

BIROn - Birkbeck Institutional Research Online

Hart, Sarah and Mcveagh, Dan (2020) Groups with many roots. International Journal of Group Theory , ISSN 2251-7650. (In Press)

Downloaded from: <http://eprints.bbk.ac.uk/30780/>

Usage Guidelines: Please refer to usage guidelines at <http://eprints.bbk.ac.uk/policies.html> or alternatively contact [lib-eprints@bbk.ac.uk.](mailto:lib-eprints@bbk.ac.uk)

International Journal of Group Theory ISSN (print): 2251-7650, ISSN (on-line): 2251-7669 Vol. x No. x (20xx), pp. xx-xx. *⃝*c 20xx University of Isfahan

GROUPS WITH MANY ROOTS

SARAH B. HART*[∗]* AND DANIEL MCVEAGH

Communicated by Gunnar Traustason

ABSTRACT. Given a prime p , a finite group G and a non-identity element g , what is the largest number of p^{th} roots g can have? We write $\varrho_p(G)$, or just ϱ_p , for the maximum value of $\frac{1}{|G|}|\{x \in G : x^p = g\}|$, where *g* ranges over the non-identity elements of *G*. This paper studies groups for which ρ_p is large. If there is an element *g* of *G* with more p^{th} roots than the identity, then we show $\varrho_p(G) \leq \varrho_p(P)$, where *P* is any Sylow *p*-subgroup of *G*, meaning that we can often reduce to the case where *G* is a *p*-group. We show that if *G* is a regular *p*-group, then $\varrho_p(G) \leq \frac{1}{p}$, while if *G* is a *p*-group of maximal class, then $\varrho_p(G) \leq \frac{1}{p} + \frac{1}{p^2}$ (both these bounds are sharp). We classify the groups with high values of ϱ_2 , and give partial results on groups with high values of *ϱ*3.

1. **Introduction**

Let *g* be an element of a finite group *G*, and let *p* be prime. How many p^{th} roots can *g* have in *G*? If we allow $g = 1$, then the answer is $|G|$, and this will occur precisely when the group has exponent p. There have been several results giving lower bounds for the number of solutions of $x^p = g$ in a finite group *G*, where *g* is any element of *G* that has at least one p^{th} root. For the case $g = 1$, a classical result of Kulakov states that if *G* is a non-cyclic *p*-group of order p^n , where *p* is odd, then the number of solutions of the equation $x^p = 1$ in *G* is divisible by p^2 . (This follows from the fact that the number of subgroups of order p is congruent to 1 modulo p^2 – see for example [\[6,](#page-15-0) III, Satz 8.8] for a more modern proof.) This was later improved by Berkovich to show that if *G* is a finite *p*-group which is not metacyclic, and if $p > 3$, then the number of solutions of $x^p = 1$ in *G* is divisible by p^3 (see [[6](#page-15-0), III, Satz 11.8]). Blackburn [[3](#page-14-0)] showed further that if *G* is an irregular *p*-group that is not of maximal

.

MSC(2010): Primary: 20D15; Secondary: 20F99.

Keywords: p^{th} roots, square roots, cube roots.

Received: 30 October 2019, Accepted: 27 February 2020.

*[∗]*Corresponding author.

<http://dx.doi.org/10.22108/ijgt.2020.119870.1582>

class, then the number of solutions of $x^p = 1$ is divisible by p^p . Later, Lam [\[9\]](#page-15-1) generalised the problem to consider the number of solutions of $x^{p^k} = g$, where *g* is any element of a finite group *G*, *p* is prime and k is a positive integer. He showed that if G is a finite non-cyclic p -group, where p is odd, then the number of solutions of $x^{p^k} = g$ in *G* is divisible by p^2 p^2 . Berkovich [2] improved this result as follows. Let *G* be a finite *p*-group that is neither cyclic nor a 2-group of maximal class, and let $k \geq 1$. If *g* is an element of *G* such that $\exp(G) \geq p^k |\langle g \rangle|$, then the number of solutions in *G* of $x^{p^k} = g$ is divisible by p^{k+1} . In particular, if *G* is not cyclic or a 2-group of maximal class, then those non-identity elements which do have p^{th} roots each have at least p^2 of them. Our interest, in this paper, will be finding upper bounds for the number of p^{th} roots that a non-identity element can have. More specifically, we investigate upper bounds for the proportion of elements of a finite group G that can be p^{th} roots of a single non-identity element. Before describing our results in more detail, we introduce some notation.

Notation 1.1. Let *G* be a finite group and *p* a prime. For any *g* in *G*, let $R_p(g) = \{x \in G : x^p = g\}$. Let $\varrho_p(G) = \frac{1}{|G|} \max_{g \in G \setminus \{1\}} \{|R_p(G)|\}$. We write R_p and ϱ_p , $R(g)$ and $\varrho(G)$, or simply R and ϱ , whenever *g*, *G* or *p* are clear from context. We will refer to $\varrho(G)$ as the *rootiness* or p^{th} -rootiness of *G*. We will call *g* a *rooty element* if $\varrho(G) = \frac{|R(g)|}{|G|}$.

In Section 2 we obtain some general results about p^{th} -rootiness. We will show in Lemma [2.6](#page-4-0) that if there is an element of a group G that has more p^{th} roots than the identity, then the rootiness of *G* cannot exceed that of its Sylow *p*-subgroups. It therefore makes sense to concentrate mainly on *p*-groups. We show (Proposition [2.9](#page-5-0)) that if *G* is a regular *p*-group, then $\varrho(G) \leq \frac{1}{n}$ $\frac{1}{p}$. (This bound is attained even for abelian groups, for example in the cyclic group of order *p* 2 .) If *G* is a *p*-group of maximal class, then we establish in Theorems [2.10](#page-6-0) and [2.11](#page-6-1) that $\varrho(G) \leq \frac{p+1}{n^2}$ $\frac{p+1}{p^2}$, and we give an example to show that this bound is sharp. We also show at the end of Section 2 that in the case of cube roots, a group *G* with $\varrho_3(G) > \frac{7}{18}$ is either the direct product of a group of exponent 3 with a cyclic group of order 2 (in which case $\varrho_3(G) = \frac{1}{2}$), or is a 3-group of exponent 9. Section 3 is devoted to square roots. Just as groups with sufficiently many involutions must be elementary abelian 2-groups, it turns out that groups with a non-identity element with sufficiently many square roots must be 2-groups. Theorem [3.11](#page-12-0) gives a classification of all finite groups for which $\varrho_2(G) \geq \frac{7}{12}$. In particular, we show that if $\varrho_2(G) > \frac{7}{12}$, then *G* is a 2-group. This is best possible, because there are infinitely many non 2-groups *G* for which $\varrho_2(G) = \frac{7}{12}$.

We end this section by recalling some standard notation that we will use throughout the paper.

Notation 1.2. Let *G* be a finite group. We follow the conventions that $[x, y] = x^{-1}y^{-1}xy$ and that commutators are left-normed, so that for example $[x, y, z]$ means $[[x, y], z]$, for all $x, y, z \in G$. The terms of the lower central series of *G* are written $\gamma_i(G)$ for $i \geq 2$. That is, $\gamma_2(G) = [G, G] = G'$ and $\gamma_{i+1}(G) = [\gamma_i(G), G]$ for $i > 2$. The terms of the upper central series are denoted $Z_i(G)$ for $i \geq 1$. So $Z_1(G) = Z(G)$, and $Z_i(G)/Z_{i-1}(G) = Z(G/Z_{i-1}(G))$. We will denote by $\Phi(G)$ the Frattini subgroup of *G* – the intersection of the maximal subgroups of *G*.

A *p*-group of maximal class is a *p*-group of order p^n for some $n > 1$ which has nilpotency class $n-1$. It is well known that if *G* is a *p*-group of maximal class *c*, then $|Z_i(G)| = p^i$ for $1 \le i \le c - 1$ and $|G:\gamma_i(G)| = p^i$ for each $2 \leq i \leq c$. If G has maximal class, define $G_1 = C_G(\gamma_2(G)/\gamma_4(G))$. That is, *G*₁ consists of the elements *x* of *G* such that $[x, \gamma_2(G)] \leq \gamma_4(G)$. This subgroup is sometimes called the fundamental subgroup of *G*.

A finite p-group G is regular if for all $x, y \in G$, there is some $z \in U_1(\langle x, y \rangle')$ such that $(xy)^p = x^p y^p z$. For any finite group *G* and prime *p* we define

$$
\mathcal{I}(G) = \mathcal{I}_p(G) = \{x \in G : x^p = 1\};
$$

$$
\alpha(G) = \alpha_p(G) = \frac{|\mathcal{I}_p(G)|}{|G|}.
$$

If *G* is a finite *p*-group we define, for all positive integers *i*,

$$
\Omega_i(G) = \langle x \in G | x^{p^i} = 1 \rangle;
$$

\n
$$
\mathcal{O}_i(G) = \langle x^{p^i} | x \in G \rangle;
$$

\n
$$
M(G) = \{ a \in G : (ax)^p = x^p \text{ for all } x \in G \}.
$$

Finally, *Cⁿ* will denote the cyclic group of order *n*.

2. **General Results**

We begin by stating some results on *p*-groups that we will need. Throughout this section we will write $\varrho(G)$ for $\varrho_p(G)$. An excellent introduction to regular *p*-groups and *p*-groups of maximal class is given by the lecture notes of Fernandez-Alcober [[4](#page-15-2)]; the standard graduate text in English on *p*-groups is Berkovich's book [[1](#page-14-2)]. A large number of results on *p*-groups are also contained in Kapitel III of Huppert [\[6\]](#page-15-0).

The following theorem is proved in [[4](#page-15-2)]; alternatively it follows from [[1](#page-14-2), Theorem 9.6].

Lemma 2.1. [\[1](#page-14-2), Theorem 7.1(b)] *Let G be a p-group. If G has nilpotency class less than p, or if* $|G| \leq p^p$, or if $\exp(G) = p$, then *G* is regular.

Proposition 2.2. [[1](#page-14-2), Theorem 7.2(a)–(d)] *Let G be a regular p-group and i a positive integer. Then*

(a) For all x, y in G,
$$
x^{p^i} = y^{p^i}
$$
 if and only if $(xy^{-1})^{p^i} = 1$.

- (b) $\Omega_i(G) = \{x \in G : x^{p^i} = 1\};$
- (c) $\mathcal{U}_i(G) = \{x^{p^i} : x \in G\};$
- $\langle d \rangle |G| = |\Omega_i(G)| \times |\mathcal{O}_i(G)|$.

Theorem 2.3. [\[4,](#page-15-2) Theorem 4.9(i),(ii)] *Let G be a p-group of maximal class of order* p^m *, where* $m \geq p+2$ *. Then the following statements hold:*

- (a) *G*¹ *is regular.*
- (b) $U_1(G_1) = \gamma_p(G)$ *and* $U_1(\gamma_i(G)) = \gamma_{i+p-1}(G)$ *for all* $i \geq 2$ *.*

Recall that a *proper section* of a group *G* is a quotient of a proper subgroup of *G*.

Theorem 2.4. [\[1,](#page-14-2) Theorem 7.4(b)-(c)] Let G be a p-group that is irregular but all of whose proper *sections are regular. Then*

- (a) $\exp(G') = p$;
- (b) $Z(G) = \mho_1(G);$
- (c) $M(G) = G'$.

If *G* is a *p*-group of maximal class and order p^{p+1} , then $Z(G)$ has order *p* and *G'* has index p^2 . Moreover any proper subgroup has order at most p^p , so is regular. Thus we may apply Theorem [2.4](#page-4-1) to obtain the following immediate corollary.

Corollary 2.5. Let *G* be a *p*-group of maximal class and order p^{p+1} . Then $Z(G) = \mathcal{O}_1(G) \cong C_p$, and $G' = M(G)$ *has exponent p and index* p^2 *.*

In groups such as $C_p^n \times C_2$, half the elements of the group are p^{th} roots of the unique involution. But this rootiness is really just an artefact of *G* having many elements of order *p*. Lemma [2.6](#page-4-0) shows that when an element of a group *G* has more p^{th} roots than the identity, its rootiness $\varrho(G)$ is determined by the rootiness of its Sylow *p*-subgroups, and *G* can never be rootier than these groups.

Lemma 2.6. *Suppose G is a finite group, and g is a rooty element of G which has more* p^{th} *roots* than the identity. Then $\varrho(G) \leq \varrho(P)$, for any Sylow p-subgroup P of G. Write $|G| = p^n m$, where $gcd(m, p) = 1$ *. If* $\varrho(G) = \varrho(P)$ *, then G has exactly m Sylow p*-subgroups.

Proof. Let g be a rooty element of G that has more p^{th} roots than the identity and let r be a positive integer coprime to *p*. Then there are integers *s*, *t* with $rs + tp = 1$. If *x* and *y* are roots of *g* such that $x^r = y^r$, then

$$
x = x^{rs+tp} = (x^r)^s (x^p)^t = (y^r)^s (g)^t = y^{rs+tp} = y.
$$

Hence g^r has at least as many roots as g . If the order of g is coprime to p , this implies that the identity element has at least as many roots as *g*, a contradiction. Hence *p* divides the order of *g*. Write $o(g) = p^k u$ for some positive integers k and u. Then g^u again has at least as many roots as *g*, and is contained in some Sylow *p*-subgroup *P* of *G*. Moreover any p^{th} root of g^u has order p^{k+1} , so is also contained in some Sylow *p*-subgroup. If the Sylow *p*-subgroups are P_1, \ldots, P_λ for some λ , then $R(g^u) \subseteq P_1 \cup P_2 \cup \cdots \cup P_{\lambda}$. Since all the P_i are isomorphic, $\varrho(P_i) = \varrho(P)$ for all i. Thus $|R(g^u)| \leq \lambda |P| \varrho(P)$. But $g^u \neq 1$, and so g^u cannot have more roots than *g* (because *g* is a rooty element). Therefore, $|R(g^u)| = |R(g)|$. Hence

$$
|G|\varrho(G) = |R(g^u)| \le \lambda |P|\varrho(P).
$$

That is, $\rho(G) \leq \frac{\lambda}{m}$ $\frac{\lambda}{m}\varrho(P)$. If we have equality, then $\lambda = m$.

Lemma [2.6](#page-4-0) shows that if we wish to understand groups *G* in which $\varrho(G)$ is highest, and in particular higher than $\alpha_p(G)$, it makes sense to restrict our attention to *p*-groups. We begin with an observation about direct products.

Lemma 2.7. Let G and H be p-groups with $\varrho(G) \ge \varrho(H)$. Then $\varrho(G \times H) \le \varrho(G)$ with equality if *and only if* $exp(H) = p$ *.*

Proof. If $\exp(G) = p$, then $\varrho(G) = 0$, which implies $\varrho(H) = 0$ and thus $\exp(H) = p$. Therefore, $\varrho(G \times H) = 0 = \varrho(G)$, so the result holds. Assume, then, that $\exp(G) > p$. For *a* in *G* and *b* in *H* we have $|R((a, b))| = |R(a)||R(b)|$. Suppose (a, b) is a rooty element of $G \times H$. Then either $a \neq 1$ or $b \neq 1$, or both, and $|G||H|\varrho(G \times H) = |R((a, b))|$. If $a \neq 1$, then $|R(a)| \leq |G|\varrho(G)$. Thus $\varrho(G \times H) \leq \varrho(G) \times \frac{|R(b)|}{|H|} \leq \varrho(G)$, with equality if and only if $R(b) = |H|$, which is possible precisely when $b = 1$ and *H* has exponent *p*. Now suppose $a = 1$. Then $b \neq 1$ and by the same argument $\varrho(G \times H) \leq \varrho(H)$ with equality only when *G* has exponent *p*. Since *G* does not have exponent *p*, in this case we have $\varrho(G \times H) < \varrho(H) \leq \varrho(G)$. Thus $\varrho(G \times H) \leq \varrho(G)$ with equality if and only if $\exp(H) = p.$

Lemma [2.7](#page-5-1) means that the existence of a group G with a given rootiness ρ implies that there are infinitely many such groups, obtained by taking the direct product of *G* with any group *H* of exponent *p*. The fact that $\varrho(C_{p^2}) = \frac{1}{p}$ therefore provides infinitely many examples of groups whose rootiness is 1 $\frac{1}{p}$; if *p* is odd, then in particular we can obtain both abelian and non-abelian examples in this manner.

Lemma 2.8. Suppose *G* is an abelian *p*-group. Then $\varrho(G) \leq \frac{1}{n}$ $\frac{1}{p}$, with equality if and only if $G \cong C_{p^2} \times C_p^k$ for some $k \geq 0$.

Proof. If *G* has exponent *p*, then $\varrho(G) = 0$ and there is nothing to prove. So suppose not. If *G* is cyclic of order p^n , then $n > 1$ and $\varrho(G) = \frac{1}{p^{n-1}}$, which is at most $\frac{1}{p}$ with equality precisely when *G* \cong *C*_{*p*}². If *G* is not cyclic, then *G* \cong *A* \times *B* for some non-trivial *A* and *B* and without loss of generality $\varrho(A) \geq \varrho(B)$. Inductively $\varrho(A) \leq \frac{1}{p}$ with equality if and only if $A \cong C_{p^2} \times C_p^i$ for some non-negative *i*. By Lemma [2.7](#page-5-1), $\varrho(G) \leq \varrho(A)$ with equality if and only if $\exp(B) = p$. The result follows immediately. □

Proposition 2.9. Let G be a regular p-group. Then either $exp(G) = p$ and $\varrho(G) = 0$, or $\varrho(G) =$ $\frac{1}{|\mathfrak{V}_1(G)|} \leq \frac{1}{p}$ $\frac{1}{p}$ *. Moreover,* $\varrho(G) = \frac{1}{p}$ *if and only if G has subgroup A of index p and exponent p, along with a cyclic subgroup H of order* p^2 , *such that* $|A \cap H| = p$ *and* $G = AH$ *.*

Proof. Assume that $\exp(G) > p$, or there is nothing to prove. Then $\mathcal{O}_1(G)$ is a nontrivial subgroup of G and, by Proposition [2.2](#page-3-0)(b), $\Omega_1(G)$ has exponent *p*. Let *X* be a transversal of $\Omega_1(G)$. For *x* in *X* and *a* in $\Omega_1(G)$, setting $y = ax$ we have $(xy^{-1})^p = a^{-p} = 1$. Hence $y^p = x^p$ by Proposition [2.2](#page-3-0)(a). Conversely, if $x, y \in X$ with $x^p = y^p$, then $(xy^{-1})^p = 1$, meaning $xy^{-1} \in \Omega_1(G)$ and so $x = y$. Therefore, the set of roots of x^p is precisely $x\Omega_1(G)$. Hence, by Proposition [2.2\(](#page-3-0)d), $\varrho(G) = \frac{|\Omega_1(G)|}{|G|} = \frac{1}{|\Omega_1(G)|} \le \frac{1}{p}$ $\frac{1}{p}$. We have equality precisely when $|\mathfrak{V}_1(G)| = p$. In this case, write $A = \Omega_1(G)$. Then *A* has exponent *p* and index *p*. For any element *x* of $G - A$, the subgroup *H* generated by *x* has order p^2 . Moreover $|A \cap H| = p$ and $G = AH$, as required. Conversely, if *G* has subgroups *A* and *H* as described, then since *H* contains an element of order p^2 we know $\mathcal{O}_1(G)$ is nontrivial, but since *A* has exponent *p* we know $\Omega_1(G)$ has index at most *p*. The only possibility is that $|\mathcal{O}_1(G)| = p$, and thus $\varrho(G) = \frac{1}{p}$ \Box **Theorem 2.10.** Let m be any positive integer with $m \geq p+2$. If G is a p-group of maximal class *and order* p^m *, then* $\varrho(G) \leq \frac{1}{p} + \frac{1}{p^{m+1-p}} \leq \frac{1}{p} + \frac{1}{p^s}$ $\frac{1}{p^3}$.

Proof. Let *m* be any positive integer with $m \geq p+2$. Suppose *G* is a *p*-group of maximal class and order p^m , and let *g* be a rooty element of *G*. By Theorem [2.3](#page-3-1), G_1 is regular and $\mathcal{O}_1(G_1) = \gamma_p(G)$. Therefore, $\varrho(G_1) = \frac{1}{|\gamma_p(G)|}$ by Proposition [2.9](#page-5-0). Since *G* has maximal class, $|\gamma_p(G)| = p^{m-p}$, so that $\varrho(G_1) = \frac{1}{p^{m-p}}$. At most $\frac{1}{p-1}$ of the elements of $G - G_1$ can be roots of *g* (as if *x* is a root, then x^2 , *x* 3 ,*. . .*,*x ^p−*¹ are not). Hence

$$
\varrho(G)|G| = |R(g)| \le \frac{1}{p-1}|G - G_1| + |G_1|\varrho(G_1)
$$

= $\frac{p^m - p^{m-1}}{p-1} + \frac{p^{m-1}}{p^{m-p}}$
= $p^{m-1} + p^{p-1}$

$$
\varrho(G) \le \frac{1}{p} + \frac{1}{p^{m+1-p}} \le \frac{1}{p} + \frac{1}{p^3}.
$$

Theorem 2.11. *Suppose* $|G| = p^{p+1}$ *. If* $\varrho(G) > \frac{1}{p}$ $\frac{1}{p}$ *, then* $\varrho(G) = \frac{p+1}{p^2}$ *.*

Proof. Suppose $\varrho(G) > \frac{1}{n}$ $\frac{1}{p}$ and let *g* be a rooty element. Then *G* must be irregular by Proposition [2.9](#page-5-0). Hence *G* is of maximal class. Then, by Corollary [2.5](#page-4-2), $\mathcal{O}_1(G)$ has order *p*, meaning $\exp(G) = p^2$. Moreover $M(G)$ has index p^2 and exponent p. If there is an element a of order p lying outside of $M(G)$, then the subgroup $\langle a \rangle M(G)$ also has exponent p, so $R(g) \cup R(g^2) \cup \cdots \cup R(g^{p-1}) \subseteq G - \langle a \rangle M(G)$. Hence $\varrho(G) \leq \frac{1}{n}$ *p*². So we can assume all elements outside *M*(*G*) have order *p*², meaning precisely $\frac{1}{p-1}$ of them are roots of *g*. Hence $\varrho(G) = \frac{p+1}{p^2}$ $\frac{1}{2}$.

The case $\varrho(G) = \frac{p+1}{p^2}$ in Theorem [2.11](#page-6-1) does occur, as the following example shows. It is one of two commonly given examples of irregular *p*-groups of minimal order; the other being the Sylow *p*-subgroups of the symmetric group on p^2 elements (which can be show to have rootiness $\frac{1}{p}$).

Example 2.12. Let $G = \langle a_1, a_2, \ldots, a_{p-1}, b \rangle$, where $a_1^{p^2} = 1, a_i^p = 1$ for $2 \le i \le p-1$, $b^p = a_1^p$ $_1^p$ and all generators commute except that $b^{-1}a_ib = a_ia_{i+1}$ when $1 \leq i < p-1$, and $b^{-1}a_{p-1}b = a_{p-1}a_1^{-p}$ $_1^{-p}$. That *G* is of maximal class, irregular, and of order p^{p+1} , is shown in [[4](#page-15-2), Example 2.4]. It is also shown that $G' = \Omega_1(G) = \langle a_1^p \rangle$ $_1^p, a_2, \ldots, a_{p-1}$ in this group. Therefore, *G*^{*'*} has exponent *p* and no element outside of *G'* can have order *p*. As in the proof of Theorem [2.11](#page-6-1), we now have $\varrho(G) = \frac{p+1}{p^2}$.

We end this section with a couple of results limiting, for odd primes, the possible kinds of non *p*-groups with high values of ϱ_p . We first state a result due to Laffey.

Theorem 2.13. [[7](#page-15-3), Laffey] *Let p be an odd prime. If G is not a p-group, then* $\alpha_p(G) \leq \frac{p}{p+1}$ *.*

Theorem 2.14. Let *p* be an odd prime. Suppose $\varrho_p(G) > \frac{p}{2(p+1)}$. Then either *G* is a *p*-group, or $G \cong H \times C_2$, where *H is a p-group, and* $\varrho_p(G) = \frac{1}{2}\alpha_p(H)$.

□

Proof. Let *g* be a rooty element, and write $\lambda = |R(g)|$, so that $\lambda > \frac{p}{2(p+1)}|G|$. Now g^r also has λp^{th} roots, whenever *r* is coprime to *p*. If $m > p$, then g , g^2 and g^{p+1} each have λ roots. If $p > m \geq 3$, then g , g^2 and g^3 each have λ roots. But $3\lambda > |G|$, a contradiction. Therefore, either $m = 2$ or $m = p$. For any root *x* of *g*, both *x* and *x*² lie in the centralizer of *g*. Hence, $|C_G(g)| \geq \frac{p}{p+1}|G| > \frac{1}{2}$ $\frac{1}{2}|G|$. Therefore, g is central in *G*. Now consider $\overline{G} = G/\langle g \rangle$. If $m = 2$, then the 2 λ elements of *G* that are roots of elements of $\langle g \rangle$ map onto λ elements of $G/\langle g \rangle$ that have order dividing *p*. Hence $\alpha_p(\overline{G}) > \frac{p|G|}{p(p+1)}$ $\frac{p|G|}{2(p+1)|\overline{G}|} = \frac{p}{p+1}.$ Theorem [2.13](#page-6-2) now implies that \overline{G} is a *p*-group. Hence $|G| = 2p^n$ for some *n*. This means *G* has a unique Sylow *p*-subgroup *H*, which is therefore normal. Hence $G = H \langle g \rangle \cong H \times C_2$, and clearly $\varrho_p(G) = \frac{1}{2}\alpha_p(H)$. The remaining possibility is that $o(g) = p$. In this case, each of g, g^2, \ldots, g^{p-1} has *λ* p^{th} roots. So in \overline{G} , they become $\frac{p-1}{p}\lambda$ elements of order *p*. Hence (not forgetting that the identity element of \overline{G} also has order dividing p), we get

$$
\alpha_p(\overline{G}) > \frac{p-1}{p} \cdot \frac{p}{2(p+1)} \cdot \frac{|G|}{|\overline{G}|} = \frac{p(p-1)}{2(p+1)} \ge \frac{p}{p+1}.
$$

Hence \overline{G} is a *p*-group, which implies that *G* is also a *p*-group. \Box

We remark that there do exist 'non-trivial' instances of non *p*-groups with high rootiness – that is, groups with elements having more p^{th} roots than the identity. For example there is a group G of order 36 with $\varrho_3(G) = \frac{1}{3}$ but $\alpha_3(G) = \frac{1}{12}$. We can improve slightly on Theorem [2.14](#page-6-3) for the case $p = 3$, thanks to another result of Laffey.

Theorem 2.15. [[8](#page-15-4), Laffey] *Let G be a finite group. If* $\alpha_3(G) \geq \frac{7}{9}$ $\frac{7}{9}$, then *G* is a 3-group and either $\alpha_3(G) = \frac{7}{9}$ *or G has exponent 3.*

This allows us to show that the only non-trivial examples of groups with cube rootiness greater than $\frac{7}{18}$ occur in 3-groups.

Theorem 2.16. *Suppose G is a finite group with* $\varrho_3(G) \geq \frac{7}{18}$ *. Then either*

- (a) $G \cong H \times C_2$, where *H* is a group of exponent 3, and $\varrho(H) = \frac{1}{2}$;
- (b) $G \cong H \times C_2$, where *H* is a 3-group with $\alpha_3(H) = \frac{7}{9}$, and $\varrho(H) = \frac{7}{18}$; or
- (c) *G is a 3-group of exponent 9 and nilpotency class at most 4.*

Proof. Suppose *G* is a finite group with $\varrho(G) \geq \frac{7}{18}$. Suppose first that *G* is not a 3-group. By Theorem [2.14](#page-6-3) then, $G \cong H \times C_2$, where *H* is a 3-group with $\varrho_3(G) = \frac{1}{2}\alpha_3(H)$. By assumption $\varrho_3(G) \geq \frac{7}{18}$. Hence by Theorem [2.15](#page-7-0), either $\alpha_3(G) = \frac{7}{9}$ or *G* has exponent 3. This deals with parts (a) and (b). It remains to deal with the case that *G* is a 3-group. Suppose this is the case, and let *g* be a rooty element, with *R* the set of cube roots of *g*. Now g^{-1} and g^2 , which as *G* is a 3-group are both distinct from *g*, also have |*R*| cube roots. Therefore, $g^{-1} = g^2$ and $o(g) = 3$. More than $\frac{7}{9}$ of the elements of *G* cube to an element of $\langle g \rangle$, because every element of $R \cup R^{-1} \cup \langle g \rangle$ has this property. Hence *g* is central; write as usual, \overline{G} for $G/\langle g \rangle$. We have $\alpha_3(\overline{G}) > \frac{7}{9}$ $\frac{7}{9}$, which implies, by Theorem [2.15](#page-7-0), that *G* has exponent 3. Consequently every element of *G* cubes to an element of $\langle g \rangle$, meaning *G* has exponent 9. Clearly *G* must have class at least 3, or else *G* would be regular and its rootiness would be most $\frac{1}{3}$. It

is well-known that a group of exponent 3 has class at most 3. Thus \overline{G} has class at most 3, forcing G to have class at most 4. \Box

We note that there are groups *G* with $\varrho_3(G) > \frac{7}{18}$. Example [2.12](#page-6-4) provides an irregular 3-group *G* of order 81 with $\varrho(G) = \frac{4}{9}$. It can also be shown that there is a 3-group *K* of order 3⁷ such that $\varrho_3(K) = \frac{13}{27}$ so, at least for $p = 3$, it is possible for $\varrho_p(G) > \frac{p+1}{p^2}$ $\frac{p+1}{p^2}$. As we shall see in the next section, this is very different from the case $p = 2$.

3. **Square Roots**

In this section we investigate groups with many nontrivial square roots. Just as groups with sufficiently many involutions must be elementary abelian 2-groups, it turns out that groups with a non-identity element with sufficiently many square roots must be 2-groups. As an indication of what happens, the database of small groups in Magma's free online calculator [[10](#page-15-5)], or in GAP [\[5\]](#page-15-6), can be interrogated easily to find all 2-groups *G* of order at most 64 such that $\varrho_2(G) > \frac{1}{2}$ $\frac{1}{2}$. The outcome is summarised in Observation [3.2](#page-8-0). In all cases, if $\varrho_2(G) > \frac{7}{12}$, then $\varrho_2(G) \in \{\frac{5}{8}, \frac{3}{4}$ $\frac{3}{4}$. Theorem [3.11](#page-12-0) will show that this holds for all finite groups *G*, by classifying all finite groups for which $\varrho_2(G) \geq \frac{7}{12}$. In particular, we show that if $\varrho_2(G) > \frac{7}{12}$, then *G* is a 2-group. Before we proceed, we need to establish some notation that will be used in this section.

Notation 3.1. We denote by C_n the cyclic group of order n ; D_{2n} is the dihedral group of order $2n$, and Q_{4n} is the generalised quaternion group of order $4n$ given by

$$
Q_{4n} = \langle a, b : a^{2n} = 1, b^2 = a^n, ba = a^{-1}b \rangle.
$$

We write D_8^{*r} for the central product of *r* copies of D_8 (with the convention that D_8^{*0} is the trivial group). Note that D_8^{*r} is one of the extraspecial 2-groups of order 2^{2r+1} , for $r \ge 1$: the other is $D_8^{*(r-1)}$ $\frac{8^{*(r-1)}}{8}$ *** Q_8 . For each positive integer *r* we define a group

$$
W_r = \langle c, x_1, y_1, \ldots, x_r, y_r \rangle,
$$

where $c^2 = x_i^2 = y_i^2 = 1$ and all pairs of generators commute except $[c, x_i] = y_i$, for all *i*. Finally, we will encounter a certain group of order 32 for which it will be useful to have a name:

$$
\mathcal{M}_{32} := \langle a, b, c : a^4 = b^4 = c^4 = 1, ba = ab, ca = a^{-1}c, cb = b^{-1}c, c^2 = a^2 \rangle.
$$

During this section, we will write $\alpha_2(G)$ and $\varrho_2(G)$ (as defined in Section 1) in the formal statements of results, for easy cross-referencing, but will usually write $\alpha(G)$ and $\rho(G)$ elsewhere. Similarly, we will write $\mathcal{I}(G)$ for $\mathcal{I}_2(G)$, the set of elements *x* of *G* for which $x^2 = 1$.

Observation 3.2. There are eighteen 2-groups *G* of order at most 64 with $\varrho_2(G) > \frac{1}{2}$ $\frac{1}{2}$. Of these, four have $\varrho_2(G) = \frac{3}{4}$. These are precisely the groups $Q_8 \times E$, where *E* is trivial or an elementary abelian 2-group. A further seven groups have $\varrho_2(G) = \frac{5}{8}$. These are precisely the groups $Q_{16} \times E$, or $(D_8 * Q_8) \times E$, or $M_{32} \times E$, where *E* is trivial or elementary abelian, and M_{32} is the group of order 32 defined in Notation [3.1](#page-8-1). The remaining seven of the eighteen groups have $\frac{1}{2} < \varrho_2(G) \leq \frac{9}{16}$.

We note that there are infinitely many groups *G* with $\varrho_2(G) > \frac{1}{2}$ $\frac{1}{2}$, because Q_{8n} , where *n* is any even positive integer, has square rootiness $\frac{1}{2} + \frac{1}{4n}$ $\frac{1}{4n}$. There are also infinitely many 2-groups with this property. For example the extraspecial group $D_8^{*r} * Q_8$ of order 2^{2r+3} has square rootiness $\frac{1}{2} + \frac{1}{2^{r+3}}$ $\overline{2^{r+2}}$ (see Proposition [3.5](#page-10-0)).

We first state Wall's classification of groups with many involutions.

Theorem 3.3. [[11,](#page-15-7) Wall] *Suppose H is a finite group for which* $\alpha(H) > \frac{1}{2}$ $\frac{1}{2}$. Then *H* is either an *elementary abelian 2-group, or the direct product of an elementary abelian 2-group with a group H*⁰ *of one of the following types.*

*(I) H*⁰ *is generalised dihedral. Specifically, H*⁰ *has an abelian subgroup A*⁰ *of index 2 which does not admit a cyclic group of order 2 as a direct factor, and H*⁰ *is generated by A*⁰ *along with an involution c* with the property that $cac^{-1} = a^{-1}$ for all $a \in A_0$;

 (H) *H*⁰ ≅ *D*₈ × *D*₈;

*(III) H*⁰ ≅ D_8^{*r} *, some* $r \ge 1$ *;*

 (IV) *H*₀ ≅ *W_r*, some r ≥ 1*.*

Lemma 3.4. *Suppose* $\varrho_2(G) > \frac{1}{2}$ $\frac{1}{2}$, with g a rooty element. Then g is a central involution, G is *non-abelian, and Z*(*G*) *is an elementary abelian 2-group. Moreover*

- (a) *If* $Z(G) \nleq \Phi(G)$, then $G \cong G_0 \times E$, where *E* is an elementary abelian 2-group, $\varrho_2(G_0) = \varrho_2(G)$ *and* $Z(G_0) < \Phi(G_0)$.
- (b) *For any* $h \in Z(G) \langle g \rangle$, $\varrho_2(G/\langle h \rangle) = \varrho_2(G)$.

Proof. Both g^{-1} and any conjugate of *g* have the same number of roots as *g*. Therefore, $g = g^{-1}$ and *g* is central. Suppose $a \in Z(G)$. Then for any root *x* of *g* we have $(xa)^2 = ga^2$. Thus, to avoid a contradiction, it must be that $ga^2 = g$. Hence $a^2 = 1$ and $Z(G)$ is an elementary abelian 2-group. Clearly now *G* cannot be abelian, else *Z*(*G*) would equal *G* and *g* would have no square roots at all.

- (a) Suppose $Z(G)$ is not contained in $\Phi(G)$. Let *a* be an element of $Z(G) \Phi(G)$. Then there is a maximal subgroup *U* of *G* which does not contain *a*. Moreover since *a* is central, *a* is an involution that centralises, but is not contained in, *U*. Hence $G \cong U \times \langle a \rangle$, and clearly $\varrho_2(G) = \varrho_2(U)$. Note too that $\Phi(G) \cong \Phi(U)$. Repeating this step for any further elements of $Z(G) - \Phi(G)$ we obtain the required decomposition of *G*.
- (b) For any $h \in Z(G) \langle g \rangle$, and any *x* in *G*, we have that $(xh)^2 = x^2$. That is, *x* is a root if and only if *xh* is a root. Hence $\varrho_2(G/\langle h \rangle) = \varrho_2(G)$, as required. \Box

The next result obtains $\alpha_2(G)$ and $\varrho_2(G)$ in the case where *G* is an extraspecial 2-group.

10 *Int. J. Group Theory, x no. x (201x) xx-xx S. b. Hart and D. McVeagh*

Proposition 3.5. *Let* $r \geq 1$ *.*

$$
\alpha_2(D_8^{*r}) = \frac{2^r + 1}{2^{r+1}}
$$

\n
$$
\alpha_2(D_8^{*(r-1)} * Q_8) = \frac{2^r - 1}{2^{r+1}}
$$

\n
$$
\varrho_2(D_8^{*(r-1)} * Q_8) = \frac{2^r - 1}{2^{r+1}}
$$

\n
$$
\varrho_2(D_8^{*(r-1)} * Q_8) = \frac{2^r + 1}{2^{r+1}}.
$$

Proof. Note that for any extraspecial 2-group *G*, we have $\mathcal{O}_1(G) = Z(G) \cong C_2$. Therefore, if *g* is the unique central involution, every element is either contained in $\mathcal{I}(G)$ or in $R(g)$. Thus $\alpha(G) + \varrho(G) = 1$. Therefore, it is sufficient in each case to verify the expression for $\alpha(G)$. We proceed by induction, the result being easy to check for $r = 1$ (where the groups involved are D_8 and Q_8), so suppose $r > 1$. Write *D* for $D_8^{*(r-1)}$ $8^{*(r-1)}$. The elements of $D * D_8$ are of the form xy where $x \in D$ and $y \in \{1, a, b, c\}$, with $a^2 = 1$, $b^2 = 1$ and $c^2 = g$, where *g* is the central involution of *D*. Now $(xy)^2 = x^2y^2$, so $(xy)^2 = 1$ when $x^2 = y^2$, and $(xy)^2 = g$ otherwise. Hence

$$
\alpha(D * D_8) = \frac{|D|}{|D * D_8|} (3\alpha(D) + \varrho(D)) = \frac{1}{4} \left(\frac{3(2^{r-1} + 1)}{2^r} + \frac{2^{r-1} - 1}{2^r} \right) = \frac{2^r + 1}{2^{r+1}}.
$$

For *D ∗ Q*⁸ we follow the same procedure, except that in this case elements of *G* are of the form *xy* where $x \in D$ and $y \in \{1, u, v, w\}$ where $u^2 = v^2 = w^2 = g$. The recurrence relation this time is $\alpha(D*Q_8) = \frac{1}{4}(\alpha(D) + 3\varrho(D))$, and a quick check shows that this results in $\alpha(D*Q_8) = \frac{2^r-1}{2^{r+1}}$ $\frac{2^r-1}{2^{r+1}}$. \Box

Proposition 3.6. *Suppose* $\alpha(H) > \frac{7}{12}$ *. Then either H is an elementary abelian 2-group, with* $\alpha(H) =$ 1*, or H* is the direct product of an elementary abelian 2-group with a group H_0 *, where* $\alpha(H) = \alpha(H_0)$ *and* H_0 *is one of the following groups (listed in decreasing order of* $\alpha(H_0)$).

- $\alpha(H) = \frac{3}{4}$ *and* $H_0 \cong D_8$ *;*
- $\alpha(H) = \frac{2}{3}$ *and* $H_0 \cong D_6$ *;*
- \bullet $\alpha(H) = \frac{5}{8}$ and H_0 is one of D_{16} , $D_8 * D_8$, W_2 , or the generalised dihedral group whose abelian *index 2 subgroup is* $C_4 \times C_4$;
- $\alpha(H) = \frac{3}{5}$ *and* $H_0 \cong D_{10}$ *.*

Proof. Assume *H* is not elementary abelian. Since $\alpha(H) > \frac{1}{2}$ $\frac{1}{2}$, we have that *H* is one of the groups described in Theorem [3.3](#page-9-0), so that *H* is the direct product of an elementary abelian 2-group with an *H*⁰ of one of the given four types. Observe that $\alpha(H) = \alpha(H_0)$.

First, let H_0 be of type I. That is, H_0 is generalised dihedral, the semidirect product of a nontrivial abelian group A_0 with a group $\langle c \rangle$, where c is an involution which inverts every element of A_0 . Moreover A_0 does not have C_2 as a direct factor. Write $A_0 = \mathcal{O} \times \mathcal{T}$, where $\mathcal O$ is a subgroup of odd order ω and \mathcal{T} is an abelian 2-group (or the trivial group). Then $|\mathcal{I}(H_0)| = \frac{1}{2}$ $\frac{1}{2}|H_0| + |\mathcal{I}(\mathcal{T})|$. Hence $\alpha(H) = \alpha(H_0) = \frac{1}{2} + \frac{1}{2\omega}$ $\frac{1}{2\omega}\alpha(\mathcal{T})$. By assumption, none of the components of \mathcal{T} is cyclic of order 2. If $\mathcal{T} \cong \{1\}$, then $\alpha(\mathcal{T}) = 1$. If $\mathcal{T} \cong C_4$, then $\alpha(\mathcal{T}) = \frac{1}{2}$; for all other \mathcal{T} we have $\alpha(\mathcal{T}) \leq \frac{1}{4}$ $\frac{1}{4}$. So, if $\omega \geq 7$, then $\alpha(H) \leq \frac{1}{2} + \frac{1}{14} < \frac{7}{12}$. If $\omega = 5$, then either $A_0 \cong C_5$ and $\alpha(H) = \frac{3}{5}$, or $\alpha(H) \leq \frac{1}{2} + \frac{1}{20} < \frac{7}{12}$. If $\omega = 3$, then either $A_0 \cong C_3$ and $\alpha(H) = \frac{2}{3}$, or $\alpha(H) \leq \frac{1}{2} + \frac{1}{12} = \frac{7}{12}$. If $\omega = 1$, then $A_0 \cong C_4$ results in $\alpha(H) = \frac{3}{4}$; $A \cong C_8$ or $A_0 \cong C_4 \times C_4$ give $\alpha(H) = \frac{5}{8}$; all other possibilities give $\alpha(H) \le \frac{9}{16}$. In

summary, if $\alpha(H) = \frac{3}{4}$, then $H_0 \cong D_8$. If $\alpha(H) = \frac{2}{3}$, then $H_0 \cong D_6$. If $\alpha(H) = \frac{3}{5}$, then $H_0 \cong D_{10}$. If $\alpha(H) = \frac{5}{8}$, then $H_0 \cong D_{16}$ or H_0 is the generalised dihedral group whose abelian index 2 subgroup is $C_4 \times C_4$. In all other cases, $\alpha(H) \leq \frac{7}{12}$.

For types II and III, if $H_0 \cong D_8 \times D_8$, then it is easy to check that $\alpha(H_0) = \frac{9}{16} < \frac{7}{12}$. If H_0 is extraspecial, then by Proposition [3.5,](#page-10-0) $\alpha(H) > \frac{7}{12}$ if and only if either $H_0 \cong D_8$, with $\alpha(H) = \frac{3}{4}$, or $H_0 \cong$ $D_8 * D_8$, with $\alpha(H) = \frac{5}{8}$. The final type to consider is when $H_0 \cong W_r$. Let $A_0 = \langle x_1, \ldots, x_r, y_1, \ldots, y_r \rangle$. Certainly $A_0 \subseteq \mathcal{I}(H_0)$, so consider $x \in H_0 - A_0$. Then $x = c \prod_{i=1}^r (x_i^{a_i} y_i^{b_i})$ where each a_i and each b_i is either zero or one. Because conjugation by *c* sends x_i to x_iy_i , and fixes y_i , we have $x^2 = \prod_{i=1}^r y_i^{a_i}$. Hence $x^2 = 1$ if and only if $a_i = 0$ for all *i*, which implies that $\mathcal{I}(H_0) = |A_0| + 2^r$. Since $|H_0| = 2^{2r+1}$, we obtain $\alpha(H) = \frac{1}{2} + \frac{1}{2^{r+1}}$ $\frac{1}{2^{r+1}}$. The only instances where $\alpha(H) > \frac{7}{12}$ are when $r = 1$ (which gives D_8 again) or when $r = 2$, which gives W_2 , with $\alpha(W_2) = \frac{5}{8}$. □

Theorem 3.7. *If* $\varrho_2(G) > \frac{1}{2}$ $\frac{1}{2}$ *, g is a rooty element and* $G/\langle g \rangle$ *is elementary abelian, then* $G \cong D_8^{*r} \ast Q_8$ $or G ≅ (D_8^{*r} * Q_8) × E$, where *E* is an elementary abelian 2-group and *r* is a non-negative integer. *Moreover,* $\varrho_2(G) = \frac{2^{r+1}+1}{2^{r+2}}$ $\frac{r+1}{2^{r+2}}$.

Proof. Notice that *g* is a central involution of *G*, by Lemma [3.4.](#page-9-1) Hence $\langle g \rangle$ is normal in *G*, so $G/\langle g \rangle$ is well-defined. Moreover $|G| = 2|G/\langle q \rangle|$, which means in particular that G is a 2-group. Consequently, $\Phi(G)$ is contained in every normal subgroup with an elementary abelian quotient. Thus $\Phi(G) \le \langle g \rangle$. Obviously $\Phi(G)$ cannot be trivial; hence $\Phi(G) = \langle g \rangle$. By Lemma [3.4](#page-9-1) (a), we may reduce to the case where $Z(G) \leq \Phi(G)$. The fact that *G* is a non-abelian 2-group now forces $Z(G) = G' = \Phi(G)$. Hence *G* is extraspecial. The result now follows immediately from Proposition [3.5.](#page-10-0) □

Corollary 3.8. *If* $\varrho_2(G) \geq \frac{3}{4}$ $\frac{3}{4}$, then $\varrho_2(G) = \frac{3}{4}$ and G is either Q_8 or the direct product of Q_8 with an *elementary abelian 2-group.*

Proof. Suppose $\varrho_2(G) \geq \frac{3}{4}$ with *g* a rooty element. The proportion of elements of *G* whose square is either 1 or *g* is just $\varrho_2(G) + \alpha(G)$. Now *g* is a central involution, meaning that $(xg)^2 = x^2$ for any $x \in G$. Hence $\alpha(G/\langle g \rangle) = \varrho_2(G) + \alpha(G) > \varrho_2(G) \geq \frac{3}{4}$ $\frac{3}{4}$. Using Proposition [3.6,](#page-10-1) we see that $G/\langle g \rangle$ is an elementary abelian 2-group. Now we employ Theorem [3.7.](#page-11-0) The only case in that theorem which gives $\varrho_2(G) \geq \frac{3}{4}$ $\frac{3}{4}$ is when $r = 0$, meaning that $\varrho_2(G) = \frac{3}{4}$ and *G* is either Q_8 or the direct product of Q_8 with an elementary abelian 2-group. \Box

Theorem 3.9. *Suppose* $\rho_2(G) > \frac{1}{2}$ $\frac{1}{2}$ *, and let g be a rooty element of G. Suppose* $G/\langle g \rangle \cong D_{2q} \times E$ *, for some odd prime q and some elementary abelian 2-group E.* Then $\varrho_2(G) \leq \frac{2q+1}{4q}$ $\frac{q+1}{4q}$, with equality if and *only if G is isomorphic to either* Q_{8q} *or the direct product of* Q_{8q} *with an elementary abelian* 2-group.

Proof. Write $\overline{G} = G/\langle g \rangle$, and for *x* in *G* write \overline{x} for the corresponding element of \overline{G} . Let *x* be an element of order *q* in *G*, and write $N = \langle x \rangle$. Then $\overline{N \langle g \rangle}$ is the unique Sylow *q*-subgroup of \overline{G} . Since $\overline{x}^G = \{\overline{x}, \overline{x}^{-1}\},\$ we see that $x^G \subseteq \{x, x^{-1}, xg, (xg)^{-1}\}.$ But xg and xg^{-1} have order $2q$, so cannot be conjugate to *x*. Moreover *x* cannot be central in *G* because $Z(G)$ is an elementary abelian 2-group

(Lemma [3.4](#page-9-1)). Hence $x^G = \{x, x^{-1}\}$, which means $C_G(x)$ has index 2 in *G*, and is therefore normal. Let *K* be a Sylow 2-subgroup of $C_G(x)$; it has index *q* in $C_G(x)$. Both *K* and *N* normalise *K*, which means (since $C_G(x) = \langle K, N \rangle$) that *K* is normal in $C_G(x)$, and so *K* is the unique Sylow 2-subgroup of $C_G(x)$; hence it is characteristic in $C_G(x)$ and consequently normal in *G*. Therefore, *K* is contained in, and has index 2 in, every Sylow 2-subgroup of *G*. There must be more than one Sylow 2-subgroup of *G*, because every root of *g* is contained in a Sylow 2-subgroup. Hence there are *q* Sylow 2-subgroups; call them P_1, \ldots, P_q . Note that, when $i \neq j$, we have $P_i \cap P_j = K$. By Corollary [3.8](#page-11-1), we have that $\rho_2(P_1) \leq \frac{3}{4}$ $\frac{3}{4}$. Hence $|R \cap P_1| \leq \frac{3}{4}|P_1|$. Therefore,

$$
R \subseteq P_1 \cdot \cup (P_2 - K) \cdots \cup (P_q - K)
$$

\n
$$
|R| \le \frac{3}{4}|P_1| + \sum_{i=2}^q |P_i - K|
$$

\n
$$
|R| \le \frac{3}{4}|P_1| + (q - 1)\frac{|P_1|}{2}
$$

\n
$$
\varrho_2(G) \le \frac{3}{4q} + \frac{q-1}{2q} = \frac{2q+1}{4q}
$$

with equality precisely when $\varrho_2(P_1) = \frac{3}{4}$ and *K* is a subgroup of index 2 in P_1 such that every element of $P_1 - K$ has order 4. By Corollary [3.8](#page-11-1) we have that $P_1 \cong Q_8 \times C_2^k$ for some $k \geq 0$, and the only suitable *K* is (isomorphic to) $C_4 \times C_2^k$. Recalling that *x* centralises *K*, we have that $G = NP_1 \cong NQ_8 \times C_2^k \cong Q_{8q} \times C_2^k$. For example, if *u* is any element of order 4 in *K*, and *b* is any element of order 4 in $P_1 - K$, then setting $a = ux$ we have $\langle a, b \rangle \cong Q_{8q}$ and $G \cong \langle a, b \rangle \times C_2^k$ \Box

Lemma 3.10. *If* $\alpha(H) > \frac{1}{2}$ $\frac{1}{2}$, then $Z(H)$ is an elementary abelian 2-group.

Proof. Since $\alpha(H) > \frac{1}{2}$ $\frac{1}{2}$, we have, by Theorem [3.3](#page-9-0), that *H* is either an elementary abelian 2-group, or the direct product of an elementary abelian 2-group with a group H_0 of one of four given types. It is therefore sufficient to show that $Z(H_0)$ is an elementary abelian 2-group for all possible H_0 . If H_0 is generalised dihedral and A_0 is the abelian subgroup of index 2, then conjugation by any involution outside A_0 inverts every element of A_0 . Hence the central elements are precisely the involutions of A_0 (plus the identity), and we are done. If H_0 is $D_8 \times D_8$, then $Z(H_0)$ is $C_2 \times C_2$. If H_0 is extraspecial, then $Z(H_0)$ is cyclic of order 2. Finally if H_0 is W_r , then *c* conjugates x_i to x_iy_i and commutes with y_i , for all *i*. Thus $Z(H_0) = \langle y_1, \ldots, y_r \rangle$. Therefore, in all cases, $Z(H)$ is an elementary abelian 2 -group. \Box

We may now complete the classification of groups with square rootiness at least $\frac{7}{12}$. Recall that \mathcal{M}_{32} is the group of order 32 whose presentation was given in Notation [3.1.](#page-8-1)

Theorem 3.11. Suppose $\varrho_2(G) \geq \frac{7}{12}$. Then *G* is isomorphic to G_0 , or the direct product of G_0 with *an elementary abelian 2-group, where G*⁰ *is one of the following groups.*

- (a) $G_0 \cong Q_8$ *and* $\varrho_2(G) = \frac{3}{4}$;
- (b) $G_0 \cong Q_{16}$ *and* $\varrho_2(G) = \frac{5}{8}$;
- (c) $G_0 \cong D_8 * Q_8$ *and* $\varrho_2(G) = \frac{5}{8}$;
- (d) $G_0 \cong M_{32}$ *and* $\varrho_2(G) = \frac{5}{8}$;
- (e) $G_0 \cong Q_{24}$ *and* $\varrho_2(G) = \frac{7}{12}$ *.*

For the purposes of the proof, we write *B* for the generalised dihedral group of order 32 whose abelian subgroup of index 2 is $C_4 \times C_4$. This is one of the groups given in Proposition [3.6](#page-10-1).

Proof. Let *g* be a rooty element of *G*, and as usual write $\overline{G} = G/\langle g \rangle$. The fact that $\varrho(G) \geq \frac{7}{12}$ implies that $\alpha(\overline{G}) > \frac{7}{12}$, so \overline{G} is one of the groups *H* listed in Proposition [3.6.](#page-10-1) If H_0 is D_6 or D_{10} , then by Theorem [3.9](#page-11-2) the only possibility for which $\varrho(G) \geq \frac{7}{12}$ is when *G* is Q_{24} (or its direct product with an elementary abelian 2-group), and here $\varrho(G) = \frac{7}{12}$. All the other possible *H* given by Proposition [3.6](#page-10-1) are 2-groups. Hence if *G* is not a 2-group, the theorem holds.

We assume from now on that *G* is a 2-group, and proceed by induction on $|G|$. For the base case, if $|G| \leq 64$, then the result holds by Observation [3.2](#page-8-0). If *H* is an elementary abelian 2-group, then by Theorem [3.7](#page-11-0) $\varrho(G) = \frac{2^r + 1}{2^{r+1}}$ $\frac{2^{r}+1}{2^{r+1}}$ for some positive integer *r*. Since $\varrho(G) \geq \frac{7}{12}$ the only possibilities are *r* = 1 and *r* = 2. These result in the cases $G_0 \cong Q_8$ and $G_0 \cong D_8 * Q_8$ above. If $\varrho(G) \geq \frac{3}{4}$ $\frac{3}{4}$, then by Corollary [3.8,](#page-11-1) we have the case $G_0 \cong Q_8$. We may therefore assume that $\frac{7}{12} < \varrho < \frac{3}{4}$, and that H_0 is either D_8 , $D_8 * D_8$, D_{16} , B or W_2 . In the first case $\alpha(H_0) = \frac{3}{4}$; in the last four cases $\alpha(H_0) = \frac{5}{8}$.

Suppose $\alpha(H_0) = \frac{5}{8}$. If $Z(G) \neq \langle g \rangle$, then G has a central involution h with $h \neq g$, and $\varrho(G/\langle h \rangle) =$ $\varrho(G)$, which by assumption lies strictly between $\frac{7}{12}$ and $\frac{3}{4}$. By induction $\varrho(G) = \frac{5}{8}$. But since $\alpha(H_0) = \frac{5}{8}$, at most $\frac{5}{8}$ of the elements of *G* square to 1 or *g*. Since *G* contains at least one involution, we have $\varrho(G) < \frac{5}{8}$ $\frac{5}{8}$, a contradiction. Therefore, if $\alpha(H_0) = \frac{5}{8}$, then $Z(G) = \langle g \rangle$.

Return now to the general case where $\alpha(H_0) \in \{\frac{3}{4}, \frac{5}{8}\}$ $\frac{5}{8}$. Let *K* be the subgroup of *G* such that $\overline{K} = Z(G/\langle g \rangle)$. We will analyse the elements of $K - Z(G)$. Let $a \in K - Z(G)$. Then $a^x \in a\langle g \rangle$ for all $x \in G$. Thus, since *a* is non-central, $C_G(a)$ has index 2 in *G*. Write $X = G - C_G(a)$. For any $x \in X$ we have $(ax)^2 = a(xax^{-1})x^2 = a^2x^2g$. Lemma [3.10](#page-12-1) tells us that \overline{K} is an elementary abelian 2-group. Therefore, $a^2 \in \{1, g\}$, meaning either *a* is an involution, or *a* is a root of *g*.

Assume first, for a contradiction, that *a* is an involution. Then $(ax)^2 = x^2g$. Thus *x* is a root if and only if $ax \in \mathcal{I}(G)$. Hence at most half the elements of *X* are roots. That is, $|R \cap X| \leq \frac{1}{4}|G|$. This forces

$$
|R \cap C_G(a)| \ge |R| - \frac{1}{4}|G| \ge \frac{7}{12}|G| - \frac{1}{4}|G| = \frac{1}{3}|G| = \frac{2}{3}|C_G(a)|.
$$

Inductively, this forces $C_G(a)$ to be Q_8 or its direct product with an elementary abelian 2-group. Therefore, $\varrho(C_G(a)) = \frac{3}{4}$ and every element of $C_G(a)$ must square to 1 or *g*.

Now $\alpha(\overline{G}) > \varrho(G)$, so $\alpha(\overline{G}) > \frac{7}{12}$. We see from Proposition [3.6](#page-10-1) that either \overline{G} is elementary abelian, or $\alpha(\overline{G}) \leq \frac{3}{4}$ $\frac{3}{4}$. The case where \overline{G} is elementary abelian has been dealt with in Corollary [3.8](#page-11-1), so we can assume $\alpha(\overline{G}) \leq \frac{3}{4}$ $\frac{3}{4}$. That means at least a quarter of the elements *h* of *G* have the property that $h^2 \notin \{1, g\}$. Such elements, then, cannot be contained in $C_G(a)$. Therefore, *X* contains at least $\frac{1}{4}|G|$ elements *h* such that $h^2 \notin \{1, g\}$. The remaining elements of *X* consist of pairs $\{x, ax\}$ exactly one of which is a root (the other being an involution). So at most a quarter of the elements of *X* are roots.

14 *Int. J. Group Theory, x no. x (201x) xx-xx S. b. Hart and D. McVeagh*

But now

$$
|R| = |R \cap X| + |R \cap C_G(a)| \le \frac{1}{4}|X| + \frac{3}{4}|C_G(a)| = \frac{1}{2}|G|,
$$

a contradiction.

Hence every element of $K - Z(G)$ is a root. Let us consider the case where $H_0 \cong D_8 * D_8$ in a little more detail. We have shown above that, since $\alpha(H_0) = \frac{5}{8}$, we have $Z(G) = \langle g \rangle$. As H_0 is extraspecial, *|K|* = 4. Let *a* be either of the two elements of *K* − *Z*(*G*). Then \bar{a} is the non-identity element of *Z*(\bar{G}). Elements of *G* which do not square to 1 or *g* must then square to *a* or *ag*. Thus, $\frac{5}{8}$ of the elements of *G* square to 1 or *g*, and $\frac{3}{8}$ of the elements of *g* square to *a* or *ag*. If $x^2 = a$, then *x* commutes with *a* and so $x \in C_G(a)$. Also *a* is conjugate to *ag* (because *a* isn't central) via some element *w* of *G* and so if $x^2 = a$, then $(x^w)^2 = ag$. Now $C_G(a)$ is a normal subgroup of *a* and thus contains x^w . Therefore, $C_G(a)$ contains all of the $\frac{3}{8}|G|$ roots of *a* and *ag*. The remaining $\frac{1}{8}|G|$ elements of $C_G(a)$ are either roots or square to the identity. Now for any root $b \in C_G(a)$, we have $(ab)^2 = 1$; and vice versa, if $z \in \mathcal{I}(C_G(a))$, then $(az)^2 = g$. That is $|R \cap C_G(a)| = |\mathcal{I}(C_G(a))|$. Hence $C_G(a)$ contains precisely $\frac{1}{16}|G|$ involutions and the same number of roots. So even if every element of $G - C_G(a)$ is a root, $\varrho(G) \leq \frac{9}{16} < \frac{7}{12}$, a contradiction. Therefore, H_0 must be one of D_8 , D_{16} , B , or W_2 , and we have noted that if $\alpha(H_0) = \frac{5}{8}$, then $Z(G) = \langle g \rangle$. By Lemma [3.4](#page-9-1)(a), we may further assume that $Z(G) \leq \Phi(G)$. We will show that under these assumptions, $|G| \leq 64$.

Since every element of $K - Z(G)$ is a root, we see from Corollary [3.8](#page-11-1) that $|K : Z(G)| \leq 4$. Now

$$
|G:K| = |\overline{G}:\overline{K}| = |\overline{G}:Z(\overline{G})| = |H_0:Z(H_0)|.
$$

Thus

$$
|G| = |G:K||K:Z(G)||Z(G)| \le 4|H_0:Z(H_0)||Z(G)|.
$$

If H_0 is any of W_2 , D_{16} or B , then $|H_0:Z(H_0)|=8$. Combining this with the fact that $|Z(G)|=2$ gives $|G| \leq 64$.

We are left with the case $H_0 = D_8$. Here $|H_0 : Z(H_0)| = 4$, so $|G| \leq 16|Z(G)|$. Recall that $Z(G) \leq$ $\Phi(G)$. In particular, $\langle g \rangle \leq \Phi(G)$, which means that $\langle g \rangle$ is contained in every maximal subgroup *V* of *G*. Therefore, \overline{V} is maximal in \overline{G} if and only if *V* is maximal in *G*. Hence $\overline{\Phi(G)} = \Phi(\overline{G}) \cong \Phi(H_0) \cong C_2$. Therefore, $|Z(G)| \leq |\Phi(G)| = 2|\Phi(\overline{G})| = 4$. Hence, again, $|G| \leq 64$. By Observation [3.2,](#page-8-0) *G* is one of the groups listed in the statement of Theorem [3.11,](#page-12-0) and the proof is complete. \Box

We note that the classification of all finite groups with $\varrho_2(G) > \frac{1}{2}$ $\frac{1}{2}$ is one of the aims of the second author's thesis, which is in preparation.

REFERENCES

- [1] Y. Berkovich, *Groups of prime power order*, Vol. 1, Walter de Gruyter, Berlin (2008).
- [2] Y. Berkovich, On the number of solutions of the equation $x^{p^k} = a$ in a finite *p*-group, *Proc. American Math. Soc.*, **116** (1992) 585–590.
- [3] N. Blackburn, Note on a paper of Berkovich, *J. Algebra*, **24** (1973) 323–334.
- [4] G. A. Fern´andez-Alcober, An introduction to finite *p*-groups: regular *p*-groups and groups of maximal class, *Mat. Contemp.*, **20** (2001) 155–226.
- [5] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.10.2; 2019. [https://www.gap-system.](https://www.gap-system.org) [org](https://www.gap-system.org).
- [6] B. Huppert, *Endliche Gruppen I*, Grundlehren der Mathematischen Wissenschaften, **134**, Springer-Verlag, Berlin, (1967).
- [7] T. J. Laffey, The Number of Solutions of $x^p = 1$ in a Finite Group, *Mathematical Proceedings of the Cambridge Philosophical Society*, **80** (1976) 229–31.
- [8] T. J. Laffey, The Number of Solutions of *x* ³ = 1 in a 3-group, *Math. Zeitschrift.*, **149** (1976) 43–45.
- [9] T. Y. Lam, On the number of solutions of $x^{p^k} = a$ in a *p*-group, *Illinois J. Math.*, **32** (1988) 575–583.
- [10] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language. Computational algebra and number theory (London, 1993), *J. Symbolic Comput.*, **24** (1997) 235–265.
- [11] C. T. C. Wall, On groups consisting mostly of involutions, *Proc. Camb. Phil. Soc.*, **67** (1970) 251–262.

Sarah B. Hart

Department of Economics, Mathematics and Statistics, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK

Email: s.hart@bbk.ac.uk

Daniel McVeagh

Department of Economics, Mathematics and Statistics, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK

Email: d.mcveagh@bbk.ac.uk