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Abstract. For a PROMETHEE II method used to rank concurrent alternatives 

both preference functions and weights are required, and if the weights are un-

known, they can be elicited by leveraging present or past partial rankings. If the 

known partial ranking is incorrect, the eliciting methods are ineffective. In this 

paper a logistic regression method for weight elicitation is proposed to tackle 

this scenario. An experiment is carried out to compare the logistic regression 

method performance against a state-of-the-art linear weight elicitation method, 

proving the validity of the proposed methodology. 
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1 Introduction 

Multicriteria decision making (MCDM) methods compare multi-dimensional alter-

natives, presented to a decision maker (DM), and rank them according to his/her pref-

erences. MCDM methods use preference functions to measure the DM's specific pref-

erences, and to translate the alternatives into comparable units. The resulting prefer-

ences are then weighted to obtain a scalar value for each alternative. This scalar value 

can be directly used to rank the alternatives. Readers interested in the theoretical 

foundation of MCDM methods alongside an established MCDM method, can refer to 

[1], while those interested in a recent application in the Life-cycle assessment (LCA) 

context can refer to [2]. The availability of credible weights can severely impact the 

performance of most MCDM methods [3], thus a series of weigh eliciting procedures 

have been designed [4]. This paper expands the methods proposed in [5] for weights 

eliciting in the PROMETHEE II context. 
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Important components required for the application of MCDM methods are often 

missing, both the preference functions and the weights might not be known. In case 

the weights are unknown, information on the ranking of the alternatives can be used 

to elicit them. In the literature specific weighting eliciting procedure has been de-

signed for different MDCD methods, [6] propose an eliciting procedures for TOPSIS, 

[7] focus on a surrogate weighting procedure in PROMETHEE, and [8] revise Simo’s 

procedure for the ELECTRE method. From a broader perspective, [9] propose a pos-

terior analysis using the popular Simple Additive Weighting (SAW) method while 

[10] focus of multicriteria additive models. For the PROMETHEE method, if a partial 

ranking of present or past decisions is available, [5] propose various elicitation meth-

ods based on linear and convex constrained optimization. 

If the preference functions are also unknown, Robust Ordinal Regression (ROR) 

methods bypass the elicitation problem by providing all the results obtainable using 

preference functions that are in line with a known partial ranking. Interested readers 

can refer to the first ROR publication [11], which is a re-design of the UTA method 

[1] in a robust framework. The PROMETHEE method re-designed in a ROR frame-

work can be found in [12], while the ROR version of ELECTRE has been designed by 

[13]. 

Machine learning (ML) algorithms, like logistic regression, are often used in con-

junction with MCDM methods. [14] outline the similarities and differences between 

ML algorithms and MCDM methods, while [15] bridge the gap between ML and 

ROR methods. Recent applications of K-means for AHP can be found in [16] and 

decision tree algorithms for Data Envelop Analysis (DEA) in [17]. 

In this paper a logistic regression algorithm in used in the PROMETHEE weight 

elicitation context of [5] rather than a linear model. The linear and logistic regression 

algorithms are experimentally compared in cases where the known partial ranking is 

incorrect. 

This paper is organized as follows: in Section 2 the proposed weight elicitation 

models is described. In Section 3 the experimental setting is outlined, and its results 

are analysed. Section 4 concludes the paper with a summary of the key findings and 

suggestions for future research. 

2 Logistic regression model 

Using the formalism presented in [5], if all the preference between alternatives are 

known they can be used to elicit unknown weights solving the optimization problem: 
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0 ≤ (𝑤)𝑗 ≤ 1     ∀𝑗 ∈ {1, … , 𝑛} . (3) 

(1) maximizes the log-likelihood of identifying preferred alternatives by linearly 

separating the preference space. Each alternative 𝑖 preferred over an alternative 𝑘 is a 

success event drawn from a Bernoulli distribution. The distribution is characterized by 

a success probability 𝑝𝑖𝑘  parametrized, in the preference space, by net flow differ-

ences through the inverse canonical link function. If the linear predictor for the in-

verse canonical link function is defined without an intercept its parameters are maxi-

mum likelihood estimators for the PROMETHEE II weights. Since no failure event is 

considered, the Bernoulli distribution log-likelihood simplifies to (1). 

This model is effective even if some of the known preferences are incorrect. In ad-

dition, the probabilistic interpretation of the weights allows the DM to identify the 

known preferences that are most likely to be faulty. 

3 Experimental setting and results 

3.1 Experimental setting 

The experiment objective was to compare the two models in scenarios where some 

of the known preferences are incorrect. The Linear Model is expected to outperform 

the Logistic Regression Model if all the known preferences are correct, while errone-

ous information is expected to favour the proposed model over the original one. The 

Linear Model is also expected to be unable to find a feasible solution if wildly incor-

rect inputs are provided. 

The dataset for alternatives and weights is used in [5], which contains 5-

dimensional weights for 1000 DMs and their rankings of 100 different alternatives 

each. It is artificially expanded by permuting the rankings 1000 times, with each per-

mutation being independent from the previous one, and it affects all the rankings lead-

ing to 1,000,000 permuted rankings. 

The preference function for each weight 𝑗 is linear in the entire interval 

[min(𝐷𝑗)𝑖𝑘
, max(𝐷𝑗)𝑖𝑘

]. 

For each DM 𝑙 and permutation ℎ both the Linear Method and the Logistic Regres-

sion Method are applied thereby obtaining two sets of elicited weights. Each set 𝑠 of 

elicited weights is compared with the DM weights thus obtaining a performance 

measure in the interval [0,1]: 

𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑠𝑙ℎ =
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where (𝑤𝑙)𝑗 is the DM’s weight for criterion 𝑗, and (𝑤𝑒𝑠𝑙ℎ)𝑗 is the elicited weight 

for the same criterion. 

For each permutation ℎ and set 𝑠, the DMs’ performance measures are aggregated 

by estimating their expected value: 
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Each permutation ℎ is rated according to its distance from the unpermuted ranking: 

𝑝𝑒𝑟ℎ =
∑ 1{𝑝𝑜𝑠ℎ𝑟 > 𝑟}100
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where 𝑝𝑜𝑠ℎ𝑟  is the permuted value in position 𝑟 and (100
2

) is a normalization con-

stant to constraint 𝑝𝑒𝑟ℎ in the range [0,1]. The rating of the unpermuted ranking is 0, 

while the rating of the reversed ranking is 1. The permutations are generated to 

achieve ratings that are uniformly distributed between 0 and 1. 

The two sets of �̂�(𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑠ℎ) can be compared across different 𝑝𝑒𝑟ℎ to gauge 

how different permutation ratings affect the model's performance. 

3.2 Results 

Figure 1 depicts the obtained �̂�(𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑠ℎ) for the two methods against the 

permutations 𝑝𝑒𝑟ℎ. The expected values for the performance measure of the Linear 

Model are plotted with circles, while the Logistic Regression Model values are plotted 

with crosses. 

According to Figure 1, the Linear Model outperforms the Logistic Regression 

Model in the non-permuted scenario, while the Logistic Regression Model is superior 

for sizable values of 𝑝𝑒𝑟ℎ. When the permutation becomes severe (𝑝𝑒𝑟ℎ ≥ 0.5345), 

the Linear Model is again the preferred option for weight eliciting, up to complete 

rank reversion. 

Both the Linear Model and the Logistic Regression Model were always able to find 

feasible solutions. 

 
Fig. 1. Expected value of the performance measure for the two models and permuta-

tion ratings. 



4 Conclusions 

Unexpectedly, the Logistic Regression Model does not always outperform the Lin-

ear Model when some of the known preferences are incorrect. The advantage of the 

Logistic Regression Model is limited to those instances where the permuted ranking is 

closer to the non-permuted ranking than to the reverse ranking, with cut-point 𝑝𝑒𝑟ℎ =
0.5345. In nearly all the analysed cases, the Linear Model achieves, without incurring 

infeasibility issues, a constant expected value of the performance measure 𝑝𝑒𝑟ℎ =
0.8716, where chance alone would yield 𝑝𝑒𝑟ℎ = 0.7370. Leveraging the high dimen-

sionality of the preference space, the Linear Model finds a single feasible solution and 

retains it for nearly all the permuted rakings, except for the reverse ranking that car-

ries its own below-chance solution. 

These results provide guidelines on when one method is preferable over the other, 

and prove that, when the correct method is selected, the elicited weights are close to 

the real ones above chance. 

Further research will use the Logistic Regression Model to identify faulty known 

preferences, leveraging the probabilistic interpretation of the weights described in 

Section 2. Other machine-learning algorithms (e.g. Support Vector Machines, Neural 

Networks) will be specialized into weight-eliciting models. These models are ex-

pected to account for not only for incorrect known preferences but also for incorrect 

preference functions, discarding the hypothesis of the linear separability assumption 

in the preference space. 
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