=

∑

π∈S3

∂∆π

∂θn

where

∂∆π

∂θn
=





−sgn(π) sin
(
θπ(1)

)
sin

(
θπ(2)

)
cos

(
ϕπ(1)

)
cos

(
ϕπ(2)

)
sin

(
ϕπ(3)

)
n = π(1)

sgn(π) cos
(
θπ(1)

)
cos

(
θπ(2)

)
cos

(
ϕπ(1)

)
cos

(
ϕπ(2)

)
sin

(
ϕπ(3)

)
n = π(2)

0 n = π(3)
;

(ii) for each n ∈ I,
∂∆

∂ϕn
=

∑

π∈S3

∂∆π

∂ϕn

where

∂∆π

∂ϕn
=





−sgn(π) cos
(
θπ(1)

)
sin

(
θπ(2)

)
sin

(
ϕπ(1)

)
cos

(
ϕπ(2)

)
sin

(
ϕπ(3)

)
n = π(1)

−sgn(π) cos
(
θπ(1)

)
sin

(
θπ(2)

)
cos

(
ϕπ(1)

)
sin

(
ϕπ(2)

)
sin

(
ϕπ(3)

)
n = π(2)

sgn(π) cos
(
θπ(1)

)
sin

(
θπ(2)

)
cos

(
ϕπ(1)

)
cos

(
ϕπ(2)

)
cos

(
ϕπ(3)

)
n = π(3)

.

Proof
Follows immediately by differentiating (17). 2

Proposition 3.
(i) for each m, n ∈ I,

∂2∆

∂θm∂θn
=

∑

π∈S3

∂2∆π

∂θm∂θn
=

∂2∆

∂θn∂θm

where

∂2∆π

∂θm∂θn
=





−sgn(π) cos
(
θπ(1)

)
sin

(
θπ(2)

)
cos

(
ϕπ(1)

)
cos

(
ϕπ(2)

)
sin

(
ϕπ(3)

)
m = n ∈ {π(1), π(2)}

−sgn(π) sin
(
θπ(1)

)
cos

(
θπ(2)

)
cos

(
ϕπ(1)

)
cos

(
ϕπ(2)

)
sin

(
ϕπ(3)

)
(m,n) ∈ {(π(1), π(2)), (π(2), π(1))}

0 π(3) ∈ {m, n}
;

(ii) for each m,n ∈ I,
∂2∆

∂ϕm∂ϕn
=

∑

π∈S3

∂2∆π

∂ϕm∂ϕn
=

∂2∆

∂ϕn∂ϕm

17



where

∂2∆π

∂ϕm∂ϕn
=





−sgn(π) cos
(
θπ(1)

)
sin

(
θπ(2)

)
cos

(
ϕπ(1)

)
cos

(
ϕπ(2)

)
sin

(
ϕπ(3)

)
m = n ∈ {π(1), π(2), π(3)}

sgn(π) cos
(
θπ(1)

)
sin

(
θπ(2)

)
sin

(
ϕπ(1)

)
sin

(
ϕπ(2)

)
sin

(
ϕπ(3)

)
(m,n) ∈ {(π(1), π(2)), (π(2), π(1))}

−sgn(π) cos
(
θπ(1)

)
sin

(
θπ(2)

)
sin

(
ϕπ(1)

)
cos

(
ϕπ(2)

)
cos

(
ϕπ(3)

)
(m,n) ∈ {(π(1), π(3)), (π(3), π(1))}

−sgn(π) cos
(
θπ(1)

)
sin

(
θπ(2)

)
cos

(
ϕπ(1)

)
sin

(
ϕπ(2)

)
cos

(
ϕπ(3)

)
(m,n) ∈ {(π(2), π(3)), (π(3), π(2))}

;

(iii) for each m, n ∈ I,
∂2∆

∂θm∂ϕn
=

∑

π∈S3

∂2∆π

∂θm∂ϕn
=

∂2∆

∂ϕn∂θm

where

∂2∆π

∂θm∂ϕn
=





sgn(π) sin
(
θπ(1)

)
sin

(
θπ(2)

)
sin

(
ϕπ(1)

)
cos

(
ϕπ(2)

)
sin

(
ϕπ(3)

)
m = π(1), n = π(1)

−sgn(π) cos
(
θπ(1)

)
cos

(
θπ(2)

)
sin

(
ϕπ(1)

)
cos

(
ϕπ(2)

)
sin

(
ϕπ(3)

)
m = π(2), n = π(1)

sgn(π) sin
(
θπ(1)

)
sin

(
θπ(2)

)
cos

(
ϕπ(1)

)
sin

(
ϕπ(2)

)
sin

(
ϕπ(3)

)
m = π(1), n = π(2)

−sgn(π) cos
(
θπ(1)

)
cos

(
θπ(2)

)
cos

(
ϕπ(1)

)
sin

(
ϕπ(2)

)
sin

(
ϕπ(3)

)
m = π(2), n = π(2)

−sgn(π) sin
(
θπ(1)

)
sin

(
θπ(2)

)
cos

(
ϕπ(1)

)
cos

(
ϕπ(2)

)
cos

(
ϕπ(3)

)
m = π(1), n = π(3)

sgn(π) cos
(
θπ(1)

)
cos

(
θπ(2)

)
cos

(
ϕπ(1)

)
cos

(
ϕπ(2)

)
cos

(
ϕπ(3)

)
m = π(2), n = π(3)

0 m = π(3)

.

Proof
The result follows by differentiating the appropriate first partial derivatives given in Proposition 2
and by noting that, on account of the fact that ∆(·, ·) is twice continuously differentiable, one can
interchange the order in which the partial derivatives are taken. 2

Lemma 5.

(i)

∣∣∣∣
∂∆

∂θn

∣∣∣∣ ≤ 4, n ∈ I; (ii)

∣∣∣∣
∂∆

∂ϕn

∣∣∣∣ ≤ 6, n ∈ I.

Proof

Observe that
∂∆

∂θn
=

∑

π∈S3

∂∆π

∂θn
=

∑

π∈S3

π(3) ̸=n

∂∆π

∂θn
+

∑

π∈S3

π(3)=n

∂∆π

∂θn
.

Working with Proposition 2 part (i) and noting that there are only 4 terms in the first sum on the
right hand side, and that the second sum is equal to zero, along with the fact that each of summands
is no greater than 1 in absolute value (since they are just finite products of sin(·)/cos(·) functions),
then ∣∣∣∣

∂∆

∂θn

∣∣∣∣ ≤
∑

π∈S3

π(3)̸=n

∣∣∣∣
∂∆π

∂θn

∣∣∣∣ ≤ 4.

Now observe that
∂∆

∂ϕn
=

∑

π∈S3

∂∆π

∂ϕn

Again, working with Proposition 2 part (ii), on account of the fact that each of the summands is no
greater than 1 in absolute value, then

∣∣∣∣
∂∆

∂ϕn

∣∣∣∣ ≤
∑

π∈S3

∣∣∣∣
∂∆π

∂ϕn

∣∣∣∣ ≤ 6.

2
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Lemma 6.

(i)

∣∣∣∣
∂2∆

∂θm∂θn

∣∣∣∣ ≤
{

4 m = n
2 m ̸= n

;

(ii)

∣∣∣∣
∂2∆

∂ϕm∂ϕn

∣∣∣∣ ≤ 6; (iii)

∣∣∣∣
∂2∆

∂θm∂ϕn

∣∣∣∣ ≤ 4.

Proof
We shall consider each of the three parts, breaking down each one for the cases m = n and m ̸= n.
(i); m = n:
Observe that

∂2∆

∂θm∂θn
=

∑

π∈S3

∂2∆π

∂θm∂θn
=

∑

π∈S3

n=π(1)

∂2∆π

∂θm∂θn
+

∑

π∈S3

n=π(2)

∂2∆π

∂θm∂θn
+

∑

π∈S3

n=π(3)

∂2∆π

∂θm∂θn
.

Each of the first two sums on the right hand side has exactly 2 terms; whereas, according to Proposition
3 (i), the last sum has no non-zero terms. According to Proposition 3 (i), each of the summands is
no greater than 1 in absolute value. Hence

∣∣∣∣
∂2∆

∂θm∂θn

∣∣∣∣ ≤
∑

π∈S3

n=π(1)

∣∣∣∣
∂2∆π

∂θm∂θn

∣∣∣∣ +
∑

π∈S3

n=π(2)

∣∣∣∣
∂2∆π

∂θm∂θn

∣∣∣∣ ≤ 2 + 2 = 4.

(i); m ̸= n:
Observe that

∂2∆

∂θm∂θn
=

∑

π∈S3

∂2∆π

∂θm∂θn
=

∑

π∈S3

(m,n)∈{(π(1),π(2)),(π(2),π(1))}

∂2∆π

∂θm∂θn
+

∑

π∈S3

π(3)∈{m,n}

∂2∆π

∂θm∂θn

noting that (m, n) /∈ {(π(1), π(2)), (π(2), π(1))} if and only if π(3) ∈ {m,n}. According to Proposition
3 (i), there are only two terms in the first sum on the right hand side, each of which is no greater
than 1 in absolute value, and each of the summands in the final sum on the right hand side is equal
to 0. Hence

∣∣∣∣
∂2∆

∂θm∂θn

∣∣∣∣ ≤
∑

π∈S3

(m,n)∈{(π(1),π(2)),(π(2),π(1))}

∣∣∣∣
∂2∆π

∂θm∂θn

∣∣∣∣ +
∑

π∈S3

π(3)∈{m,n}

∣∣∣∣
∂2∆π

∂θm∂θn

∣∣∣∣ ≤ 2 + 0 = 2.

(ii); m = n:
One can see that

∂2∆

∂ϕm∂ϕn
=

∑

π∈S3

n=π(1)

∂2∆π

∂ϕm∂ϕn
+

∑

π∈S3

n=π(2)

∂2∆π

∂ϕm∂ϕn
+

∑

π∈S3

n=π(3)

∂2∆π

∂ϕm∂ϕn
.

According to Proposition 3 (ii), each sum on the right hand side consists of two terms and that each
of those terms is no greater than 1 in absolute value. Hence

∣∣∣∣
∂2∆

∂ϕm∂ϕn

∣∣∣∣ ≤
∑

π∈S3

n=π(1)

∣∣∣∣
∂2∆π

∂ϕm∂ϕn

∣∣∣∣ +
∑

π∈S3

n=π(2)

∣∣∣∣
∂2∆π

∂ϕm∂ϕn

∣∣∣∣ +
∑

π∈S3

n=π(3)

∣∣∣∣
∂2∆π

∂ϕm∂ϕn

∣∣∣∣ ≤ 2 + 2 + 2 = 6.
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(ii); m ̸= n:
One can see that

∂2∆

∂ϕm∂ϕn
=

∑

π∈S3

(m,n)∈{(π(1),π(2)),(π(2),π(1))}

∂2∆π

∂ϕm∂ϕn

+
∑

π∈S3

(m,n)∈{(π(1),π(3)),(π(3),π(1))}

∂2∆π

∂ϕm∂ϕn
+

∑

π∈S3

(m,n)∈{(π(2),π(3)),(π(3),π(2))}

∂2∆π

∂ϕm∂ϕn
.

Again, by Proposition 3 (ii), each sum on the right hand side consists of two terms and that each of
those terms is no greater than 1 in absolute value. Hence

∣∣∣∣
∂2∆

∂ϕm∂ϕn

∣∣∣∣ ≤
∑

π∈S3

(m,n)∈{(π(1),π(2)),(π(2),π(1))}

∣∣∣∣
∂2∆π

∂ϕm∂ϕn

∣∣∣∣

+
∑

π∈S3

(m,n)∈{(π(1),π(3)),(π(3),π(1))}

∣∣∣∣
∂2∆π

∂ϕm∂ϕn

∣∣∣∣ +
∑

π∈S3

(m,n)∈{(π(2),π(3)),(π(3),π(2))}

∣∣∣∣
∂2∆π

∂ϕm∂ϕn

∣∣∣∣ ≤ 2 + 2 + 2 = 6.

(iii); m = n:
One can see that

∂2∆

∂θm∂ϕn
=

∑

π∈S3

n=π(1)

∂2∆π

∂θm∂ϕn
+

∑

π∈S3

n=π(2)

∂2∆π

∂θm∂ϕn
+

∑

π∈S3

n=π(3)

∂2∆π

∂θm∂ϕn
.

According to Proposition 3 (iii), each of the first two sums on the right hand side consists of two
terms and that each of the terms is no greater than 1 in absolute value. As for the last sum on the
right hand side, then according to Proposition 3 (iii), each of its summands is equal to 0. Hence

∣∣∣∣
∂2∆

∂θm∂ϕn

∣∣∣∣ ≤
∑

π∈S3

n=π(1)

∣∣∣∣
∂2∆π

∂θm∂ϕn

∣∣∣∣ +
∑

π∈S3

n=π(2)

∣∣∣∣
∂2∆π

∂θm∂ϕn

∣∣∣∣ +
∑

π∈S3

n=π(3)

∣∣∣∣
∂2∆π

∂θm∂ϕn

∣∣∣∣ ≤ 2 + 2 + 0 = 4.

(iii); m ̸= n:
One can see that

∂2∆

∂θm∂ϕn
=

∑

π∈S3

(m,n)∈{(π(1),π(2)),(π(2),π(1))}

∂2∆π

∂θm∂ϕn

+
∑

π∈S3

(m,n)=(π(1),π(3))

∂2∆π

∂θm∂ϕn
+

∑

π∈S3

(m,n)=(π(2),π(3))

∂2∆π

∂θm∂ϕn
+

∑

π∈S3

m=π(3)

∂2∆π

∂θm∂ϕn
.

According to Proposition 3 (iii), each summand on the right hand side is no greater than 1 in absolute
value. Also notice that the first sum on the right hand side consists of 2 terms, the second just 1
term, the third just 1 term, and that there are no non-zero terms in the final sum. Hence

∣∣∣∣
∂2∆

∂θm∂ϕn

∣∣∣∣ ≤
∑

π∈S3

(m,n)∈{(π(1),π(2)),(π(2),π(1))}

∣∣∣∣
∂2∆π

∂θm∂ϕn

∣∣∣∣
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+
∑

π∈S3

(m,n)=(π(1),π(3))

∣∣∣∣
∂2∆π

∂θm∂ϕn

∣∣∣∣ +
∑

π∈S3

(m,n)=(π(2),π(3))

∣∣∣∣
∂2∆π

∂θm∂ϕn

∣∣∣∣ +
∑

π∈S3

m=π(3)

∣∣∣∣
∂2∆π

∂θm∂ϕn

∣∣∣∣

≤ 2 + 1 + 1 + 0 = 4.

2

Proposition 4.

Suppose that (δθ′, δϕ′) ∈ [−κ, κ]3 × [−κ, κ]3, where κ > 0. Then
∣∣|∆(θ′ + δθ′, ϕ′ + δϕ′)| − |∆(θ′, ϕ′)|

∣∣ ≤ diffneighbour(κ)

where
diffneighbour(κ) := κ

√
936 + κ2

√
6156.

Proof
Setting δyT := (δθ′T , δϕ′T ), then by Lemma 4,

∣∣|∆(θ′ + δθ′, ϕ′ + δϕ′)| − |∆(θ′, ϕ′)|
∣∣

≤ ||δy||||g(θ,ϕ)(θ
′,ϕ′)|| +

1

2
||δy||2||H(θ,ϕ)(ξ, η)|| (46)

for some (ξ, η) ∈ [θ′−κ13×1, θ
′ +κ13×1]× [ϕ′−κ13×1, ϕ

′+κ13×1]. By the definition of κ, ||δy|| ≤ κ
√

6.
Denoting the Frobenius norm by || · ||F , then by Lemma 5,

||g(θ,ϕ)(θ
′, ϕ′)||2 ≤ ||g(θ,ϕ)(θ

′, ϕ′)||2F

=
∑

m∈{1,2,3}

∣∣∣∣∣

{
∂∆(θ, ϕ)

∂θm

}∣∣∣∣
(θ′

,ϕ′
)

∣∣∣∣∣

2

+
∑

n∈{1,2,3}

∣∣∣∣∣

{
∂∆(θ, ϕ)

∂ϕn

}∣∣∣∣
(θ′

,ϕ′
)

∣∣∣∣∣

2

≤ (3 × 42) + (3 × 62) = 156.

Similarly, but by invoking Lemma 6 instead, then for any (ξ∗, η∗) ∈ R3 × R3,

||H(θ,ϕ)(ξ
∗, η∗)||2 ≤ ||H(θ,ϕ)(ξ

∗,η∗)||2F

=
∑

m∈{1,2,3}

∣∣∣∣∣

{
∂2∆(θ, ϕ)

∂θ2
m

}∣∣∣∣
(ξ∗

,η∗)

∣∣∣∣∣

2

+
∑

(m,n)∈{1,2,3}2

m̸=n

∣∣∣∣∣

{
∂2∆(θ, ϕ)

∂θm∂θn

}∣∣∣∣
(ξ∗

,η∗)

∣∣∣∣∣

2

+
∑

(m,n)∈{1,2,3}2

∣∣∣∣∣

{
∂2∆(θ, ϕ)

∂ϕm∂ϕn

}∣∣∣∣
(ξ∗

,η∗)

∣∣∣∣∣

2

+ 2
∑

(m,n)∈{1,2,3}2

∣∣∣∣∣

{
∂2∆(θ,ϕ)

∂θm∂ϕn

}∣∣∣∣
(ξ∗

,η∗)

∣∣∣∣∣

2

≤ (3 × 42) + (6 × 22) + (9 × 62) + 2(9 × 42) = 684.

It now follows that an upper bound on (46) is given by

κ
√

6
√

156 + 3κ2
√

684 i.e. κ
√

936 + κ2
√

6156.

2
Next, we introduce functions for rounding any non-negative real number to the nearest integer,

and also to m decimal places, respectively.
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Definition 6 (rounding functions).
(i) For x ∈ [0, ∞), define

round(x) :=

{
⌊x⌋ if x − ⌊x⌋ < 0.5
⌈x⌉ if x − ⌊x⌋ ≥ 0.5

.

(ii)For y ∈ [0, ∞) and m ∈ Z+, define

round(y,m) :=
round(10my)

10m
.

Theorem 4. Consider a grid search optimization procedure in which:
(i) ϵ := 10−n for some n ∈ Z+;
(ii) a finite κϵ-net of search points is constructed within the search domain such that no two compo-
nentwise adjacent points are spaced out by more than κϵ, where

κϵ :=
−

√
936 +

√
936 + ϵ

√
98496√

24624
;

(iii) the value of round(|∆(·, ·)|, n) is available at each point on the κϵ-net.

Then if one chooses the maximum/minimum value of round(|∆(·, ·)|, n) on the κϵ-net, call it ∆̂opt,
then the true maximim/minimum value of |∆(·, ·)| across the entire search domain, call it ∆opt, will
be such that

∆opt ∈ [∆̂opt − 1.05ϵ, ∆̂opt + 1.05ϵ).

Proof
Consider the equation

diffneighbour(κ) = ϵ,

i.e.
κ
√

936 + κ2
√

6156 = ϵ.

Then it can be seen that κϵ is the positive root of the above equation. From Proposition 4, it follows
that any point within a 6 dimensional hypercube of length 2κϵ has a |∆(·, ·)| value which differs by no
more than ϵ from the |∆(·, ·)| value of the point at the centre of the hypercube. Since ∆̂opt is correct

to n decimal places, then it follows that ∆̂opt = round(x, n), where

x ∈
[
∆̂opt − 10−(n+1)

2
, ∆̂opt +

10−(n+1)

2

)
.

Hence

∆opt ∈
[
∆̂opt − 10−(n+1)

2
− ϵ, ∆̂opt +

10−(n+1)

2
+ ϵ

)

i.e.

∆opt ∈
[
∆̂opt − 10−(n+1)

2
− 10−n, ∆̂opt +

10−(n+1)

2
+ 10−n

)
.

However
10−(n+1)

2
+ 10−n =

(
1 +

1

20

)
10−n = 1.05ϵ.

2
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5 Numerical Examples

Unless specified to the contrary, speeds are expressed in metres per second, and angles in radians.

Example 1: fixed demanded angles - large |∆(θ0, ϕ0)|

ṽT
0 = (16.12, −16.73, 0.43);

θT
0 = (0, 2π/3, 4π/3) = (0, 2.0944, 4.1888);

ϕT
0 = (0.7834, 0.7834, 0.7834);

ṽmin(θ0, ϕ0, ṽ0)
T = (16.07, −16.78, 0.38); ṽmax(θ0, ϕ0, ṽ0)

T = (16.17, −16.68, 0.48);

vol (Rṽ∗(θ0, ϕ0, ṽ0)) = 0.001;

The above provides the numerical values for the nominal input parameters, (θ0, ϕ0, ṽ0), and indicates
that the uncertainty around each component of the Doppler velocity vector is ±0.05 metres per second.
The value of |∆(·, ·)| at the nominal angle settings, as well as that of the nominal reconstructed velocity,
can also be computed.

|∆(θ0, ϕ0)| = 0.9204.

Reconstructed velocity v0 = M−1(θ0,ϕ0)ṽ0 (22.8365, -13.9830, -0.0851)
vol (Rv∗(θ0, ϕ0, ṽ0)) 0.0011

A plot depicting the value of the nominal reconstructed velocity vector, and in relation to the region
of output uncertainty, is presented in Figure 2.
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Figure 2: Plots of reconstructed velocity (indicated by the dot) in terms of Cartesian co-ordinates,
embedded within the region of uncertainty (parellepiped), from general viewpoint [top left] along with
orthographic projections, for a large |∆(θ0, ϕ0)| scenario.

Example 2: fixed demanded angles - small |∆(θ0, ϕ0)|

A similar exercise to the one of Example 1 is carried out here, except that this time the eleva-
tion angles are chosen to be substantially lower, to the extent that the value of |∆(θ0, ϕ0)| is rendered
to be small.

ṽT
0 = (16.12, −16.73, 0.43);

θT
0 = (0, 2π/3, 4π/3) = (0, 2.0944, 4.1888);

ϕT
0 = (π/30, π/30, π/30) = (0.1047, 0.1047, 0.1047);

ṽmin(θ0, ϕ0, ṽ0)
T = (16.07, −16.78, 0.38); ṽmax(θ0, ϕ0, ṽ0)

T = (16.17, −16.68, 0.48);

vol (Rṽ∗(θ0, ϕ0, ṽ0)) = 0.001;

|∆(θ0, ϕ0)| = 0.2686.

Reconstructed velocity v0 = M−1(θ0, ϕ0)ṽ0 (16.2691, -9.9617, -0.5746)
vol (Rv∗(θ0,ϕ0, ṽ0)) 0.0037
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Figure 3: Plots of reconstructed velocity (indicated by the dot) in terms of Cartesian co-ordinates,
embedded within the region of uncertainty (parellepiped), from general viewpoint [top left] along with
orthographic projections, for a small |∆(θ0, ϕ0)| scenario.

Example 3: uncertain demanded angles - large |∆(θ0, ϕ0)|

In contradistinction to the previous examples, here we additionally allow for uncertainty in relation
to both the azimuthal and elevation angles.

ṽT
0 = (16.12, −16.73, 0.43);

θT
0 = (0, 2π/3, 4π/3) = (0, 2.0944, 4.1888);

ϕT
0 = (π/4, π/4, π/4) = (0.7854, 0.7854, 0.7854);

ṽmin(θ0, ϕ0, ṽ0)
T = (16.07, −16.78, 0.38); ṽmax(θ0, ϕ0, ṽ0)

T = (16.17, −16.68, 0.48);

θmin(θ0,ϕ0, ṽ0)
T = (6.2822, 2.0934, 4.1878); θmax(θ0, ϕ0, ṽ0)

T = (0.0010, 2.0954, 4.1898);

ϕmin(θ0,ϕ0, ṽ0)
T = (0.7844, 0.7844, 0.7844); ϕmax(θ0, ϕ0, ṽ0)

T = (0.7864, 0.7864, 0.7864);

vol (Rṽ∗(θ0, ϕ0, ṽ0)) = 0.001;

|∆(θ0, ϕ0)| = 0.9186.

Reconstructed velocity v0 = M−1(θ0,ϕ0)ṽ0 (22.8822, -14.0109, -0.0849)
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We next consider the calculation of bounds for the minimum/maximum value of |∆(·, ·)| across
Rθ∗(θ0, ϕ0, ṽ0) × Rϕ∗(θ0, ϕ0, ṽ0). In order to ascertain the spacing along each of the 6 dimensions

of an appropriate κ0.01-net, we evaluate the formula for κϵ given in Theorem 4, with ϵ = 0.01: this
yields a value for κ0.01 equal to 0.00032658669. Therefore the number of sections (assumed to be of
equal length, for simplicity) separated by points on the κ0.01-net along each dimension should be at
least

0.002/0.00032658669 = 6.1239482846 ≈ 7

in order to satisfy the requirement of locating the optimum to within ±0.0105. In our particular
implementation of the grid search optimization, the section lengths will be set equal to 0.0002, corre-
sponding to 10 sections (and therefore 11 points) along each dimension.
The smallest value of |∆(·, ·)| on the κ0.01-net was found to be 0.9176 (to 4 d.p.) and thus, according
to Theorem 4, it follows that

0.9095 = 0.92 − 0.0105 ≤ min
Rθ∗ (θ0,ϕ0,ṽ0)×Rϕ∗ (θ0,ϕ0,ṽ0)

|∆(θ,ϕ)| ≤ 0.92 + 0.0105 = 0.9305.

The largest value of |∆(·, ·)| on the κ0.01-net was found to be 0.9195 (to 4 d.p.). Again, according to
Theorem 4, it follows that

0.9095 = 0.92 − 0.0105 ≤ max
Rθ∗ (θ0,ϕ0,ṽ0)×Rϕ∗ (θ0,ϕ0,ṽ0)

|∆(θ,ϕ)| ≤ 0.92 + 0.0105 = 0.9305.

Recall from Theorem 2 that

vol (Rv∗(θ0, ϕ0, ṽ0)) ≥ vol (Rṽ∗(θ0, ϕ0, ṽ0))

max
{

|∆(θ
′′
, ϕ

′′
)| : (θ

′′
, ϕ

′′
) ∈ Rθ∗(θ0, ϕ0, ṽ0) × Rϕ∗(θ0, ϕ0, ṽ0)

}

and that from Theorem 3

volAv(Rv∗(θ0,ϕ0, ṽ0))





≥ vol(Rṽ∗ (θ0,ϕ0,ṽ0))

max

{
|∆(θ

′′
,ϕ

′′
)|:(θ

′′
,ϕ

′′
)∈Rθ∗ (θ0,ϕ0,ṽ0)×Rϕ∗ (θ0,ϕ0,ṽ0)

}

≤ vol(Rṽ∗ (θ0,ϕ0,ṽ0))

min

{
|∆(θ

′′
,ϕ

′′
)|:(θ

′′
,ϕ

′′
)∈Rθ∗ (θ0,ϕ0,ṽ0)×Rϕ∗ (θ0,ϕ0,ṽ0)

}
.

If one uses 0.9305 rather than max
Rθ∗ (θ0,ϕ0,ṽ0)×Rϕ∗ (θ0,ϕ0,ṽ0)

|∆(θ, ϕ)| in the denominator of the lower bound,

and 0.9095 rather than min
Rθ∗ (θ0,ϕ0,ṽ0)×Rϕ∗ (θ0,ϕ0,ṽ0)

|∆(θ, ϕ)| in the denominator of the upper bound, then it

follows that, to 4 s.f.,

volAv(Rv∗(θ0,ϕ0, ṽ0))
≥ 0.001 × 1

0.9305 = 0.001 × 1.07469102633 = 0.001075
vol(Rv∗(θ0, ϕ0, ṽ0))

and

volAv(Rv∗(θ0,ϕ0, ṽ0)) ≤ 0.001 × 1
0.9095 = 0.001 × 1.09950522265 = 0.001100
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Figure 4: Plots of reconstructed velocity (indicated by the dot) in terms of Cartesian co-ordinates,
embedded within the “nominal” region of uncertainty (parellepiped), Rv∗|(θ0,ϕ0)(θ0, ϕ0, ṽ0), from

general viewpoint [top left] along with orthographic projections, for a large |∆(θ0, ϕ0)| scenario.

In essence, therefore, the lack of perfect orthogonality in the LIDAR beam orientations leads to
an inflation of the volumetric uncertainty brought about by the Doppler velocity measurements of
between 7% and 10%.

Example 4: uncertain demanded angles - small |∆(θ0, ϕ0)|

The calculations for this example follow along similar lines as those for the previous one, except that
the nominal elevation angles (and hence the associated angle ranges) are taken to be much smaller,
so as to render |∆(θ0, ϕ0)| and the minimum/maximum value of |∆(·, ·)| across Rθ∗(θ0, ϕ0, ṽ0) ×
Rϕ∗(θ0, ϕ0, ṽ0) to be small.

ṽT
0 = (16.12, −16.73, 0.43);

θT
0 = (0, 2π/3, 4π/3) = (0, 2.0944, 4.1888);

ϕT
0 = (π/60, π/60, π/60) = (0.0524, 0.0524, 0.0524);

ṽmin(θ0, ϕ0, ṽ0)
T = (16.07, −16.78, 0.38); ṽmax(θ0, ϕ0, ṽ0)

T = (16.17, −16.68, 0.48);

θmin(θ0,ϕ0, ṽ0)
T = (6.2822, 2.0934, 4.1878); θmax(θ0, ϕ0, ṽ0)

T = (0.0010, 2.0954, 4.1898);

ϕmin(θ0,ϕ0, ṽ0)
T = (0.0514, 0.0514, 0.0514); ϕmax(θ0, ϕ0, ṽ0)

T = (0.0534, 0.0534, 0.0534);
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vol (Rṽ∗(θ0,ϕ0, ṽ0)) = 0.001;

|∆(θ0, ϕ0)| = 0.1357.

Reconstructed velocity v0 = M−1(θ0, ϕ0)ṽ0 (16.2024, -9.9208, -1.1455)

The smallest value of |∆(·, ·)| on the κ0.01-net was found to be 0.1331 (to 4 d.p.) and thus, according
to Theorem 4, it follows that

0.1195 = 0.13 − 0.0105 ≤ min
Rθ∗ (θ0,ϕ0,ṽ0)×Rϕ∗ (θ0,ϕ0,ṽ0)

|∆(θ,ϕ)| ≤ 0.13 + 0.0105 = 0.1405.

The largest value of |∆(·, ·)| on the κ0.01-net was found to be 0.1383 (to 4 d.p.). Again, according to
Theorem 4, it follows that

0.1295 = 0.14 − 0.0105 ≤ max
Rθ∗ (θ0,ϕ0,ṽ0)×Rϕ∗ (θ0,ϕ0,ṽ0)

|∆(θ,ϕ)| ≤ 0.14 + 0.0105 = 0.1505.

Using 0.1505 rather than max
Rθ∗ (θ0,ϕ0,ṽ0)×Rϕ∗ (θ0,ϕ0,ṽ0)

|∆(θ,ϕ)|

and 0.1195 rather than min
Rθ∗ (θ0,ϕ0,ṽ0)×Rϕ∗ (θ0,ϕ0,ṽ0)

|∆(θ, ϕ)|, then it follows that, to 4 s.f.,

volAv(Rv∗(θ0,ϕ0, ṽ0))
≥ 0.001 × 1

0.1505 = 0.001 × 6.64451827243 = 0.006645
vol(Rv∗(θ0, ϕ0, ṽ0))

and

volAv(Rv∗(θ0,ϕ0, ṽ0)) ≤ 0.001 × 1
0.1195 = 0.001 × 8.36820083682 = 0.008368

In this case, the distinct lack of orthogonality in the LIDAR beam orientations leads to an inflation
of the volumetric uncertainty brought about by the Doppler velocity measurements of somewhere
between 500% and 800%: this only further confirms that configurations corresponding to low values
of |∆(·, ·)| should be avoided.
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Figure 5: Plots of reconstructed velocity (indicated by the dot) in terms of Cartesian co-ordinates,
embedded within the “nominal” region of uncertainty (parellepiped), Rv∗|(θ0,ϕ0)(θ0, ϕ0, ṽ0), from

general viewpoint [top left] along with orthographic projections, for a small |∆(θ0, ϕ0)| scenario.

6 Summary of Main Results and Concluding Remarks

For a given nominal input parameter setting (θ0,ϕ0, ṽ0), we have presented a characterization, and
quantification of the size of, the set of points, Rv∗(θ0, ϕ0, ṽ0), occupied by the reconstructed velocity
vector, v∗, when the uncertainty around either certain, or all, of the input parameters has compact
interval support (and, additionally, where necessary, its components are independent and uniformly
distributed). We summarize below, under the italicized headings, the main results that have been
established.

No uncertainty around the demanded angle configurations, (θ0, ϕ0), but uniform uncertainty
around the Doppler velocity readings, ṽ0, that appear on the “LIDAR computer”:
• Rv∗(θ0, ϕ0, ṽ0) takes the form of a parallelepiped;
• the distribution of v∗ adheres to Lebesgue measure within that set;
• the volume of Rv∗(θ0,ϕ0, ṽ0) is given by the volume of the set occupied by ṽ∗ divided through by
the volume of the parallelepiped whose edges are of unit length and whose orientations are governed
by (θ0, ϕ0).

Uniform uncertainty around both the demanded angle configurations, (θ0, ϕ0), and Doppler velocity
readings, ṽ0, that appear on the “LIDAR computer”:
• the conditional range of v∗ given (θ′, ϕ′) ∈ Rθ∗(θ0, ϕ0, ṽ0) × Rϕ∗(θ0, ϕ0, ṽ0), namely
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R
v∗|(θ′

,ϕ′
)
(θ0,ϕ0, ṽ0), takes the form of a parallelepiped;

• a lower bound on the volume of Rv∗(θ0, ϕ0, ṽ0) is given by the volume of the set occupied by ṽ∗

divided through by the maximized volume, over the angle uncertainty range that is parameterized by
(θ0, ϕ0), of the parallelepiped whose edges comprise the Doppler unit vectors;
• a lower bound on the “averaged volume” of Rv∗(θ0, ϕ0, ṽ0) (with respect to the angle uncertainty
range parameterized by (θ0, ϕ0)) is given by the volume of the set occupied by ṽ∗ divided through
by the maximized volume, over the angle uncertainty range that is parameterized by (θ0, ϕ0), of the
parallelepiped whose edges comprise the Doppler unit vectors;
• an upper bound on the “averaged volume” of Rv∗(θ0,ϕ0, ṽ0) (with respect to the angle uncertainty
range parameterized by (θ0, ϕ0)) is given by the volume of the set occupied by ṽ∗ divided through
by the minimized volume, over the angle uncertainty range that is parameterized by (θ0, ϕ0), of the
parallelepiped whose edges comprise the Doppler unit vectors.

Grid Search Optimization Algorithm for maximimization/minimization of |∆(·, ·)|
over Rθ∗(θ0, ϕ0, ṽ0) × Rϕ∗(θ0, ϕ0, ṽ0):

• bounds are provided on the gradient function of ∆(·, ·);
• bounds are provided on the Hessian function of ∆(·, ·);
• for a given ϵ = 10−n, n ∈ Z+, a procedure is presented that generates bounds on ∆opt, i.e. the max-
imum/minimum of |∆(·, ·)| over Rθ∗(θ0, ϕ0, ṽ0) × Rϕ∗(θ0, ϕ0, ṽ0), such that ∆opt is within ±1.05ϵ

of the maximum/minimum value of |∆(·, ·)| calculated, to n decimal places, across a specially con-
structed search grid of points.

LIDAR placement policy advice:
From the structure of the volumetric bounds that have been derived in this paper, the overall con-
clusion and practitioner advice can be summarized as follows:-
• to ensure that the smallest achievable reconstructed volume (whether actual, or averaged) is kept
to a minimum, it is suggested that one chooses nominal LIDAR orientations that are either mutually
orthogonal, or else for which |∆(·, ·)| is as large as possible;
• to ensure that the largest achievable reconstructed volume (whether actual, or averaged) is kept to
a minimum, it is suggested that one chooses nominal LIDAR orientations that are either mutually
orthogonal, or else for which |∆(·, ·)| is as large as possible.

Acknowledgements

ACB would like to acknowledge Birkbeck School Research Grant funding for the project Uncertainty
Quantification for a Convergent Beam Triple LIDAR.

References

[1] Anton, H. and Rorres, C. [2015], Elementary Linear Algebra with Supplemental Applications,
Wiley.

[2] Billingsley, P. [1995], Probability and Measure, Third edn, Wiley.

30



[3] Breiman, L. and Cutler, A. [1993], ‘A deterministic algorithm for global optimization’, Mathe-
matical Programming 58.

[4] Hendrix, E. M. T. and G.-Toth, B. [2010], Introduction to Nonlinear and Global Optimization,
Springer.

[5] Hogg, R. V., McKean, J. W. and Craig, A. T. [2005], Introduction to Mathematical Statistics,
Pearson Prentice Hall.

[6] Holtom, T. C. and Brooms, A. C. [2020], ‘Error Propagation Analysis for a Convergent Beam
Triple LIDAR’, Applied Numerical Mathematics 150.

[7] Jiang, C., Bi, R. G., Lu, G. Y. and Han, X. [2013], ‘Structural reliability analysis using non-
probabilistic convex model’, Comput. Methods Appl. Mech. Engrg. 254.

[8] Kreyszig, E. [1989], Introductory Functional Analysis with Applications, Revised edn, John Wiley
& Sons.

[9] Liu, J., Cai, H., Jiang, C., Han, X. and Zhang, Z. [2018], ‘An interval inverse method based on
high dimensional model representation and affine arithmetic’, Applied Mathematical Modelling
63.

[10] Liu, J., Liu, H., Jiang, C., Han, X., Zhang, D. Q. and Hu, Y. I. [2018], ‘A new measurement
for structural uncertainty propagation based on pseudo-probability distribution’, Applied Math-
ematical Modelling 63.

[11] Liu, J., Meng, X., Xu, C., Zhang, D. and Jiang, C. [2018], ‘Forward and inverse structural
uncertainty propagations under stochastic variables with arbitrary probability distributions’,
Comput. Methods Appl. Mech. Engrg. 342.

[12] Luenberger, D. G. [2005], Introduction to Linear and Nonlinear Programming, Second edn,
Springer.

[13] Pardalos, P. M., Romeijn, H. E. and Tuy, H. [2000], ‘Recent developments and trends in global
optimization’, J. Comput. Appl. Math. 124.
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