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Abstract

We present an explicit construction of minimal cellular resolutions for the edge
ideals of forests, based on discrete Morse theory. In particular, the generators of
the free modules are subsets of the generators of the modules in the Lyubeznik
resolution. This procedure allows us to ease the computation of the graded Betti
numbers and the projective dimension.

Mathematics Subject Classifications: 13A15, 13C10, 13D02, 05C05

1 Introduction

Cellular resolutions (free resolutions supported on a CW-complex) were introduced for
monomial modules by Bayer and Sturmfels in [4]. Since then, they have been studied by
several authors (among others, [2], [5], [7], [8], [10], [12], [16], [19], [22]). In some cases they
turn out to be minimal (see, e.g., [5] for generic and shellable monomial modules, [8] for
the powers of the edge ideals of paths, [16] for the well-known Eliahou-Kervaire resolution
for stable ideals, [19] for the matroid ideal of a finite projective space). We also know,
however, that a minimal cellular free resolution need not exist: a class of counterexamples
was provided by Velasco in [22]. A special type of (regular) cellular resolutions are the
simplicial resolutions, first considered by Bayer, Peeva, and Sturmfels [3]. Two famous
(in general, non minimal) examples for monomial ideals are the Taylor resolution [20] and
its refinement called the Lyubeznik resolution [15]: an essential overview of the topic is
contained in [17]. In [5], Batzies and Welker use Chari’s reformulation [6] of Forman’s
discrete Morse Theory [11] as a tool for obtaining new cellular resolutions from the Taylor
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complex, where they also show that the Lyubeznik resolution can be derived in this
way. Later on, Àlvarez Montaner, Fernández-Ramos, and Gimenez [2] applied similar
techniques for developing an algorithmic transformation (called pruning) of the Taylor
resolution, which, however, does not always produce a minimal resolution.

In our paper we present an explicit discrete Morse theoretical construction of a mini-
mal cellular free resolution for any edge ideal of a forest, i.e., for any ideal in a polynomial
ring over a field whose generators are the squarefree quadratic monomials corresponding
to the edges of a simple, undirected, and acyclic graph. The sets of generators of the free
modules are explicitly described as special subsets of the sets of generators of the modules
in the Lyubeznik resolution. They can be determined in two ways: we present both a
selection procedure (see the steps (I)-(V) in Section 3) and a combinatorial characteri-
zation (see Proposition 13). These two methods relevantly facilitate the computation of
the (multi)graded Betti numbers and the projective dimension, and, in particular, they
allow a transparent and constructive approach to some of the formulas given by Jacques
[13] and Kimura [14]. Also note that, unlike the algorithmic approach applied in [21], our
method is direct, not recursive, and also totally different and independent with respect
to the one developed for the quadratic monomial ideals considered by Horwitz [12]. The
resolution we determine is the same over any field.

Since, for edge ideals, the minimal free resolutions are additive with respect to the
connected components of the graph, we can restrict our attention to the edge ideals of
trees.

2 Preliminaries

Let T be a tree on the vertex set {x1, . . . , xn}, which is a set of indeterminates over the
field K. Let R = K[x1, . . . , xn] and let I = I(T ) ⊂ R be the edge ideal of T , i.e., the
ideal generated by the (edge) monomials xixj such that {xi, xj} (also denoted by xixj) is
an edge of T .

Fix a vertex, say x1. Let d be the maximum distance that a vertex of T can have from
x1. For all i = 0, . . . , d, call x

(i)
1 , . . . , x

(i)
si the vertices lying at distance i from x1 (so that,

in particular, s0 = 1 and x
(0)
1 = x1). We will say that these vertices have rank i: each of

these vertices is connected to x1 by a (unique) path of length i (formed by i+ 1 vertices).
Neighbors always have consecutive ranks. In the line graph T , let ((i)p, (i+1)q) denote

the vertex that, in T , corresponds to the edge x
(i)
p x

(i+1)
q of T . The vertices of T of the form

((i)p,−) or (−, (i)p) form a non-empty complete subgraph of T , whose vertices represent

the edges of T that contain the vertex x
(i)
p . It will be called a K-subgraph of T , denoted

by K
(i)
p , and (i)p will be called its index. Similar considerations apply to (i + 1)q. The

K-subgraphs are the maximal non-empty complete subgraphs of T . Note that, if x
(i)
p x

(i+1)
q

is a non-terminal edge monomial (i.e., if none of its endpoints, x
(i)
p and x

(i+1)
q , has degree

1 in T ), then ((i)p, (i+ 1)q) is the only common vertex of K
(i)
p and K

(i+1)
q .

Remark 1. Let i > 0. For every index (i+ 1)q there is exactly one index of the form (i)p
such that ((i)p, (i+ 1)q) is a vertex of T (i.e., such that x

(i)
p x

(i+1)
q is an edge of T ). In fact,
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if x
(i)
p and x

(i)
p′ are different vertices of T of rank i, there are paths of length i connecting

x1 to each of them. If these vertices were both adjacent to the vertex x
(i+1)
q (of rank i+1),

then T would contain a cycle. We will say that x
(i)
p is the only predecessor of x

(i+1)
q .

On the monomials of R fix the lexicographic order induced by the following arrange-
ment of the indeterminates:

x
(0)
1 > x

(1)
1 > · · · > x(1)s1 > x

(2)
1 > · · · > x(2)s2 > · · · > x(d)sd .

The arrangement thus obtained will be called the sequence of generators.
The same order will be considered on the set of indices of the K-subgraphs.

Given a minimal graded free resolution of R/I

0 −→ ⊕jR(−j)βs,j −→ · · · −→ ⊕jR(−j)β2,j −→ ⊕jR(−j)β1,j −→ R −→ 0,

the coefficients βi,j(R/I) = βi,j are called the graded Betti numbers of R/I. Its length s
is called the projective dimension, pd(R/I), of R/I.

3 The resolution

3.1 The generators of the modules

Let S be the sequence of generators of I. Any subsequence of S will be called a symbol,
and will be written in parentheses as a list of pairwise and distinct elements, which are
separated by commas.

Given a symbol u = (µ1, . . . , µr), r will be called the length of u, and denoted by |u|.
Every subsequence of u will be called a subsymbol of u (or a symbol contained in u). We
will also say that µ1, . . . , µr are the elements of (belong to) u. We will thus treat u as an
ordered set. We will set lcm(u) = lcm(µ1, . . . , µr).

We recall the following definition, which Lyubeznik [15] gave for an arbitrary monomial
ideal.

Definition 2. A symbol u = (µ1, . . . , µr) is called L-admissible if µq does not divide
lcm(µih , µih+1

, . . . , µit) for any h < t such that q < ih.
It is called reduced if µq does not divide lcm(µ1, . . . , µ̂q, . . . , µr) for all q such that 1 6
q 6 r.

Remark 3. In the special case that we are considering here, i.e., when I is generated by
squarefree monomials of degree two, the condition of L-admissibility can be restated in
the following simpler form: µq does not divide any product µihµik for any h, k such that
h < k 6 t and q < ih. Similarly, the condition of being reduced translates into: µq does
not divide any product µihµik for any h, k such that q 6= ih, q 6= ik. Thus being reduced
implies L-admissibility.
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Set L0 = R and, for all r = 1, . . . , |S|, let Lr be the free R-module generated by all
L-admissible symbols of length r. Define the map δr : Lr → Lr−1 by setting

δr((µi1 , . . . , µir))=
r∑
j=1

(−1)j+1
lcm(µi1 , . . . , µir)

lcm(µi1 , . . ., µ̂ij , . . ., µir)
(µi1 , . . . , µ̂ij , . . . , µir).

Then one has the following

Theorem 4 ([15], p. 193). The complex

0 −→ Ls
δs−→ Ls−1

δs−1−−→ · · · δ1−→ L0 −→ 0 (?)

is a free resolution of R/I.

The resolution (?) is called a Lyubeznik resolution of I.

The Lyubeznik resolution is a refinement of the Taylor resolution, whose rth module
is generated by all symbols of length r, and in general it is not minimal. For all indices
r we will determine a submodule Fr of Lr such that the resulting resolution is always
minimal for the edge ideals of trees. The differentials, however, will have to be redefined
by means of discrete Morse theory. The submodules Fr are generated by special L-
admissible symbols, which we will call F -admissible. We now start the description of a
procedure for selecting these symbols. The first steps are presented here below.

(I) Select a descending sequence of indices (i1)p1 , . . . , (it)pt that does not contain any
pair of indices corresponding to adjacent vertices in T .

(II) Pick all edge monomials corresponding to the vertices of the K-subgraphs K
(i1)
p1 , . . . ,

K
(it)
pt .

(III) In the symbol thus obtained, cancel all monomials µ fulfilling the following condition:

µ corresponds to a vertex of K
(ih)
ph and is not coprime with respect to an element ν

of the symbol corresponding to a vertex of K
(ik)
pk for some k > h.

(IV) Consider all subsymbols of the symbols thus obtained.

Definition 5. A symbol arising from the procedure (I)–(IV) will be called almost F-
admissible. The set of the monomials of an almost F -admissible symbol that are divisible

by x
(ij)
pj - i.e., those corresponding to the vertices of K

(ij)
pj - will be called the (ij)pj -block

of u. The number (ij)pj will be called its index.

Remark 6. Note that the sequence of the indices of the blocks of an almost F -admissible
symbol u is not always uniquely determined. This is particularly evident in the case where
u is formed by one single monomial x

(i)
p x

(i+1)
q not corresponding to a terminal edge of T ;

then u can be, of course, indifferently assigned to the (i)p-block or to the (i + 1)q-block
of u.
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Remark 7. As a consequence of the selection performed at step (III), any two monomials of
an almost F -admissible symbol u belonging to different blocks are coprime. In particular,
if two distinct monomials of u are divisible by x

(i)
p , then they belong to the (i)p-block of

u.

Proposition 8. Every almost F -admissible symbol is reduced. In particular it is L-
admissible.

Proof. Let u be an almost F -admissible symbol. In view of Remark 7, if the edge mono-
mial µ = x

(i)
p x

(i+1)
q belongs to the (i)p-block of u, no other monomial of u is divisible by

x
(i+1)
q . If it belongs to the (i+ 1)q-block of u, no other monomial of u is divisible by x

(i)
p .

Thus µ cannot divide the product of any other two monomials of u.

Definition 9. Let x, y, z, w be four distinct vertices of T such that xy and zw are elements
of a symbol u, where xy > zw. If xz ∈ I, we say that xz is the bridge between xy and
zw. In this case, we will say that xy and zw form a gap in u if xz /∈ u, no other monomial
of u other than zw is divisible by w, and no monomial smaller than zw is divisible by y.
The monomial xz will be called the bridge of the gap.

We will say that a symbol contains a bridge if it contains a triple of monomials
xy, zw, xz, which occurs if and only if the symbol is not reduced.

Remark 10. (a) In the assumption of Definition 9, the condition xz /∈ u is always fulfilled
if u is reduced.
(b) In Definition 9 we are not assuming that x > y. In this case the inequality xy > zw
implies that x > z. The same is true, however, if y > x, since y is then the only predecessor
of x. Hence x is always the predecessor of z, which, in turn, implies that z > w. Finally,
we deduce that xz > zw.

We now present the last step of the procedure.

(V) Discard all symbols that contain a gap.

Definition 11. The symbols obtained after completion of the procedure (I)–(V) will be
called F -admissible (for T ).

Remark 12. One may ask whether the steps (III) and (IV) could be interchanged. This
would enlarge the set of almost F -admissible symbols: if the indices (ih)ph and (ik)pk with

k > h have been selected at step (I), and µ = xy (where x = x
(ih)
ph ) and ν = xz (where

z = x
(ik)
pk ) are monomials corresponding to vertices of K

(ih)
ph and K

(ik)
pk , then, according

to step (III), µ should be deleted. This would not occur, however, if, after selecting a
subsymbol (as in step (IV)), ν no longer appeared. Suppose that the (ik)pk-block is still
represented in the subsymbol by some monomial zw (otherwise we could regard the index
(ik)pk as not selected in step (I)). We would thus have a symbol that contains µ but not
ν, a possibility that is forbidden by the original procedure. But the point is that xy and
zw form a gap, so that the subsymbol would be discarded in step (V). In other words,
performing steps (III) and (IV) in this order makes the selection procedure more efficient.
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The F -admissible symbols can be characterized combinatorially in the following way.

Proposition 13. A symbol is F -admissible if and only if it is reduced and has no gaps.

Proof. The “only if” part is a consequence of Definition 11 and Proposition 8. For the
“if” part, let u be a symbol that is reduced and has no gaps. We show that its blocks
fulfil the requirements set by steps (I) and (III) of the above procedure. First suppose
that the elements of u are pairwise coprime. Then the requirement in (III) is fulfilled.
Let x, y, z, w be vertices of T such that xy and zw are two distinct elements of u, where
xy > zw. Then neither x nor y is a neighbor of z or w, which immediately yields the
requirement in (I): if this were not true, and, say, xz were an edge monomial, then xy
and zw would form a gap (against our assumption) because no other monomial of u is
divisible by y or w.
Now assume that, for some indeterminate z = x

(i)
p , u contains more than one monomial

divisible by z, say zw1 and zw2 are two distinct elements of u. Then no other monomial of
u is divisible by w1 or w2, because otherwise u would not be reduced. We show that, up to
changes in the way in which the monomials of u are assigned to its blocks, no monomial
of u belonging to a block preceding the (i)p-block can be divisible by z. Suppose by
contradiction that some element of the (i′)p′-block of u, where (i′)p′ > (i)p, is divisible by

z. Let x = x
(i′)
p′ . Then xz ∈ u, and no other monomial of u can be divisible by x, because

otherwise u would not be reduced. Hence the monomial xz can be assigned to the (i)p-
block of u, and the (i′)p′-block disappears. If this transformation is applied repeatedly,
scanning the blocks of u from right to left, then after a finite number of steps the condition
required at step (III) is achieved and, in particular, the monomials belonging to different
blocks are coprime.
Now assume that the sequence of indices of the blocks of u contains two indices (i′)p′ > (i)p
corresponding to consecutive vertices x and z. Let xy and zw be elements of the (i′)p′-
block and the (i)p-block, respectively. Then no other monomial of u can be divisible by y
or w, so that xy and zw form a gap. But this contradicts our assumption. Hence u also
fulfils the requirement in (I).

3.2 The complex

For all indices r, let Fr be the free R-module generated by the F -admissible symbols
of length r. We show that Fr is the rth module of a minimal graded free resolution of
R/I: this is the cellular resolution derived from the Taylor resolution by means of the
construction described in Section 1 of [5]. Note that the Taylor resolution can be viewed
as a simplicial complex, and therefore as a Zn-graded regular CW-complex (X, gr), where,
for all indices r, the r-cells are the symbols of length (dimension) r, and the Zn-grading
is defined as follows: gr(µ1, . . . , µr) =

∑s
k=1 ejk if lcm(µ1, . . . , µr) =

∏s
k=1 xjk (here ej

denotes the jth element of the canonical basis of Zn). We also endow the Cartesian
product Zn with the usual termwise defined partial order, with respect to which, for any
two symbols u and v, we have gr (u) 6 gr (v) if and only if lcm(u) divides lcm(v).

We then consider the directed graph GX on X whose set of edges EX is formed by
the directed edges u→ u′ such that u′ ⊂ u and the lengths of u and u′ differ by one. We
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consider the set of symbols that are not F -admissible, i.e., according to Proposition 13,
that either contain a gap or are not reduced.

With respect to the notation of Definition 9, given a symbol u containing the gap
formed by xy > zw (whose bridge is xz), we say that a bridge λ of u follows this gap if
xz > λ.

We will say that a symbol is of type 1 if it contains a gap that is not followed by any
bridge. We say that a symbol is of type 2 if it is non-F -admissible and not of type 1. Note
that any symbol of type 2 has no gaps (and then it is not reduced) or it contains a bridge
that follows all its gaps. In any case it contains a bridge.

Let A be the set of directed edges u → u′ such that u′ is of type 1 and u is obtained
from u′ by inserting the monomial (say xz) which is the bridge of one of its gaps (say
xy > zw) and is the smallest among the bridges of its gaps. We will call this operation
bridge insertion.

Lemma 14. With the notation from above, the following properties hold:

1) The symbol u is of type 2 (thus u can never appear as the first vertex of an edge of
A).

2) The symbol u′ is obtained from u by omitting its smallest bridge (thus u appears in
exactly one edge of A).

3) If a symbol is of type 2, it can be obtained by bridge insertion from a symbol of type
1 (thus any symbol of type 2 appears in some edge of A).

Proof. Recall that, u is obtained from u′ by inserting the monomial xz which is the bridge
of one of its gaps, say xy > zw, and is the smallest among the bridges of its gaps.

1) Suppose by contradiction that u contains some gap ab > cd (with bridge bc) which
is not followed by any bridge. Thus xz > bc. Moreover, by definition of gap, no monomial
of the form de (where d > e) can belong to u. If both ab and cd belonged to u′, then
they would form a gap also in u′, which would contradict the assumption on u′. Hence
one of ab and cd is xz. But cd 6= xz, because, by Remark 10 (b), bc > cd. Thus cd ∈ u′
and we must have that ab = xz. Then b = x or b = z. Recall that by Remark 10 (b) we
have x > z > w and b > c > d. If bc = xc, then from xz > xc we deduce that z > c, so
that zw > cd and, by definition of gap (the one formed by xy > zw in u′), no monomial
containing y can follow cd. This implies that xy > cd is a gap in u′. But its bridge xc is
smaller than xz, a contradiction. Now suppose that bc = zc, so that xz > zc. Note that
x > z implies z > c. Thus zw > cd is a gap in u′ (recall that no monomial of u′ other
than zw is divisible by w), and its bridge zc is smaller than xz, a contradiction.

2) By assumption, xz is smaller than all bridges of u′. We have to show that it is
smaller than all monomials of u′ that are bridges in u, but are not such in u′. The point is
that the insertion of xz can produce new bridges, since a monomial µ of u′ of the form ax
or az could become a bridge between xz and some other monomial ab of u′. We show that
in this case µ > xz. First suppose that µ = az. Note that a 6= w, because, by definition
of gap, zw is the only monomial of u′ containing w, and ab ∈ u′. But then az is already
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a bridge in u′ (between zw and ab). Now suppose that µ = ax. If a 6= y, then ax is a
bridge in u′ between xy and ab. So assume that a = y, i.e., µ = xy. If x > y, then y > b.
On the other hand, by definition of gap (applied to xy > zw), we have yb > zw, which
implies that y > z, so that µ > xz. If y > x, then x > z implies, once again, that µ > xz.

3) We show that, if in some symbol u of type 2 we cancel the smallest bridge, say xz,
which is the bridge between xy and zw (where xy > zw), then, in the resulting monomial
u′, these two monomials form a gap (which, of course, is not followed by any bridge). We
have to verify the following two conditions:

i) u does not contain any other monomial of the form wb. Suppose by contradiction
that u contains such a monomial. Then zw is the bridge between xz and wb. But
from Remark 10 (b) we know that xz > zw, against the minimality of xz.

ii) u does not contain any monomial of the form ya that is smaller than zw. Suppose
that u contains some monomial ya. We show that ya > zw. This is clear if y > x,
because x > z. So assume that x > y, whence y > a. Since xy is the bridge between
xz and ya, we have that xy > xz. Thus y > z, which immediately implies that
ya > zw, as desired.

Proposition 15. The graph GA
X with edge set

EA
X = (EX \ A) ∪ {u′ → u |u→ u′ ∈ A}

does not contain any directed cycle.

Proof. The (directed) edges of EA
X are of the following two types:

(a) the edges u1 → u2 not belonging to A, where u2 is obtained from u1 by deleting a
monomial;

(b) the edges u′ → u where u′ is of type 1, u is of type 2 and u is obtained from u′ by
bridge insertion.

Note that, with respect to the above notation, |u2| = |u1| − 1, whereas |u| = |u′| + 1.
It follows that any directed cycle of GA

X must contain at least one edge of each type. More
precisely, since every edge of type (b) (along which the length grows by 1) is followed
by an edge of type (a) (along which the length drops by 1), every directed cycle consists
of an alternating sequence of edges of types (a) and (b), and an alternating sequence of
vertices of types 1 and 2.

Moreover, gr(u′) = gr(u), whereas gr(u1) > gr(u2) and equality holds if and only if u2
is obtained from u1 by deleting a bridge. Thus, in any directed cycle of GA

X all vertices
have the same degree and two consecutive vertices always differ by a bridge. Let C be a
directed cycle of GA

X . Let u′ → u be a directed edge of C of type (b), where u is obtained
from u′ by inserting the bridge xz of the gap xy > zw. Moreover, assume that, among
all edges of type (b) of C, this edge is one for which xz is maximum. The cycle C also
contains an edge v → u′ of type (a), where v is obtained from u′ by inserting a bridge
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other than xz (because v 6= u). In particular, xz does not belong to v. This implies that
at some point of the directed path of C from u to v the bridge xz is deleted. The first
edge of this path, say u → u1, is of type (a), and u1 6= u′, so that u1 is of type 1 and
xz ∈ u1. Hence in u1 there are two monomials ab > cd forming a gap with bridge bc (the
smallest), where, by choice of u′, bc < xz. Since by Remark 10 (b) we have bc > cd, we
also have that cd 6= xz, whence cd ∈ u′, because cd ∈ u1 ⊂ u.

Moreover, as we have seen in the proof of Lemma 14 1), the condition ab = xz is
incompatible with the fact that xz is the smallest of the bridges of the gaps contained
in u′. Hence ab and cd both belong to u′, where, of course, they cannot form a gap,
because xz > bc. Since u′ ⊂ u (so that ab, cd ∈ u), for the same reason we have that
bc /∈ u (otherwise bc would be a bridge of u smaller than xz), whence bc /∈ u′. Thus the
obstruction preventing ab > cd from forming a gap in u′ must be due to the presence of
some other monomials forbidden by the definition of gap, i.e., in u′ there is some other
monomial µ = de (with d > e) or some monomial µ = af that is smaller than cd.

Since µ does not belong to u1, it must have been deleted along the path from u to u1,
hence µ is a bridge in u, so that µ > xz > bc. These inequalities exclude the case µ = de.
If µ = af , since cd > af , we have c > a, whence b > a, and a > f . Thus bc > µ, a
contradiction. This shows that GA

X cannot contain any directed cycle.

As a consequence of Lemma 14 and Proposition 15, A is a so-called acyclic matching
for GX . According to [5, Proposition 1.2], this implies that there is a Zn-graded CW-
complex (called the Morse complex of the Taylor resolution), which has the following two
properties: its r-cells are in one-to-one correspondence with the r-cells of X not belonging
to any edge of A (which are called critical cells in [5]), i.e., with the F -admissible symbols
of length r, and it is homotopy equivalent to the Taylor resolution. This Morse complex
supports a cellular resolution of R/I. An explicit description of its differentials will be
provided later on. We first show its minimality. In view of [5, Corollary 7.6], our claim
will follow from the next result.

Lemma 16. Let u and v be distinct F -admissible symbols. Then gr(u) 6= gr(v).

Proof. First note that whenever some reduced symbol is contained in some other reduced
symbol, the grading of the former is strictly smaller than the grading of the latter. So
assume that u and v are incomparable by inclusion. Note that it suffices to prove the
claim under the assumption that gr(u) > gr(v), i.e., that lcm(v) divides lcm(u). For every
monomial ab of u (or v) such that a > b, we call b a successor of u (of v). Since every
vertex of the tree T has at most one predecessor, whenever b is a successor of u, ab belongs
to u. Therefore, since u is not contained in v, there is some successor of u that is not a
successor of v. Let b (whose predecessor is a) be the smallest such successor of u. Then
ab ∈ u, but ab /∈ v. We show that ab does not divide lcm(v). This will immediately yield
the claim.
Suppose by contradiction that ab divides lcm(v). Since b divides lcm(v), it follows that
bc ∈ v for some c < b. Thus c divides lcm(u). If bc /∈ u, then cd ∈ u for some d < c. Since
ab > cd and these two monomials do not form a gap in u, we must have de ∈ u for some
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e < d. Note that d and e are successors of u smaller than b, whence cd, de ∈ v. But this,
together with bc ∈ v, would imply that v is not reduced. We thus conclude that bc ∈ u.
On the other hand, a divides lcm(v), which implies that xa ∈ v for some x 6= b. The
vertex x may be greater or smaller than a, but in any case xa > bc. Since these two
monomials do not form a gap in v, we have one of the following cases:

i) cd ∈ v, for some d < c. Then, as above, we conclude that cd ∈ u: it suffices to
apply the argumentation developed for the monomials ab ∈ u and bc ∈ v to the
monomials bc ∈ u, and cd ∈ v. But then all three monomials ab, bc, and cd belong
to u, which is impossible.

ii) b > x (in which case a > x) and xy ∈ v for some y < x. Then u contains some
monomial divisible by x, either ax or xz, with z < x. If ax ∈ u, we conclude as
above that xy ∈ u, which is incompatible with the fact that ab ∈ u. So suppose
that xz ∈ u. Since ab > xz and these monomials do not form a gap in u, we have
that zw ∈ u for some w < z. Since both z and w are successors of u smaller than
b, it follows that xz and zw belong to v, which, together with ax ∈ v, would once
again cause v to be not reduced.

In any case we have a contradiction.

Remark 17. The preceding lemma yields the so-called dual version of Hochster’s formula
(see, e.g., [18, Corollary 1.40]) on squarefree monomial ideals in the special case of edge
ideals of trees: it proves that the nonzero multigraded Betti numbers all lie in squarefree
degrees. It also gives the result in [9, Theorem 3.5], which Erey and Faridi proved for the
more general class of simplicial forests: for every multidegree there is at most one nonzero
Betti number, and this is equal to 1.

The following notation is taken from [5]. For every pair (u, u′) of F -admissible symbols
with r = |u| = |u′|+1, call [u : u′] the coefficient of u′ in δr(u). If the directed edge u→ u′

belongs to A, we then set m({u, u′}) = −[u : u′], otherwise we set m({u, u′}) = [u : u′].
Given a directed path P : u0 → u1 → · · · → ut in GA

X (a so-called gradient path from u0
to ut), we also set m(P ) =

∏t−1
i=0m({ui, ui+1}). Note that gr(u0) > gr(ut). We can now

define the rth differential ∂r : Fr → Fr−1 of our resolution. According to [5, Lemma 7.7],
for every F -admissible symbol u of length r,

∂r(u)=
∑
u′⊂u
|u′|=r−1

[u : u′]
∑

u′′F−admissible,
|u′′|=r−1

∑
P gradient path
from u′ to u′′

m(P )xgr (u)−gr (u′′)u′′. (1)

We have just established the following:

Theorem 18. The cellular resolution (Fr, ∂r) is a minimal graded free resolution of R/I.

Proof. We just have to observe that minimality is ensured by Lemma 16. By [5, Corollary
7.6] and [5, Proposition 7.3], it is sufficient to show that gr (u) 6= gr (v) for all F -admissible
symbols u and v such that |u| = |v| + 1 and either v ⊂ u or there exists a gradient path
from a symbol u′ ⊂ u of length |v| to v.
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Remark 19. Note that, according to (1), the morphism ∂r sends every F -admissible symbol
u of length r to a linear combination (with monomial coefficients) of F -admissible symbols
u′′ of length r− 1 such that lcm(u′′) divides lcm(u). Among these we find all u′′ that are
contained in u (those appearing in the definition of the morphism δr of the Lyubeznik
resolution, and for which the gradient path P consists of one single directed edge u→ u′′),
but possibly some others. This will become evident in Example 21.

4 Examples and further remarks

We will first give a concrete example of how to determine the modules of the cellular
minimal free resolution of the edge ideal of a tree. We will apply the selection procedure
described in Section 3. In order to simplify our notation, we will replace the symbol x

(i)
p

by the number i with p apices. In this way we will also write the index of the K-subgraph
K

(i)
p and of the (i)p-block.

Example 20. Let T be the tree on the vertices 0 > 1 > 1′ > 2 > 2′ > 2′′ > 3 whose
edges are 01, 01′, 12, 12′, 1′2′′, 23, see Figure 1.

0

1

2 3

2′

1′ 2′′

Figure 1: The tree T of Example 20

Its K-subgraphs are:

[0] : 01, 01′ [1] : 01, 12, 12′ [1′] : 01′, 1′2′′ [2] : 12, 23.

In the next table we list, for any choice of the sequences of indices in step (I) (written in
square brackets), the edges of the corresponding K-subgraphs, as prescribed in step (II),
and perform on them the cancellations indicated in (III). Then we consider, as in step
(IV), all their subsymbols. Each horizontal section refers to the sequences of a given length
(one in each column). In each column, the subsymbols will be arranged in descending
order of length (denoted by r). We will avoid repetitions by omitting the subsymbols
already obtained in the preceding sections, and replacing the others by a reference to the
number of the column of the same section (expressed by (∗) or (∗∗)) where (in the same
row) they appear for the first time. The monomials forming a gap are boxed, and the
vertices of the bridge are in bold. According to step (V), the corresponding subsymbols
have to be discarded.
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[0] [1] [1′] [2]
r = 3 (01, 12, 12′)
r = 2 (01, 01′) (01, 12) (01′, 1′2′′) (12, 23)

(01, 12′)
(12, 12′)

r = 1 (01) (∗)
(01′) (12) (∗) (∗∗)

(12′) (1′2′′) (23)

[0, 2] [1, 1′] [1′, 2]
r = 4 (��01, 01′, 12, 12′, 1′2′′) (01′, 12, 1′2′′, 23)

r = 3 (��01, 01′, 12, 23) ( 01′ , 12 , 12′) (∗)
(01′, 12, 1′2′′) (∗∗)
(01′, 12′, 1′2′′) (01′, 1′2′′, 23)
(12, 12′, 1′2′′) (12, 1′2′′, 23)

r = 2 ( 01′ , 12 ) (∗) (∗)
(01′, 23) ( 01′ , 12′ ) (∗)

(12, 1′2′′) (∗∗)
(12′, 1′2′′) (1′2′′, 23)

If we count lengths r and degrees d in order to compute the graded Betti numbers
βr,d(R/I), we exactly obtain the numerical resolution provided by CoCoA [1]:

0 −→ R(−6)2 −→ R(−4)⊕R(−5)6 −→ R(−3)6 ⊕R(−4)4 −→ R(−2)6 −→ 0.

Note that the vertex 0 has been chosen at random. The result is independent of this
choice.

We next present two gradient paths from a given F -admissible symbol u of length r
to two F -admissible symbols u′′1 and u′′2 of length r − 1.

Example 21. Let T be the tree on the vertices 0 > 1 > 2 > 3 > 4 > 4′ > 5 > 6, whose
edges are 01, 12, 23, 34, 34′, 45, 56, see Figure 2.

0 1 2 3 4 5 6

4′

Figure 2: The tree T of Example 21

Then u = (01, 23, 34′, 45, 56) is an F -admissible symbol of length 5. In the following table,
the cancellations correspond to directed edges of type (a), the insertions to directed edges
of type (b), according to the classification introduced at the beginning of the proof of
Proposition 15. The first step is a cancellation that takes u to a symbol of type 1 (which
is reduced and contains a gap). The following symbols are alternatively of types 2 and
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1, of lengths r and r − 1, and the procedure stops eventually, when an edge of type (a)
leads to an F -admissible symbol of length r − 1. The vertices in bold are those forming
the bridge of the smallest gap in a symbol of type 1 (and thus forming the monomial that
will be inserted in the subsequent step).

u 01 23 34′ 45 56
↓

type 1 01 23 34′ 45 �
↓

type 2 01 23 34′ 34 45

↓
u′′1 01 23 34′ 34 �

u 01 23 34′ 45 56
↓

type 1 01 23 � 45 56
↓

type 2 01 12 23 45 56

↓
type 1 01 12 23 45 �

↓
type 2 01 12 23 34 45

↓
u′′2 01 12 � 34 45

From the description of the minimal cellular resolution of R/I(T ) we can derive a
formula to compute its projective dimension. Recall that a leaf or free vertex of a graph
is a vertex of degree one.

Lemma 22. Let T be a tree, and let u be a maximal F -admissible symbol for T . Then

|u| = #{leaves of T in the blocks of u}+ #{blocks not in u}.

Proof. Let u be a maximal F -admissible symbol. We show that u has length equal to the
right-hand side of the formula in the statement.

Let (a) be a block of u that has been selected at step (I) and let ab be a free vertex
of the block (a) in the line graph of T , i.e., b is a leaf of T . Then the monomial ab is not
canceled at step (III) since no monomial divisible by a or b appears in any of the following
blocks (c), with a > c.

Now, let (a) be a block not in u, i.e., that has not been selected at step (I). Let
µ1, . . . , µk be the vertices of the block (a) that belong also to some other block that has
been selected at step (I), say, µi belongs to the block (bi), i.e., µi = abi for i = 1, . . . , k,
with b1 > b2 > · · · > bk. (Notice that if a vertex is not free and belongs to some block of
u, then it also belongs to some non-selected block.) Then ab1, . . . , abk−1 are removed at
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step (III), while abk is not canceled (notice that abk is not a free vertex of the line graph,
since it belongs to two blocks).

The case in which all vertices of the block (a) do not belong to any block of u cannot
happen, otherwise the symbol u would not be maximal since adding the block (a) to u
would produce a larger symbol.

Remark 23. Notice that the characterization in Lemma 22 identifies the maximal F -
admissible symbols for T with the strongly disjoint set of bouquets of T introduced by
Kimura in [14, Definition 2.3]. According to [14, Theorem 4.1], the maximum number of
their flowers gives the projective dimension of R/I(T ). In fact, the indices of the blocks
of the maximal F -admissible symbols correspond to the roots of the bouquets and the
other vertices (different from the roots) of the monomials remaining after the steps (I)-
(V) correspond to the flowers of the bouquets. In particular, step (III) in the procedure
above, together with the absence of gaps, ensures that the bouquets are pairwise strongly
disjoint.

From the previous remark and [14, Theorem 4.1] it follows that:

Corollary 24. Let T be a tree. Then for every i, j, βi,i+j(R/I(T )) is the number of
subsets W ⊆ V such that the induced subgraph TW contains an F -admissible symbol of
length i consisting of j blocks.

We can also recover Jacques’ recursive formulas for the graded Betti numbers of a tree
[13, Theorem 9.3.15], and for the projective dimension [13, Theorem 9.4.17], for which
we can present a new, short, elementary, non-homological proof. We first retrieve the
necessary notation, which is the one introduced in [13] on page 96, under (9.1.2). In [13,
Proposition 9.1.1] it is proven that any tree T contains a vertex v such that among its
neighbors v1, . . . , vn at most one (say vn) has degree greater than 1. Call w1, . . . , wm the
neighbors of vn other than v. Then call T ′ the subgraph of T obtained by eliminating the
vertex v1, and T ′′ the one obtained by eliminating all vertices v, v1, . . . , vn. We can now
prove:

Theorem 25. [13, Chapter 9] For all indices r, d we have

βr,d(R/I(T )) = βr,d(R/I(T ′)) +
n−1∑
j=0

(
n− 1

j

)
βr−(j+1),d−(j+2)(R/I(T ′′)).

Moreover,
pd(R/I(T )) = max{pd(R/I(T ′)), pd(R/I(T ′′)) + n}.

Proof. We fix, on the vertices of T , an ordering with respect to which the smallest vertices
are vn > v > v1 > · · · > vn−1. Consider the set of F -admissible symbols for T having
length r and degree d. It includes the set of all F -admissible symbols for T ′ having length
r and degree d. The complementary set is formed by the F -admissible symbols containing
the monomial vv1. Let u be such a symbol. Then u′ = u \ {vnv, vv1, . . . , vvn−1} (if non-
empty) is an F -admissible symbol for T ′′. Note that it is certainly reduced, and the
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elimination of vnv could produce a gap only for n > 1 and if u contained some monomial
of the form wivn. But u cannot contain both wivn and vnv because by assumption it
contains vv1. Conversely, if u′ is an F -admissible symbol for T ′′ of length r− (j+ 1) with
0 6 j 6 n− 1, then, for every j-subset V of {vv2, . . . , vvn}, u = u′ ∪ {vv1} ∪ V is an F -
admissible symbol for T of length r. Note that u is reduced (because none of the vertices
of the monomials added is a vertex of T ′′) and, moreover, if n > 1 and some monomial of
the form wia appears in u′, then the presence of vv1 prevents wia and vnv from forming
a gap. The symbol u has degree d if and only if u′ has degree d − (j + 2). Hence, given
an F -admissible symbol u′ for T ′′ of length r − (j + 1) and degree d − (j + 2), we can
construct the F -admissible symbol u in

(
n−1
j

)
different ways (as many as the possible

choices of V ). This shows the first identity. For the second identity it suffices to observe
that the F -admissible symbol u has maximum length if it is of maximum length among
those not containing vv1 or it is obtained by adding the whole set {vnv, vv1, . . . , vvn−1}
to an F -admissible symbol u′ for T ′′ having maximum length.
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