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Abstract. In this paper, the nonlinear vibrations and energy exchange of single-walled 

carbon nanotubes (SWNTs) are studied. The Sanders-Koiter theory is applied to model the 

nonlinear dynamics of the system in the case of finite amplitude of vibration. The SWNT 

deformation is described in terms of longitudinal, circumferential and radial displacement 

fields. Simply supported, clamped and free boundary conditions are considered. The 

circumferential flexural modes (CFMs) are investigated. Two different approaches based 

on numerical and analytical models are compared. In the numerical model, an energy 

method based on the Lagrange equations is used to reduce the nonlinear partial differential 

equations of motion to a set of nonlinear ordinary differential equations, which is solved by 

using the implicit Runge-Kutta numerical method. In the analytical model, a reduced form 

of the Sanders-Koiter theory assuming small circumferential and tangential shear 

deformations is used to get the nonlinear ordinary differential equations of motion, which 

are solved by using the multiple scales analytical method. The transition from energy 

beating to energy localization in the nonlinear field is studied. The effect of the aspect ratio 

on the analytical and numerical values of the nonlinear energy localization threshold for 

different boundary conditions is investigated. 
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1. INTRODUCTION 

The spatially localized excitations represent one of the most interesting phenomena in the 

nonlinear dynamics of solids and structures [1]. In particular, the spatial confinement of 

nonlinear vibrations generated by external loads can be used to develop robust shock and 

vibration isolation designs for certain classes of engineering systems [2]. Moreover, 

excitations of this type determine elementary mechanisms of many physical processes 

giving noticeable contributions to thermal conductivity [3]. 
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The analogies between the continuous shells and the discrete SWNTs led to a very 

large application of the elastic shell theories for the SWNT structural analysis. Liew and 

Wang [4] investigated the wave propagation in SWNTs via two different elastic shell 

theories, i.e., Love’s thin cylindrical shell theory and Cooper-Naghdi thick cylindrical shell 

theory, the last one taking into account also the shear and inertia effects. Wang et al. [5] 

studied static buckling and free vibrations of simply supported SWNTs comparing the 

results of the Donnell shallow shell theory and the simplified Flugge thin shell theory with 

the results of the exact Flugge thin shell theory, which retains all the three displacement 

fields. Silvestre [6] investigated the buckling behaviour of clamped SWNTs under external 

torsion using the Donnell shallow shell theory and the Sanders-Koiter thin shell theory in a 

wide range of aspect ratios, diameters and chiralities. Strozzi et al. [7] studied the low-

frequency linear vibrations of SWNTs in the framework of the Sanders-Koiter thin shell 

theory. Two approaches, based on numerical and analytical models, were compared. 

Several types of SWNTs were analysed by varying aspect ratio and chirality. 

The effect of the boundary conditions on the nonlinear vibrations of circular cylindrical 

shells has been deeply investigated in the pertinent literature in the past years. Kurylov and 

Amabili [8] studied nonlinear vibrations of clamped-free cylindrical shells with geometric 

imperfection. The Sanders-Koiter shell theory was used to study the nonlinear dynamics. 

An energy approach based on Lagrange equations was applied to obtain the equations of 

motion. Pellicano [9] investigated the nonlinear vibrations of cylindrical shells by means of 

the Sanders-Koiter shell theory. Simply supported and clamped boundary conditions were 

considered, as well as connections with rigid bodies; in the latter case, experiments were 

carried out. Zhang et al. [10] used the local adaptive differential quadrature method for the 

nonlinear vibrations study of simply supported, clamped and free cylindrical shells. The 

nonlinear equations of motion were formulated by means of the Goldenveizer-Novozhilov 

shell theory. Strozzi and Pellicano [11] analysed the nonlinear vibrations of functionally 

graded cylindrical shells for simply supported, clamped and free boundary conditions. The 

Sanders-Koiter shell theory was applied to describe the nonlinear dynamics of the shell 

subjected to a harmonic external load. 

In the present paper, the nonlinear vibrations and energy exchange of SWNTs are 

investigated. The SWNT dynamics is studied within the framework of the Sanders-Koiter 

theory. The circumferential flexural modes (CFMs) are evaluated. The SWNT deformation 

is described in term of longitudinal, circumferential and radial displacement fields. Simply 

supported, clamped and free boundary conditions are examined. Two different approaches 

are proposed, based on numerical and analytical models. In the numerical model, the three 

displacement fields are expanded in the nonlinear field by using the approximate linear 

eigenfunctions. An energy method based on the Lagrange equations is used to reduce the 

nonlinear partial differential equations of motion to a set of nonlinear ordinary differential 

equations, which is solved by using the implicit Runge-Kutta numerical method. In the 

analytical model, a reduced form of the Sanders-Koiter shell theory by assuming small 

circumferential and tangential shear deformations is considered. A fourth-order nonlinear 

partial differential equation of motion for the radial displacement field is derived, which 

allows the effect of the nonlinearity for the different boundary conditions to be estimated. 

An analytical solution of this differential equation of motion is obtained by applying the 

multiple scales method. 

In the second part of the present paper, the transition from energy beating to energy 

localization in the nonlinear field is investigated; the concept of energy localization is 

introduced, which represents a strongly nonlinear phenomenon. In the case of small 



amplitude initial energy, a periodic energy exchange between the two halves of the 

nanotube takes place. The nonlinear oscillations of the SWNT become localized when the 

initial excitation intensity exceeds some energy threshold which depends on the length of 

the SWNT; the amplitude of the smallest initial excitation, corresponding to the energy 

confinement in one half of the nanotube axis, is called energy localization threshold. 

In this paper, the transition from energy beating to energy localization in SWNTs is 

investigated using numerical and analytical approaches, where the analytical approach is 

based on the LPTs concept. The effect of the SWNT aspect ratio on the analytical and 

numerical values of energy localization threshold is studied; different boundary conditions 

are evaluated. 

2. SANDERS-KOITER NONLINEAR SHELL THEORY 

In Figure 1, a circular cylindrical shell having radius R, length L and thickness h is shown; a 

cylindrical coordinate system (O; x, θ, z) is considered, where the origin O of the reference 

system is located at the centre of one end of the circular shell. Three displacement fields are 

represented: longitudinal u (x, θ, t), circumferential v (x, θ, t) and radial w (x, θ, t), where (x, 

θ) are the longitudinal and angular coordinates, z is the radial coordinate along the thickness 

h and t is the time. 

 

 

 

 

Figure 1. Geometry of the shell. (a) Complete shell; (b) cross-section of the shell surface. 
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Elastic Strain Energy 

The nondimensional elastic strain energy of a circular cylindrical shell is written as [7] 
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where the first term of the right-hand side of equation (1) is the membrane energy (also 

referred to stretching energy) and the second one is the bending energy, with β = h/R. 

Kinetic Energy 

The nondimensional kinetic energy of a circular cylindrical shell is given by [7] 
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3. NUMERICAL SOLUTION OF THE NONLINEAR SHELL THEORY 

In order to obtain a numerical solution of the SWNT nonlinear dynamics, a two-steps 

procedure is considered: i) the three displacement fields are expanded by using the 

approximated eigenfunctions obtained in linear field; ii) the Lagrange equations are 

considered in conjunction with the nonlinear elastic strain energy in order to obtain a set of 

nonlinear ordinary differential equations of motion. 

 

Nonlinear Vibration Analysis 

In the nonlinear analysis, the three displacement fields  ( , , )u    ,  ( , , )v    ,  ( , , )w     are 

expanded using the approximated linear mode shapes 
( , ) ( , )j nU   ,

( , ) ( , )j nV   ,
( , ) ( , )j nW    

in the following form [11] 
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where the time laws , , , , , ,( ( ), ( ), ( ))u j n v j n w j nf f f    are unknown functions (step i). 

 



Lagrange Equations 

Expansions (3) are inserted into the expressions of elastic strain energy Ẽ (1) and kinetic 

energy T (2); then, the nondimensional Lagrange equations of motion for free vibrations 

can be expressed in the form [11] 
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where the maximum number of degrees of freedom Nmax depends on the number of 

vibration modes considered in the expansions (3). 

By using the Lagrange equations (4), a set of nonlinear ordinary differential equations 

of motion is obtained (step ii), which is solved numerically using the implicit Runge-Kutta 

method with suitable accuracy, precision and number of steps. 

4. ANALYTICAL SOLUTION OF THE NONLINEAR SHELL THEORY 

In order to obtain an analytical solution of the SWNT nonlinear dynamics, a two-steps 

procedure is considered: i) a reduced form of the Sanders-Koiter nonlinear theory is 

developed, and a nonlinear partial differential equation of motion is obtained for the radial 

displacement field; ii) the Galerkin method is considered in order to obtain a set of 

nonlinear ordinary differential equations of motion. 

 

Nonlinear Vibration Analysis 

The nonlinear expansions of the nondimensional longitudinal ũ, circumferential ṽ and radial 

w̃ displacement fields can be written as [7] 
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where
0U and

0W are the axisymmetric component of longitudinal and radial displacements. 

By neglecting the nondimensional middle surface circumferential normal strain [7] 
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and the nondimensional middle surface tangential shear strain [7] 
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the nondimensional longitudinal and circumferential displacement fields can be written as 

functions of the nondimensional radial displacement field. 



The nonlinear partial differential equation of motion for the nondimensional radial 

displacement field is written in the following form (step i) [7] 
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Galerkin Procedure 

Assuming that the solution of the nonlinear equation (8) under simply supported boundary 

conditions is represented as follows (discretization method) [7] 

 

1 2( , ) ( )sin( ) ( )sin(2 )W f f        (9) 

 

we can get a set of two nonlinear ordinary differential modal equations of motion for 

the two modal amplitudes 
1 2,f f  by using the Galerkin method (step ii). 

This system of two nonlinear equations of motion is solved analytically by applying the 

asymptotic expansion and the multiple scales method. 

5. NUMERICAL RESULTS 

In this section, the analytical and numerical values of the nonlinear energy localization 

threshold are compared; different aspect ratios of the SWNT are evaluated; the influence of 

the boundary conditions is investigated. 

The mechanical parameters of the SWNT analysed in this paper are shown in Table 1; 
comparisons between the natural frequencies of the SWNT of Table 1 obtained by using the 

previous analytical and numerical methods for the circumferential flexural modes are 

reported in Ref. [7]. 

 

Table 1. Mechanical parameters of the SWNT. 

Young’s modulus E 5.5 TPa 

Poisson’s ratio ν 0.19 

Mass density ρ 11700 kg/m
3
 

Thickness h 0.066 nm 

Radius R 0.786 nm 
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Energy Localization Threshold 

In this section, the analytical and numerical estimations of the nonlinear energy localization 

threshold are compared for different boundary conditions; the comparisons are carried out 

in the interval of the aspect ratios λ = 20÷90. 

In the case of simply supported boundary conditions (Figure 2 and Table 2), the results 

of the analytical and numerical methods are very close for the whole interval of the aspect 

ratios. A fast increment of the localization threshold in the lower region of the aspect ratios 

λ = 20÷40 is found; the localization threshold increment is monotonic with L/R, reaching an 

horizontal asymptote at λ ≈ 70. 

In the case of clamped-clamped boundary conditions (Figure 3 and Table 3), the results 

of the analytical and numerical methods are close for the whole interval of the aspect ratios. 

The localization threshold increases with L/R up to λ = 35, where the frequency ratios 

ω3,2/ω1,2 and ω2,2/ω1,2 approach the unity (λ = 30: ω2,2/ω1,2 = 1.032, ω3,2/ω1,2 = 1.118; λ = 

40: ω2,2/ω1,2 = 1.012, ω3,2/ω1,2 = 1.044) and a 1:1:1 weak internal resonance takes place. 

Then, there is a localization threshold decrement up to λ = 40, which is followed by a 

maximum of localization threshold at λ ≈ 50, where the frequency ratios ω3,2/ω2,2 and 

ω2,2/ω1,2 approach the unity (λ = 45: ω2,2/ω1,2 = 1.009, ω3,2/ω2,2 = 1.021; λ = 55: ω2,2/ω1,2 = 

1.004, ω3,2/ω2,2 = 1.008) and a 1:1:1 strong internal resonance takes place. The localization 

threshold decreases with L/R from λ = 55, achieving an horizontal asymptote at λ ≈ 80. 

In the case of free-free boundary conditions (Figure 4 and Table 4), the results of the 

analytical and numerical methods are close for the whole interval of the aspect ratios. A 

very slow increment of the localization threshold in the lower region of the aspect ratios λ = 

20÷50 is found. A jump of the localization threshold is located at λ = 55, where the 

frequency ratios ω3,2/ω2,2 and ω2,2/ω1,2 approach the unity (λ = 50: ω2,2/ω1,2 = 1.0015, 

ω3,2/ω2,2 = 1.0061; λ = 60: ω2,2/ω1,2 = 1.0010, ω3,2/ω2,2 = 1.0036) and a 1:1:1 strong internal 

resonance takes place. The localization threshold increment is then monotonic with L/R. 

For all the boundary conditions, the results of the analytical and numerical methods are 

in perfect agreement for λ ≥ 70, since the effect of the boundary conditions can be neglected 

far from the edges. 

6. CONCLUSIONS 

In this paper, the nonlinear vibrations and energy exchange of SWNTs are studied. The 

Sanders-Koiter theory is applied to model the nonlinear dynamics of the system. Simply 

supported, clamped and free boundary conditions are considered. The CFMs are analysed. 

Two different approaches are developed, where the nonlinear partial differential equations 

of motion are solved considering numerical (implicit Runge-Kutta) and analytical (multiple 

scales) methods. 

The influence of the aspect ratio on the analytical and numerical values of the energy 

localization threshold is investigated in nonlinear field. For all the considered boundary 

conditions, the results of the analytical and numerical methods almost coincide at the high 

aspect ratios, since the boundary conditions effect can be neglected far from the edges. 

Moreover, a good correspondence between the results of the two approaches is found 

for the intermediate interval of the aspect ratios, where a maximum of the localization 

threshold in the case of clamped edges and a jump of the localization threshold in the case 

of free edges take place, which are related to internal resonances. 

The present paper, which is devoted to the CFMs, could represent a framework also in 

the study of the nonlinear vibrations and energy exchange of the beam-like modes (BLMs) 

and the radial breathing (axisymmetric) modes (RBMs). 
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Table 2. Amplitude of the localization threshold. Simply supported SWNT of Table 1. 

Different aspect ratios L/R. Comparisons between analytical and numerical results. 

Aspect ratio L/R Analytical method Numerical method Difference % 

20 0.14283 0.14593 2.17 

25 0.15902 0.16123 1.39 

30 0.16608 0.16739 0.79 

35 0.16917 0.17001 0.50 

40 0.17058 0.17112 0.31 

45 0.17124 0.17172 0.28 

50 0.17155 0.17201 0.27 

55 0.17169 0.17213 0.26 

60 0.17175 0.17217 0.25 

65 0.17176 0.17218 0.24 

70 0.17175 0.17216 0.24 

75 0.17173 0.17213 0.23 

80 0.17171 0.17211 0.23 

85 0.17168 0.17207 0.23 

90 0.17166 0.17204 0.22 

 

 

 

 

 

 

 

Figure 2. Effect of the aspect ratio on the amplitude of localization threshold for the simply 

supported SWNT of Table 1. “--”, analytical method; “-■-”, numerical method. 
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Table 3. Amplitude of the localization threshold. Clamped-clamped SWNT of Table 1. 

Different aspect ratios L/R. Comparisons between analytical and numerical results. 

Aspect ratio L/R Analytical method Numerical method Difference % 

20 0.16623 0.17020 2.39 

25 0.16740 0.17118 2.26 

30 0.17240 0.17616 2.18 

35 0.17975 0.18298 1.80 

40 0.17267 0.17528 1.51 

45 0.19043 0.19279 1.24 

50 0.57890 0.58486 1.03 

55 0.26399 0.26613 0.81 

60 0.21539 0.21685 0.68 

65 0.19652 0.19762 0.56 

70 0.18512 0.18595 0.45 

75 0.18040 0.18112 0.40 

80 0.17790 0.17854 0.36 

85 0.17639 0.17699 0.34 

90 0.17542 0.17600 0.33 

 

 

 

 

 

 

 

Figure 3. Effect of the aspect ratio on the amplitude of localization threshold for the 

clamped-clamped SWNT of Table 1. “--”, analytical method; “-■-”, numerical method. 
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Table 4. Amplitude of the localization threshold. Free-free SWNT of Table 1. 

Different aspect ratios L/R. Comparisons between analytical and numerical results. 

Aspect ratio L/R Analytical method Numerical method Difference % 

20 0.06790 0.07048 3.80 

25 0.07267 0.07521 3.49 

30 0.07770 0.08022 3.24 

35 0.08230 0.08432 2.46 

40 0.08625 0.08788 1.89 

45 0.08959 0.09093 1.50 

50 0.09223 0.09332 1.18 

55 0.13008 0.13125 0.90 

60 0.13351 0.13442 0.68 

65 0.13643 0.13718 0.55 

70 0.13893 0.13958 0.47 

75 0.14110 0.14172 0.44 

80 0.14301 0.14361 0.42 

85 0.14466 0.14524 0.40 

90 0.14613 0.14670 0.39 

 

 

 

 

 

 

 

Figure 4. Effect of the aspect ratio on the amplitude of localization threshold for the 

free-free SWNT of Table 1. “--”, analytical method; “-■-”, numerical method. 
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