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Abstract

A collection of disjoint subsets A = {A1, A2, . . . , Am} of a finite abelian group is said to
have the bimodal property if, for any non-zero group element δ, either δ never occurs as a
difference between an element of Ai and an element of some other set Aj , or else for every
element ai in Ai there is an element aj ∈ Aj for some j 6= i such that ai − aj = δ. This
property arises in various familiar situations, such as the cosets of a fixed subgroup or in a
group partition, and has applications to the construction of optimal algebraic manipulation
detection (AMD) codes. In this paper, we obtain a structural characterisation for bimodal
collections of sets.

1 Introduction

Let G be a finite abelian group of order n, written additively, with identity 0. Let A =
{A1, A2, . . . , Am} be a collection of disjoint subsets of G. Then A is said to have the bimodal
property if, for any non-identity element δ of G, either δ never occurs as a difference between
an element of Ai and an element of some other set Aj , or else for every element ai in Ai there
is an element aj ∈ Aj for some j 6= i such that ai − aj = δ.

Let ki = |Ai| for i = 1, 2, . . . ,m. For each δ ∈ G \ {0}, we let

Ni(δ) = |{(ai, aj) : δ = ai − aj , ai ∈ Ai, aj ∈ Aj , i 6= j}|.

Then A has the bimodal property if Ni(δ) ∈ {0, ki} for i = 1, 2, . . . ,m.
Although this is a very natural property which occurs in many familiar settings, it seems

that the property has not received attention until now. It has applications to cryptography, hav-
ing been defined by Huczynska and Paterson [5] in the context of studying reciprocally-weighted
external difference families (RWEDFs), which were shown to exhibit this property in certain pa-
rameter situations. RWEDFs correspond to optimal Algebraic Manipulation Detection (AMD)
codes [1, 6], and better understanding of this property can lead to new constructions for such
codes.

Perhaps the most natural occurrence of this property is as follows:

Lemma 1.1. Let H be a subgroup of an abelian group G. If C = {C1, . . . , Cm} is a collection
of cosets of H, then C has the bimodal property.

Proof. For fixed i and 1 ≤ j ≤ m with i 6= j, the sets Ci −Cj comprise m− 1 distinct cosets of
H. For any δ ∈ Ci−Cj and every x ∈ Ci there exists a unique y ∈ Cj such that x− y = δ. For
any δ ∈ G \ ∪j 6=i(Ci − Cj), the element δ occurs zero times as a difference out of Ci.

Example 1.2. Let G = Z10, H = {0, 5} and let C1 = {1, 6}, C2 = {3, 8} and C3 = {4, 9}. We
observe that N3(1) = N3(3) = N3(6) = N3(8) = 2 = k3, whereas N3(2) = N3(4) = N3(5) =
N3(7) = N3(9) = 0. A similar check of the values of N1(δ) and N2(δ) for δ ∈ Z10 \ {0} shows
that A = {A1, A2, A3} has the bimodal property.
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This is such a natural setting in which the bimodal property occurs, that one might initially
suspect that cosets of a fixed subgroup are the only nontrivial collections of sets with this
property. However, we shall show that this is not in fact the case, and that a much richer
structure arises.

In Section 2 of this paper we make some fundamental observations about properties of
bimodal collections of sets, and give examples and techniques for creating new from old. In
Section 3 we classify bimodal collections of sets by considering certain subgroups associated to
them, and we demonstrate that every such collection can be constructed in a suitable group.

2 Tools and Constructions

The bimodal property is defined in terms of differences between elements lying in distinct mem-
bers of a collection A = {A1, A2, . . . , Am} of disjoint subsets of a group G (external differences).

The following notation will be used throughout the paper. Let A =
⋃m

i=1Ai, and for j with
1 ≤ j ≤ m let Bj = A \ Aj . So for each 1 ≤ j ≤ m, A = Aj t Bj (where the notation S t T
denotes the union of disjoint sets S and T ). Then

Nj(δ) = |{(a, b) : δ = a− b, a ∈ Aj , b ∈ Bj}|.

We will also find it useful to consider differences between elements within the same subset
(internal differences).

Definition 2.1. Let Ai be a subset of a finite abelian group G. We define the internal difference
group Hi of Ai to be the subgroup of G generated by all elements of the form x−y with x, y ∈ Ai.

In Section 1 we saw a bimodal collection of sets where each set was a coset of a subgroup
H of G. In this case we have Hi = H for each set Ai in the collection.

Remark 2.2. The group Hi has the property that Ai is contained in a single coset of Hi, and is
the smallest subgroup of G with this property. In the case where |Ai| = 1, the group Hi = {0}
and its cosets are the singleton sets.

We may view singleton sets as cosets of the identity subgroup; throughout what follows we
will take this approach.

For any element a ∈ Ai we have that a + Hi is the coset of Hi containing Ai. Throughout
what follows we will select an arbitrary element ai ∈ Ai for i = 1, 2, . . . ,m and represent the
coset of Hi containing Ai by ai +Hi.

The following useful characterisation of bimodal collections of sets was established in [5].

Theorem 2.3 ([5]). Let G be a finite abelian group and let A = {A1, A2, . . . , Am} be a collection
of disjoint subsets of G. Then A has the bimodal property if and only if for each i the set Bi is
a union of cosets of the subgroup Hi.

Remark 2.4. Theorem 2.3 tells us that if an element v is contained in Bj for some j with
1 ≤ j ≤ m then Bj contains the entire coset v + Hj , i.e. we have that v + hj ∈ Bj for all
hj ∈ Hj .

Example 2.5. (i) A family of disjoint subsets of an abelian group G in which all subsets
have size 1 is bimodal by Theorem 2.3.

(ii) A family consisting of a single subset of an abelian group G is trivially bimodal.
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We now exhibit a non-trivial example of a bimodal collection of sets that appeared in [5],
which may at first seem surprising. It is very different in structure to our coset example, but
also represents a classic and much-studied group theory situation. For a group G we will let G∗

denote the set of nonzero elements of G.

Definition 2.6. Let G be a finite group. If G has subgroups S1, S2, . . . , Sm with the property
that S∗1 , S

∗
2 , . . . , S

∗
m partition G∗, then the collection of subgroups S1, S2, . . . , Sm is called a

group partition of G. A group partition is called trivial if m = 1.

Lemma 2.7 ([5]). Let the collection of subgroups {S1, . . . , Sm} be a group partition of an abelian
group G where |Si| > 2 for each i. Then the collection of sets C = {S∗1 , . . . , S∗m} has the bimodal
property.

Proof. For each i, the internal difference group of S∗i is Si. It follows directly that the union⋃
j 6=i S

∗
j is G \ Si, a union of cosets of Si.

Example 2.8. Let G = Z3 × Z3. Let A1 = {(1, 1), (2, 2)}, A2 = {(0, 1), (0, 2)}, A3 =
{(1, 2), (2, 1)} and A4 = {(1, 0), (2, 0)}. Observe that for each Ai, the subgroup Hi is precisely
Ai ∪ {0}. Then the collection A = {A1, A2, A3, A4} is bimodal.

The topic of group partitions has been studied extensively; see Zappa [7] for a comprehensive
survey. In the abelian case, the groups which possess non-trivial group partitions are completely
characterised as the elementary abelian p-groups. These can be viewed as partitions of vector
spaces over Zp, and have been widely studied in this context; for example, see Heden [4].

In fact the construction of Lemma 2.7 may be extended to give examples in more general
groups:

Lemma 2.9 ([5]). Let A be a collection A = {A1, . . . , Am} of disjoint subsets of an abelian
group G that partition G∗ and have the property that any Ai with |Ai| > 1 is of the form S∗ for
some subgroup S ≤ G. Then A is bimodal.

Example 2.10. Let G = Z12. Then G has a subgroup {0, 4, 8} of order 3 and a subgroup
{0, 3, 6, 9} of order 4. The sets {4, 8}, {3, 6, 9}, {1}, {2}, {5}, {7}, {10}, {11} form a bimodal
collection.

Having seen some examples of constructions of bimodal collections of sets, we now introduce
some approaches to constructing new collections from old, which we exploit in Section 3. First
we observe that a bimodal collection can undergo a shift without its bimodality being affected.

Lemma 2.11. Let A = {A1, A2, . . . , Am} be a bimodal collection of disjoint subsets of an
abelian group G. Then the collection A′ given by {A1 + g,A2 + g, . . . , Am + g} where g ∈ G is
also bimodal.

Proof. The bimodal property is defined entirely in terms of differences between elements in
different sets of the collection. The value of a difference ai− aj does not change if g is added to
both ai and aj , and hence the result follows immediately.

We may also replace a coset by a partition of that coset into smaller cosets, a process we
will refer to as subdivision:

Theorem 2.12. Let A = {A1, A2, . . . , Am} be a bimodal collection of disjoint subsets of an
abelian group G. Suppose that Ai is a coset of Hi for some i. Let A1

i , A
2
i , . . . , A

r
i be disjoint

subsets partitioning Ai, having internal difference groups H1
i , H

2
i , . . . ,H

r
i respectively, and which

possess the property that for j = 1, 2, . . . , r the set Aj
i is a coset of Hj

i . Then the collection
A′ = {A1, A2, . . . , Ai−1, A1

i , A
2
i , . . . , A

r
i , Ai+1, . . . , Am} satisfies the bimodal property. We shall

refer to A′ as a subdivision of A.
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Proof. The union of elements in the collection is not changed by subdivision, so for sets Aj with
j 6= i it is still the case that Bj is a union of cosets of Hj . Consider a set At

i; we will denote
A \ At

i by Bt
i . We note that Ht

i ≤ Hi, and so any coset of Hi is a union of cosets of Ht
i . Now,

Bt
i = (Ai \ At

i) ∪ Bi. We have that Bi is a union of cosets of Ht
i since it is a union of cosets of

Hi, and Ai \At
i is a union of cosets of Ht

i as Ai is a union of cosets of Hi and At
i is itself a coset

of Ht
i . Thus we deduce that the collection is bimodal as required.

We observe that subdivision can be applied repeatedly if desired, and the resulting collection
will still be bimodal.

Example 2.13. Let G be the elementary abelian group of order 8. Write it as G = Z2 ×
Z2 × Z2,+). Then by Example 2.5, A = {G} is trivially bimodal. We can apply subdivision to
obtain A′, as follows. Define the following subgroups of G:

S1 = {(0, 0, 0), (0, 0, 1)};
S2 = {(0, 0, 0), (1, 0, 0)};
S3 = {(0, 0, 0), (0, 1, 1)};
S4 = {(0, 0, 0), (1, 1, 0)}.

Then G may be partitioned as:

A1 = S1 = {(0, 0, 0), (0, 0, 1)};
A2 = (0, 1, 0) + S2 = {(0, 1, 0), (1, 1, 0)};
A3 = (1, 0, 0) + S3 = {(1, 0, 0), (1, 1, 1)};
A4 = (0, 1, 1) + S4 = {(0, 1, 1), (1, 0, 1)}.

Take A′ = {A1, A2, A3, A4}. This is bimodal by Theorem 2.12. To see this directly, observe
that the differences out of A1 comprise every element 2 times except the elements of S1 which
occur zero times; and in general the differences out of Ai comprise every element twice except
the elements of Si which occur 0 times. This means that, for δ ∈ G∗, if δ is one of the four
non-zero elements of ∪1≤i≤4Si then Ni(δ) = 0 for precisely one value of i ∈ {1, 2, 3, 4}, whereas
if δ is one of the three elements of G∗ not in ∪1≤i≤4Si, then Ni(δ) > 0 for all i.

3 Classification of bimodal collections of sets

We will now develop a complete characterisation of bimodal collections of sets, through a se-
ries of results that classify them according to the relationship between their sets Ai and the
corresponding internal difference groups Hi.

Remark 3.1. For a bimodal collection A = {A1, A2, . . . , Am} of disjoint subsets of an abelian
group G we have |Ai| ≤ |Hi| for each i. Without loss of generality, we suppose that the sets
are labelled so that for i = 1, 2, . . . , rA we have |Ai| < |Hi|, and for i = rA + 1, rA + 2, . . . ,m we
have |Ai| = |Hi|, i.e. Ai fills the coset ai +Hi for i > rA .

The following technical lemma will be useful in what follows.

Lemma 3.2. Let A be a collection A1, A2, . . . , Am of disjoint subsets of G that has the bimodal
property. Then Ak ∩ (aj +Hj) = ∅ for any k 6= j.

Proof. Bj is a union of cosets of Hj , which does not include the coset aj + Hj . For k 6= j, we
have Ak ⊆ Bj , and so Ak ∩ (aj +Hj) = ∅.

In other words, not only is Ak disjoint from Aj when k 6= j, it is also disjoint from the entire
coset of Hj that contains Aj .
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3.1 The case when rA ≥ 2

We will consider three cases: the situation when there are at least two sets Ai that do not fill
ai +Hi (i.e. rA ≥ 2), the case when precisely one Ai does not fill ai +Hi (i.e. rA = 1), and the
case when each of the sets in A fills the coset of Hi that contains it (rA = 0).

Lemma 3.3. Let A = {A1, A2, . . . , Am} be a bimodal collection of disjoint subsets of an abelian
group G with rA ≥ 2. Then for i, j ≤ rA with i 6= j we have that Hi is not a subgroup of Hj and
Hj is not a subgroup of Hi.

Proof. Let A = {A1, A2, . . . , Am} be a bimodal collection of disjoint subsets of an abelian group
G with rA ≥ 2, and suppose that for some i, j ≤ rA with i 6= j we haveHi ≤ Hj . Since |Ai| < |Hi|
there are elements of ai +Hi ⊆ ai +Hj that are not contained in Bj , and by Lemma 3.2 these
elements are not contained in any other set in A. It follows that Bj is not a union of cosets of
Hj , and so A is not bimodal.

Proposition 3.4. Let A = {A1, A2, . . . , Am} be a bimodal collection of disjoint subsets of an
abelian group G with rA ≥ 2. Then there exists a nonempty subset DA ⊆ G such that:

1. ai +Hi = Ai tDA for i ≤ rA;

2. (ai +Hi) ∩ (aj +Hj) = DA for any i, j ∈ 1, 2, . . . , rA with i 6= j;

3. DA is itself a coset of a subgroup of G.

Proof. 1. Let DA = (a1 + H1) \ A1. We will show that DA = (ai + Hi) \ Ai for each i with
1 ≤ i ≤ rA . Let v ∈ DA . We observe that v /∈ A, by Lemma 3.2; in particular, v /∈ Ai for
any i 6= 1. For i with 2 ≤ i ≤ rA there exists hi ∈ Hi with hi /∈ H1, by Lemma 3.3. As
a1 ∈ Bi, we have that a1 + hi ∈ Bi. But a1 + hi /∈ A1, so we also have a1 + hi + h1 ∈ B1

for any h1 ∈ H1. Taking h1 = v − a1, we deduce that v + hi ∈ B1.

We claim that v + hi ∈ Ai. For, if it were in Bi this would imply that v ∈ Bi, which
contradicts the fact that v /∈ A. In turn, this implies v ∈ ai +Hi. As v /∈ A we conclude
that v ∈ (ai+Hi)\Ai. This shows that DA ⊆ (ai+Hi)\Ai; repeating the above argument
starting with v′ ∈ (ai +Hi) \Ai allows us to show that (ai +Hi) \Ai ⊆ DA .

2. Follows immediately from 1.

3. The set DA is precisely the intersection of all cosets ai +Hi with i ≤ rA . This implies that
DA is a coset of the subgroup obtained by taking the intersection of Hi for all i ≤ rA .

A collection of sets F1, F2, . . . Fk with the property that Fi ∩ Fj = D for all i 6= j is said to
be a k-star with kernel D [2, 3]. Using this terminology, Proposition 3.4 shows that for i with
1 ≤ i ≤ rA the collection of cosets ai +Hi form an rA-star with kernel DA .

By Lemma 2.11, a bimodal collection of sets may undergo a shift without affecting its
bimodality and so we can choose to shift a collection A with rA ≥ 2 by an element of DA . This
will allow us to assume, without loss of generality, that DA is in fact a subgroup of G.

Definition 3.5. A bimodal collection A = {A1, A2, . . . , Am} of disjoint subsets of an abelian
group G with rA ≥ 2 will be said to be in canonical position if it has been shifted so that DA is
a subgroup of G.

Remark 3.6. We observe that if A = {A1, A2, . . . , Am} is a bimodal collection of subsets with
rA ≥ 2 in canonical position we have
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• DA is the subgroup ∩rAi=1Hi;

• for i = 1, 2, . . . , rA we have that Ai = Hi \DA ;

• the subgroups H1, H2, . . . ,HrA form an rA-star with kernel DA .

We have thus seen that the sets A1 to ArA of a bimodal collection with rA ≥ 2 occur together
in a very structured way. In fact, we will see that these sets also impose considerable structure
on the remaining members of A.

Proposition 3.7. Let A = {A1, A2, . . . , Am} be a bimodal collection of disjoint subsets of an
abelian group G with rA ≥ 2, in canonical position. Then

(H1 +H2 + · · ·+HrA ) \DA

is contained in A = ∪mi=1Ai.

Proof. We begin by showing that (H1 + H2) \ DA ⊆ A. Let h ∈ (H1 + H2) \ DA . Then
h = h1 +h2 for some h1 ∈ H1 and h2 ∈ H2. If h1 ∈ DA then h1 +h2 ∈ H2 and hence in A2 ⊆ A
as h1 + h2 /∈ DA . Otherwise, h1 ∈ A1 ⊆ B2. This implies that h1 + h2 is also in B2 ⊆ A, by
Remark 2.4.

Now consider h ∈ (H1+H2+H3)\DA , so h = h1+h2+h3 with h1 ∈ H1, h2 ∈ H2 and h3 ∈ H3.
Suppose h1+h2 ∈ DA . Then h1+h2+h3 ∈ H3 and hence h1+h2+h3 ∈ A3 as h1+h2+h3 /∈ DA .
In the case where h1 +h2 /∈ DA , the above argument shows that h1 +h2 ∈ A = A3∪B3. Now, if
h1+h2 ∈ B3 then by Remark 2.4 we have that h1+h2+h3 ∈ B3 ⊂ A. If, however, h1+h2 ∈ A3,
then h1 + h2 + h3 ∈ H3 and hence h1 + h2 + h3 ∈ A3.

Proceeding analogously for all rA summands yields the desired result.

In some circumstances it may be the case that all elements of (H1 +H2 + · · ·+HrA )\DA are
contained in the union of the sets A1, A2, . . . , ArA , but in general this will not be true, and there
may be other sets Ai with i > rA containing elements of H1+H2+ · · ·+HrA . Furthermore, there
may also be elements of A that do not lie in H1 + H2 + · · · + HrA . The following proposition
tells us more about the sets Ai with i > rA .

Proposition 3.8. Let A = {A1, A2, . . . , Am} be a bimodal collection of disjoint subsets of an
abelian group G with rA ≥ 2, in canonical position. Then for Ai with i ≥ rA + 1, the group Hi

is a subgroup of DA.

Proof. Let A = {A1, A2, . . . , Am} be a bimodal collection of disjoint subsets of an abelian group
G with rA ≥ 2, in canonical position, and suppose there exists i > rA for which Hi is not a
subgroup of DA . Then there exists hi ∈ Hi with hi /∈ DA . We observe that there exists j ≤ rA
with hi /∈ Hj , as the only elements common to all of the groups Ht with t ≤ rA are those of
DA . As aj ∈ Bi we thus have aj + hi ∈ Bi, and furthermore aj + hi ∈ Bj . Let v ∈ DA . Then
v − aj ∈ Hj , and thus aj + hi + (v − aj) = v + hi ∈ Bj .

Now, A = Ai ∪Bi, and Bi is a union of cosets of Hi. Since |Ai| = |Hi|, this implies that in
fact A is a union of cosets of Hi. However, we have just shown that v + hi ∈ A. As we know
that v /∈ A (since v ∈ DA ,) this leads to a contradiction.

This implies that each set Ai with i > rA is a coset of a subgroup of DA , and hence is
contained in a coset of DA . Hence each such set is either wholly contained within H1 + H2 +
· · · + HrA \DA , or else lies completely outside H1 + H2 + · · · + HrA . Thus we now know that
the set H1 + H2 + · · · + HrA \ DA is entirely partitioned by sets from A. We also know that
any Ai occuring outside of this set is a coset of a subgroup of DA . The following proposition
characterises the union of these Ai.
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Proposition 3.9. Let A = {A1, A2, . . . , Am} be a bimodal collection of disjoint subsets of an
abelian group G with rA ≥ 2, in canonical position. Let H be the group H = H1+H2+ · · ·+HrA .
If A \H is nonempty, then it consists of a union of cosets of H; further, the sets Ai which lie
in A \H arise from a subdivision of these cosets of H.

Proof. We must show that if there is an element x ∈ A \H then x+ h ∈ A for all h ∈ H. First
suppose h ∈ Hi for some i ≤ rA . As x ∈ A \H we have x ∈ Bi, and so x+h ∈ Bi. Otherwise, h
has the form h1 +h2 + · · ·+hrA with h1 ∈ H1, . . . , hrA ∈ HrA . But x ∈ B1 so (x+h1) ∈ B1 ⊂ A.
Furthermore, as x /∈ H we have x + h1 /∈ H. Hence x + h1 ∈ B2 ⊂ A, from which we deduce
x+h1 +h2 ∈ B2. Continuing in this manner we conclude that x+h1 +h2 + · · ·+hrA ∈ BrA ⊂ A
as required. So A \ H is a union of cosets of H. Since by Proposition 3.8, we have that
Hi ≤ DA ≤ H for all i ≥ rA + 1, each Ai in A \H must be wholly contained in a single coset of
H.

The following theorem fully summarises the structure that has been determined in the above
propositions.

Theorem 3.10. Let A = {A1, A2, . . . , Am} be a bimodal collection of disjoint subsets of an
abelian group G with rA ≥ 2, in canonical position. Then

1. The internal difference groups H1, H2, . . . ,HrA form an rA-star with kernel DA, and for
each i with 1 ≤ i ≤ rA we have Ai = Hi \DA.

2. Any set Ai with i > rA is a coset of a subgroup of DA.

3. If H denotes the group H1 +H2 + · · ·+HrA , then H \DA is contained in A. Furthermore,
the sets in A can be labelled such that for some k with rA ≤ k ≤ m we have that H \DA
is partitioned by A1, A2, . . . , Ak.

4. If k < m then the sets Ai with i > k arise from a subdivision of cosets of H.

We will see that not only are the conditions of Theorem 3.10 necessary for a collection of sets
to be bimodal, they are sufficient as well. We present a technique for constructing a bimodal
collection of sets with rA ≥ 2.

Theorem 3.11. Let G be an abelian group, and for t ≥ 2 let H1, H2, . . . ,Ht be distinct subgroups
of G forming a t-star with kernel D, such that |Hi : D| > 2 for i with 1 ≤ i ≤ t. Let
H = H1 +H2 + · · ·+Ht.

Let A consist of the following subsets of G:

1. all subsets of the form Ai = Hi \D for i with 1 ≤ i ≤ t;

2. all cosets of D that are subsets of H, but are not in ∪ti=1Hi;

3. for any number of cosets of H, all the cosets of D that lie within those cosets of H.

Then A is a bimodal collection of subsets of G with rA = t in canonical position.

Proof. We will prove this result by applying Theorem 2.3 to each of the internal difference
groups of the sets in A. For any subset which is a coset of D, its internal difference group is
the subgroup D itself. For any Ai with 1 ≤ i ≤ t, its internal difference group is Hi: since the
index of D in Hi is greater than 2, we know that Ai contains at least 2 distinct cosets of D.
Fix an element x ∈ Ai and consider all differences between x and the elements of Ai; these will
give all elements of Hi except for those in the coset x+D. Now, pick an element y ∈ Ai such
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that x and y lie in different cosets of D. Taking all differences between y and the elements of
Ai yields all elements of Hi except those in y +D. Hence all elements of Hi lie in the internal
difference group of Ai, as required.

We observe that every set in A is a union of cosets of D. Thus for any set whose internal
difference group is D, the union of the remaining sets is a union of cosets of D, as required. For
Ai with 1 ≤ i ≤ t, we note that Ai ∪D = Hi by construction, so Bi consists of H \Hi together
with a union of cosets of H, and is therefore a union of cosets of Hi.

Remark 3.12. By Theorem 2.12, new bimodal collections can be obtained by subdividing
those subsets in the above construction that are cosets of D. Comparing this construction with
Theorem 3.10, we see that all bimodal collections of sets with rA ≥ 2 arise in this way.

3.2 The case when rA = 1

We now consider the situation where rA = 1, i.e. when precisely one of the sets Ai does not fill
the coset of Hi which contains it.

Proposition 3.13. Let A = {A1, A2, . . . , Am} be a bimodal collection of disjoint subsets of an
abelian group G with rA = 1. Then

1. for all i with 2 ≤ i ≤ m, Ai is a coset of Hi and Hi is a subgroup of H1;

2. A1 is a proper subset of a coset of H1, and consists of a union of cosets of the group
D = H2 +H3 + · · ·+Hm.

Proof. 1. Suppose that for some i with 2 ≤ i ≤ m there exists hi ∈ Hi with hi /∈ H1. Let
u ∈ (a1 +H1) \A1, and let v be in A1. Then u− v ∈ H1. We have v ∈ Bi, so v+ hi ∈ Bi.
Since hi /∈ H1 we have that v+ hi ∈ B1. This implies that v+ hi + (u− v) ∈ B1, i.e. that
u+ hi ∈ B1 ⊆ A. Since Ai consists of a coset of Hi, we know that A = Ai tBi is a union
of cosets of Hi. This implies that if u + hi ∈ A then u ∈ A. However, by Lemma 3.2 we
know that no element of (a1 +H1) \A1 lies in A, which gives a contradiction.

2. Let x ∈ A1. We want to show that for any d ∈ D we have x + d ∈ A1. Now d =
h2 + h3 + · · · + hm where hi ∈ Hi for 2 ≤ i ≤ m. Since x ∈ B2 we have x + h2 ∈ B2.
However, by 1 we know H2 ≤ H1, and so x + h2 ∈ B2 ∩ (a1 + H1) = A1. This implies
x + h2 ∈ B3, whence x + h2 + h3 ∈ B3. Proceeding in this manner we determine that
x+ d ∈ A1 as required.

Definition 3.14. A bimodal collection A = {A1, A2, . . . , Am} of disjoint subsets of an abelian
group G with rA = 1 will be said to be in canonical position if it has been shifted so that
A1 ⊆ H1 and the subgroup D = H2 +H3 + · · ·+Hm is contained in H1 \A1.

We summarise the structural properties of the situation.

Theorem 3.15. Let A = {A1, A2, . . . , Am} be a bimodal collection of disjoint subsets of an
abelian group G with rA = 1, in canonical position. Let D = H2 +H3 + · · ·+Hm. Then

1. A1 ⊆ H1 \D and A1 is a union of cosets of D;

2. Each set Ai with 2 ≤ i ≤ m is a coset of Hi, and A2, . . . , Am arise from a subdivision of
cosets of H1.

We give a concrete example of a bimodal collection of sets with rA = 1.
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Example 3.16. Let G = Z36. The collection A of subsets defined by A1 = {12, 15, 30, 33}, A2 =
{1, 19}, A3 = {4, 22}, A4 = {7, 25}, A5 = {10, 28}, A6 = {13}, A7 = {16}, A8 = {31}, A9 = {34}
is bimodal. We observe that H1 = 〈3〉 = {0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33}, and H2 = H3 =
H4 = H5 = 〈18〉 = {0, 18}, so H2 + H3 + H4 + H5 + H6 + H7 + H8 + H9 = 〈18〉 < H1. Note
also that ∪9i=2Ai is the coset 1 + H1, and that A1 is a union of cosets of 〈18〉. Here we have
A1 ⊂ H1, and we note that the set H1 \ A1 is not in fact a group. (This is in contrast to the
behaviour of bimodal collections of sets with rA ≥ 2.)

We will see that not only are the conditions of the above theorem necessary for a collection
of sets to be bimodal, they are sufficient as well. We present a technique for constructing a
bimodal collection of sets.

Theorem 3.17. Suppose we have an abelian group G, a subgroup H1 of G and a proper subset
A1 of H1 whose internal differences generate H1.

1. Let S be the set of all subgroups J ≤ G with the property that A1 is a union of cosets of
J .

2. For any number of cosets of H1, partition these cosets of H1 using only cosets of subgroups
from S.

3. Take A to consist of A1 together with the sets in the above partition.

Then A forms a bimodal collection of subsets of G with rA = 1.

Proof. The bimodality of A is immediate, upon applying Theorem 2.3 to each of the internal
difference groups of the sets in A.

3.3 The case when rA = 0

Finally, we consider the situation when each set Ai in A fills its own coset of Hi.

Theorem 3.18. Let A = {A1, A2, . . . , Am} be a bimodal collection of disjoint subsets of an
abelian group G with rA = 0. Let H be the group H = H1 + H2 + · · · + Hm. Then each Ai

(1 ≤ i ≤ m) is a coset of Hi, and these sets arise from a subdivision of cosets of H.

Proof. We first prove that A is a union of cosets of H. For each i, Ai is a coset of Hi and Bi is
a union of cosets of Hi, hence A is a union of cosets of Hi for all i. Let x ∈ A and let h ∈ H.
Then h has the form h1 + h2 + · · ·+ hm with hi ∈ Hi for i with 1 ≤ i ≤ m. As x ∈ A we thus
have x + h1 ∈ A. In turn this implies x + h1 + h2 ∈ A and so on, so we deduce x + h ∈ A, as
required. Since Hi ≤ H for all 1 ≤ i ≤ m, every Ai is wholly contained in a single coset of H,
so A is a subdivision of the cosets of H.

Remark 3.19. By applying subdivision to the construction of Lemma 1.1, we obtain a bimodal
collection of subsets in which each of the sets is a coset of its internal difference group, i.e. a
bimodal collection with rA = 0. We note that the above theorem shows that every such collection
arises in this manner.

4 Further Questions

Now that we understand the full range of possible structures of bimodal collections of sets in
abelian groups, we are led to some natural further questions. The bimodal property arose in the
context of studying external difference families corresponding to R-optimal AMD codes; it would
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be interesting to explore the potential for wider applications of this concept in related areas.
Group partitions, and particularly vector space partitions, also have a range of applications,
and it would be of interest to investigate the role played by the bimodality of these structures
in these applications.

Group partitions are known to exist for certain classes of nonabelian group, such as Frobenius
groups, and these have been shown to give rise to bimodal collections of sets [5]. It would be
natural to seek to develop a comparable understanding of bimodality in a nonabelian context,
although care must be taken to refine the relevant definitions where appropriate.
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