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Abstract. In this paper, the linear vibrations of Triple-Walled Carbon Nanotubes (TWNTs) 

are analysed. A multiple elastic shell model is considered. The shell dynamics is studied in 

the framework of the Sanders-Koiter shell theory. The van der Waals (vdW) interaction 

between two layers of the TWNT is modelled by a radius-dependent function. The circular 

cylindrical shell deformation is described in terms of longitudinal, circumferential and 

radial displacements. Simply supported, clamped and free boundary conditions are 

considered. The three displacement fields are expanded by means of a double mixed series 

based on Chebyshev orthogonal polynomials for the longitudinal variable and harmonic 

functions for the circumferential variable. The Rayleigh-Ritz method is applied to obtain 

approximate natural frequencies and mode shapes. The present model is validated in linear 

field by means of data derived from the literature. This study is focused on determining the 

effect of the geometry and boundary conditions on the natural frequencies of TWNTs. 
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1. INTRODUCTION 

Single-Walled Carbon Nanotubes (SWNTs) were discovered in 1991 by Iijima [1], who 

first analysed molecular carbon structures in the form of fullerenes and then reported the 

preparation of the carbon nanotubes, as helical microtubules of graphitic carbon. 

The analogies between the continuous shells and the discrete SWNTs led to a very 

large application of the elastic shell theories for the SWNT structural analysis [2-7]. 

Triple-Walled Carbon Nanotubes (TWNTs) can be described as systems composed by 

three concentric SWNTs, whereby each SWNT is treated as a cylindrical shell continuum; 

an elastic multiple shell model is used for the vibration analysis of the TWNT and the van 

der Waals interaction between any two layers of the system can be modelled by means of a 

radius-dependent function [8-10]. 

6 dof 

model 

6 dof 

model 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Modena e Reggio Emilia

https://core.ac.uk/display/326224092?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


In this paper, the linear vibrations of TWNTs are investigated. The shell dynamics is 

studied in the framework of the Sanders-Koiter shell theory and a multiple elastic shell 

model is considered. The van der Waals (vdW) interaction between any two layers of the 

TWNT is modelled by a radius-dependent function. 

The shell deformation is described in terms of longitudinal, circumferential and radial 

displacements. Simply supported, clamped and free boundary conditions are considered. 

The three displacement fields are expanded by means of a double mixed series based on 

Chebyshev polynomials and harmonic functions. The Rayleigh-Ritz method is applied to 

obtain approximate natural frequencies and mode shapes. 

The model proposed in the present paper is validated in linear field by means of data 

derived from the literature. This study is focused on determining the effect of the geometry 

and boundary conditions on the natural frequencies of TWNTs. 

2. SANDERS-KOITER LINEAR SHELL THEORY EXTENDED TO TWNTS 

In Figure 1, a circular cylindrical shell having radius Ri, length Li and thickness hi is shown; 

a cylindrical coordinate system (O; x, θ, z) is considered where the origin O of the reference 

system is located at the centre of one end of the circular shell. Three displacement fields are 

represented: longitudinal ui (x, θ, t), circumferential vi (x, θ, t) and radial wi (x, θ, t), where 

(x, θ) are the longitudinal and angular coordinates of the circular cylindrical shell, z is the 

radial coordinate along the thickness hi and t is the time. 

 

 

 

Figure 1. Geometry of the i-th shell. (a) Complete shell; (b) cross-section of the shell. 

h 

O 

x 

 

 

v ui 

w 

Ri 

Li 
hi 

 

(a) 

vi 

θ 

wi 

Ri 

z 
hi 

(b) 

6 dof 

model 

6 dof 

model 



Strain-Displacement Relationships 

The three nondimensional displacement fields (ũi,ṽi,  i) of the i-th cylindrical shell can be 

written in the following form [2] 
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where (ui,vi,wi) are the three dimensional displacement fields and Ri is the radius of the i-th 

shell. 

The nondimensional middle surface strains of the i-th cylindrical thin shell are given as 

[2] 
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where η = x/L is the nondimensional longitudinal coordinate of the shell and αi = Ri/L. 

The nondimensional middle surface changes in curvature and torsion of the i-th 

cylindrical shell are expressed as [2] 
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Elastic Strain and Kinetic Energy 

The nondimensional elastic strain energy of the i-th cylindrical shell is written in the 

following form [7] 
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where βi = h/Ri. 

The nondimensional kinetic energy of the i-th cylindrical shell is given by [4] 
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where γi = ρRi
2
ω0

2
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Van der Waals Interaction Energy 

The nondimensional pressure   i exerted on the i-th shell due to vdW interaction between 

two different layers can be written as a function of the nondimensional radial displacements 

(  i,  j) of the shells in the following form [8,9] 
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where δi = Ri/ ˆ ,R δj =Rj/ ˆ ,R R̂ = R1. 

The nondimensional vdW interaction coefficient
ijc is expressed as [10] 
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The nondimensional elliptical integral m

ijE is given by [10] 
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The nondimensional coefficient ijk is expressed in the form [10] 
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3. LINEAR VIBRATION ANALYSIS 

A modal vibration, i.e., a synchronous motion, can be formally written in the form [6] 
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where 
iU (η,θ), 

iV (η,θ), 
iW (η,θ) are the mode shape of the i-th shell, fi (τ) is the time law, 

which is supposed to be the same for each displacement field in the modal analysis. 

The mode shape (
iU , 

iV , 
iW ) is expanded by means of a double series in terms of m-th 

order Chebyshev polynomials Tm
*
(η) in the longitudinal direction and harmonic functions 

(cos nθ, sin nθ) in the circumferential direction, in the following form [6] 
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where Tm
*
 = Tm (2η – 1), m is the polynomials degree, n is the number of nodal diameters 

and (
, ,i m nU , 

, ,i m nV , 
, ,i m nW ) are unknown coefficients of the boundary conditions. 

Rayleigh-Ritz Method 

The maximum number of variables needed for describing a general vibration mode with n 

nodal diameters is obtained by the relation (Np = 3×(Mu + Mv + Mw + 3 – p)), where (Mu = 

Mv = Mw) are the degree of the Chebyshev polynomials and p is the number of equations 

which are needed to satisfy the boundary conditions. 

For a multi-mode analysis including different values of nodal diameters n, the number 

of degrees of freedom of the system is computed by the relation (Nmax = Np × (N + 1)), 

where N represents the maximum value of the nodal diameters n considered. 

Equations (10) are inserted in the expressions of the elastic strain energy (4) and kinetic 

energy (5) in order to compute the Rayleigh quotient; after imposing the stationarity to the 

Rayleigh quotient, one obtains the eigenvalue problem [6] 
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which furnishes the approximate natural frequencies and mode shapes, where q i
denotes a 

vector containing all the unknown variables in the form [6] 
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4. NUMERICAL RESULTS 

The mechanical parameters of the TWNT analysed in this paper are shown in Table 1. 

 

Table 1. Mechanical parameters of the TWNT [10]. 

Young’s modulus E 5.5 TPa 

Poisson’s ratio ν 0.19 

Mass density ρ 11700 kg/m
3
 

Thickness h 0.066 nm 

Innermost radius R1 5.00 nm 

Intermediate radius R2 5.34 nm 

Outermost radius R3 5.68 nm 

Length L 56.8 nm 

 



Table 2. Natural frequencies (THz) of a simply-simply TWNT with R1 = 5.00 nm, R3 = 

5.68 nm and L/R3 = 10 with vdW interaction. Circumferential flexural modes. Comparisons 

between Sanders-Koiter (present model) and Donnell-Mushtari (Ref. [10]) shell theories.  

Mode Displacement Radius Natural frequency (THz) Difference % 

(j,n) (u,v,w) R Present 

model 
Ref. [10]  

1,2 

w R3 0.0149 0.0150 0.67 

w R1 2.0557 2.0550 0.03 

w R2 3.3479 3.3480 0.00 

2,2 

w R3 0.0466 0.0469 0.64 

w R1 2.0586 2.0580 0.03 

w R2 3.3481 3.3490 0.03 

3,2 

w R3 0.0944 0.0942 0.21 

w R1 2.0638 2.0630 0.04 

w R2 3.3483 3.3490 0.02 

 

Validation of the Present Method in Linear Field 

In Table 2, comparisons between the natural frequencies of a simply supported TWNT 

obtained by considering the Sanders-Koiter shell theory (present model) and the Donnell-

Mushtari shell theory (Ref. [10]) are reported. 

The mechanical parameters of Table 1 are used. The vdW interaction is taken into 

account. The circumferential flexural modes (n=2) are studied. The radial displacement w is 

considered. The three concentric SWNTs which give the TWNT are denoted by innermost 

radius R1, intermediate radius R2 and outermost radius R3, respectively. 

From these comparisons, it can be noted that the present model is in good accordance 

with the results from the pertinent literature, the differences between the natural frequencies 

being less than 1%. 

Effect of the Boundary Conditions 

In Figure 2, comparisons between the natural frequencies of a TWNT obtained considering 

the Sanders-Koiter shell theory are reported. The mechanical parameters of Table 1 are 

used. The vdW interaction is taken into account. The circumferential flexural modes (n=2) 

are studied. The radial displacement w is considered. The SWNT with outermost radius R3 

is analysed. 

Free-free, simply supported-free, clamped-free, simply supported-simply supported, 

clamped-simply supported and clamped-clamped boundary conditions are considered. 

From these comparisons, it can be noted that, for the value of the radius R3, the natural 

frequency for the clamped-clamped TWNT is the highest, followed by the clamped-simply 

supported, simply supported-simply supported, clamped-free, simply supported-free and 

free-free natural frequencies. 



 

Figure 2. Natural frequencies (THz) of a TWNT with vdW interaction. Mode (n=2). Radial 

displacement w. Radius R3. Sanders-Koiter shell theory. Mechanical parameters of Table 1. 

 

 

 

Figure 3. Natural frequencies (THz) of a simply supported TWNT with vdW interaction. 

Mode (n=2). Radial displacement w. Radius R3. Sanders-Koiter shell theory. Mechanical 

parameters of Table 1. 
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Effect of the Aspect Ratio 

In Figure 3, comparisons between the natural frequencies of a simply supported TWNT 

obtained considering the Sanders-Koiter shell theory are given. The mechanical parameters 

of Table 1 are used. The vdW interaction is taken into account. The circumferential flexural 

modes (n=2) are investigated. The radial displacement w is considered. The SWNT with 

outermost radius R3 is analysed. Five different aspect ratios L/R3 = (10,20,30,40,50) are 

compared. 

From this Figure, it is confirmed that the natural frequency of a vibrational mode (j, n) 

increases with the number of longitudinal half-waves j and decreases with increasing length 

L. In particular, it can be seen that the natural frequencies for the lower aspect ratio L/R3=10 

increase almost linearly with j, while the natural frequencies for the higher aspect ratio 

L/R3=50 tend to an horizontal asymptote. 

5. CONCLUSIONS 

In this paper, the linear vibrations of TWNTs are analysed considering a multiple elastic 

shell model. The shell dynamics is studied in the framework of the Sanders-Koiter theory, 

where the vdW interaction between any two layers of the TWNT is modelled by a radius-

dependent function. Simply supported, clamped and free boundary conditions are applied. 

The circumferential flexural modes are studied. The radial displacement is considered. The 

Rayleigh-Ritz method is used in order to obtain approximate natural frequencies and mode 

shapes. 

The present model is validated in linear field by means of data derived from the 

literature. From comparisons between the natural frequencies of a simply supported TWNT 

obtained by considering the Sanders-Koiter and Donnell-Mushtari shell theories, it can be 

noted that the present model is in good accordance with the results retrieved from the 

literature. 

The effect of the boundary conditions on the natural frequencies of a TWNT obtained 

by considering the Sanders-Koiter shell theory is investigated. The outermost radius is 

analysed. From these comparisons, it can be noted that the natural frequency of the 

clamped-clamped TWNT is the highest, followed by the clamped-simply supported, simply 

supported-simply supported, clamped-free, simply supported-free and free-free natural 

frequencies, respectively. 

The influence of the aspect ratio on the natural frequencies of a TWNT obtained by 

considering the Sanders-Koiter shell theory is studied. The outermost radius is investigated. 

From these comparisons, it is confirmed that the natural frequency of a vibrational mode 

increases with the number of the longitudinal half-waves and decreases with increasing the 

length. Moreover, it can be noted that the natural frequencies for the lower aspect ratio 

increase almost linearly with the longitudinal half-waves, while the natural frequencies for 

the higher aspect ratio tend to an horizontal asymptote. 
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