
In-Memory Eigenvector Computation in Time O(1)

Zhong Sun,* Giacomo Pedretti, Elia Ambrosi, Alessandro Bricalli, and Daniele Ielmini*

1. Introduction

Cross-point resistive memory arrays have been intensively
utilized to accelerate the matrix-vector multiplication (MVM),[1]

which is an elementary operation in several algebraic problems,
for instance, the training and inference of neural networks,[2,3]

signal and image processing,[4,5] and the iterative solution of
linear systems[6] or differential equations.[7] In such implemen-
tations, the cross-point MVM is executed for several iteration
cycles according to the algorithmic workflow, which might raise
an issue in terms of processing time and energy efficiency of the
computation. Recently, a cross-point memory circuit architecture
has been proposed and demonstrated for solving matrix
equations in one step, including solving linear systems and com-
puting eigenvectors.[8] Although the one-step solution capability
can solve the inefficiencies of the iterative approach, the under-
lying time complexity of the circuit needs to be rigorously evalu-
ated to assess the computing performance.

Eigenvector calculation is a fundamental
problem in a broad scope of computing
scenarios, e.g., webpage ranking,[9] facial
recognition,[10] and dynamic analysis and
solving differential equations in fields such
as physics and chemistry.[11] In the conven-
tional computing paradigm, the dominant
eigenvector (the eigenvector corresponding
to the largest eigenvalue) of a matrix can
be calculated using the power iteration
method with a time complexity of
O(kN2), where N is the matrix size and k
is the number of iterations.[12] In this work,
we show that the time complexity of the
cross-point memory circuit for computing
eigenvectors is O(1); namely, the time to
calculate a matrix eigenvector does not
depend on the matrix size. Based on the
feedback theory of operational amplifiers
(OAs), we develop a numerical model to

analyze the time response of the eigenvector circuit. Our
time-dependent simulation results show that the time to calcu-
late an eigenvector of an N � N matrix does not explicitly depend
onN; i.e., the time complexity isO(1) for our circuit. We find that
the computational time is governed by the highest eigenvalue of
an associated matrix, which, in turn, is controlled by the
mismatch degree between the practical and the nominal conduc-
tance values, which implement the eigenvalue in the circuit. The
O(1) time complexity is further supported by circuit simulations
of the calculation of dominant eigenvectors of random matrices
and of PageRank evaluation for the Harvard 500 database and its
subsets.

2. Results and Discussion

Computing an eigenvector means solving the matrix equation

Ax ¼ λx (1)

where A is a square matrix, λ is an eigenvalue of A, and x is the
unknown eigenvector corresponding to λ. To solve Equation (1),
matrix A is mapped by the conductance matrix GA of a cross-
point memory array, which plays the role of feedback network
in the closed-loop circuit (Figure 1a). The feedback configuration
is enabled by transimpedance amplifiers (TIAs) and analog inver-
ters. The conductance Gλ of the feedback resistors in the TIAs
represents the eigenvalue λ. As an analog eigenvalue cannot
be exactly implemented, the practical eigenvalue in the circuit
is termed λG. At the steady state, assuming that the output
voltages of inverters constitute a column vector v, the cross-point
MVM currents are i ¼ GAv because of the virtual ground of the
inverting-input node of TIAs. TIAs convert the cross-point MVM
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the mismatch degree of the eigenvalues implemented in the circuit, which
controls the rising speed of output voltages. For a dataset of random matrices,
the time for computing the dominant eigenvector in the circuit is constant
for various matrix sizes; namely, the time complexity is O(1). The O(1) time
complexity is also supported by simulations of PageRank of real-world datasets.
This work paves the way for fast, energy-efficient accelerators for eigenvector
computation in a wide range of practical applications.
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current into voltages, namely, vTIA ¼ �GAv=Gλ. Finally, vTIA is
inverted by analog inverters, thus yielding resulting voltages v,
which satisfies the relationship GAv=Gλ ¼ v or GAv ¼ Gλv.
The former translates Equation (1) into the voltage v, which
provides the eigenvector solution within the memory circuit.
As a result, Equation (1) is physically solved in one step by
the circuit where v represents the eigenvector. Note that λ is real
and positive in Figure 1a, which is always the case for the largest
eigenvalue of a positive matrix, according to the Perron–
Frobenius theorem.[13] For the negative λ case, the inverters in
the circuit should be removed, and the absolute value of λ is
mapped by the feedback conductance Gλ.

[8] In Figure 1a, we con-
sider a positive matrix, because the conductance of a resistive
memory device can only be positive. For matrices containing
negative elements, two cross-point arrays are needed to split
the matrix with two positive matrices.[8]

The in-memory calculation of eigenvectors was conducted in
an array of resistive switching memory (RRAM) devices. In the
RRAM device, the conductance can be changed by the formation
and the dissolution of a conductive filament by local migration of
ionized defects.[14] The RRAM conductance can be continuously
tuned, thus enabling the analog storage in a cross-point array for
in-memory matrix computation.[5,8] Figure 1b shows 12 conduc-
tance levels of the adopted Ti/HfOx/C RRAM device by control-
ling the compliance current during the set transition. As an
experimental demonstration, the dominant eigenvector of a
3� 3 positive matrix was computed by the circuit, with the

programmed conductance matrix of a cross-point array shown
in the inset of Figure 1a. The experimental eigenvector results
are shown in Figure 1c as a function of the normalized analytical
eigenvector obtained by software calculations with floating-
point precision. The linear relation between the two solutions
demonstrates the circuit functionality of one-step eigenvector
computation. By defining the solution error as ε ¼ jx � x�j,
where x and x� are the experimental and the ideal normalized
eigenvector, respectively, and ‖·‖ is the Euclidean norm, an
error ε ¼ 0.0303 is found in Figure 1c. The 12 discrete conduc-
tance levels in Figure 1b were used to build matrices of various
sizes for simulating the eigenvector circuit. For instance,
the dominant eigenvectors of ten randomly constructed
10� 10 matrices were computed in a simulation program with
integrated circuit emphasis (SPICE) circuit. In all cases, the
results are highly consistent with the analytical solutions,
with an average error of ε ¼ 0.0056 (Figure S1, Supporting
Information).

In the conventional power iteration method, MVM is executed
through element-wise multiply–accumulate operations and a
number of iterations are required, resulting in a high computa-
tional complexity.[12,15,16] On the other hand, the MVM is instan-
taneously executed in the eigenvector circuit by physical laws in
the cross-point array, whereas discrete iterations are eliminated
in favor of a higher computational speed.

To analyze the time complexity, the eigenvector circuit is illus-
trated as a block diagram (Figure 2a), where x is the eigenvector

(a)

(b) (c)

Figure 1. Eigenvector computation with a cross-point RRAM circuit. a) The cross-point RRAM circuit for computing the dominant eigenvector of a
positive matrix. The circuit structure of the analog inverter is also shown. The output voltages of analog inverters form a vector v ¼ ½V1;V2;V3�
representing the eigenvector solution. The cross-point MVM currents form i ¼ ½I1; I2; I3�. A representative matrix is also shown, with a conductance
unit of 100 μS. b) Twelve analog conductance levels of the Ti/HfOx/C RRAM device, with values of 60, 90, 120, 150, 190, 210, 240, 290, 310, 340,
390, and 420 μS, respectively. The conductance shows a good linearity for all levels below 0.5 V. c) The dominant eigenvector of the matrix computed
by the circuit, as a function of the analytical solution.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2020, 2000042 2000042 (2 of 7) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.advintellsyst.com


solution mapped by the output voltages of the inverters and y
represents the output voltages of TIAs. Due to the cross-point
RRAM array acting as a feedback network, the transfer function
linking x to y should be a matrix that involves the stored coeffi-
cient matrix A, the mapped eigenvalue λG, and the open-loop
gain LðsÞ of the OAs, which is a function of the complex
frequency s. The transfer function linking y backward to x is a
scalar that is related solely to LðsÞ. In particular, according to
Kirchhoff ’s voltage law and amplifier theory, x and y satisfy
the following two equations.

�U½AxðsÞ þ λGyðsÞ�LðsÞ ¼ yðsÞ (2)

� xðsÞ þ yðsÞ
2

LðsÞ ¼ xðsÞ (3)

where A is theN � N coefficient matrix andU is a diagonal matrix

defined as U ¼ diag
�

1
λGþ

P
i
A1i

, 1
λGþ

P
i
A2i

, · · · , 1
λGþ

P
i
ANi

�
. We

assumed that the OAs in both the TIAs and the inverters are
identical; thus, the same LðsÞ applies to all the OAs. Combining
Equation (2) and (3) leads to

UðA� λGIÞLðsÞxðsÞ ¼ ð2λGU þ IÞxðsÞ þ 2xðsÞ
LðsÞ (4)

where I is the N � N identity matrix. Considering the single-pole
OA model,[17] namely, LðsÞ ¼ L0

1þ s
ω0

, where L0 is the direct current

(DC) open-loop gain and ω0 is the 3 dB bandwidth, Equation (4)
becomes

UðA� λGIÞxðsÞ ¼
2λGU þ I

L0ω0
sxðsÞ þ 2

L20ω
2
0
s2xðsÞ (5)

where the insignificant terms have been omitted, due to the fact
that L0 is usually much larger than 1. The inverse Laplace trans-
form of Equation (5) implies the second-order differential equation
in the time domain, that is

d2xðtÞ
dt2

¼ 1
2
L20ω

2
0UðA� λGIÞxðtÞ �

�
λGU þ 1

2
I
�
L0ω0

dxðtÞ
dt

(6)

which describes the time response of the eigenvector circuit. To
study the computing time of the circuit, Equation (6) is converted
into the first-order differential equation[18] by defining

zðtÞ ¼ 2
L0ω0

dxðtÞ
dt

(7)

which leads to

dzðtÞ
dt

¼ L0ω0UðA� λGIÞxðtÞ � L0ω0

�
λGU þ 1

2
I
�
zðtÞ (8)

Equation (7) and (8) are merged as one, which reads

d
dt

�
xðtÞ
zðtÞ

�
¼ L0ω0

�
0 1

2 I
UðA� λGIÞ ��

λGU þ 1
2 I
� �� xðtÞ

zðtÞ
�

(9)

where 0 is the N � N zero matrix. By defining the 2N � 2N
matrix M according to

M ¼
�

0 1
2 I

UðA� λGIÞ ��
λGU þ 1

2 I
� � (10)

which is associated with matrix A, and defining a 2N � 1 vector

as wðtÞ ¼
�
xðtÞ
zðtÞ

�
, Equation (9) becomes

dwðtÞ
dt

¼ L0ω0MwðtÞ (11)

According to the finite difference (FD) method, Equation (11)
can be expressed as

wðtþ ΔtÞ ¼ ðI2N þ αMÞwðtÞ (12)

where I2N is the 2N � 2N identity matrix, Δt is the incremental
time, and α is a dimensionless constant defined as α ¼ L0ω0Δt.

For Equation (11) to have a nontrivial solution, the spectral
radius of matrix I2N þ αM has to be larger than 1, which implies
that the highest eigenvalue (or real part of eigenvalue) λh of
matrix M must be positive, assuming that the eigenvalues of
M are ranked in a descending order according to their real
parts. This condition on λh is satisfied if the implemented

(a) (b)

Figure 2. Time response of the eigenvector circuit. a) Block diagram of the eigenvector circuit, where x and y represent the output voltages of analog
inverters and TIAs, respectively. The transfer function F from x to y is a matrix, whereas the transfer function f feeding y back to x is a scalar. b) Transient
simulation results of computing the eigenvector in Figure 1c. The color full lines are SPICE simulation traces, whereas the dot lines are the iterative
simulation result according to the FD algorithm. The inset shows the same results on a half-logarithmic plot to highlight the exponential increase in the
output voltages.
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λG is slightly smaller than the largest eigenvalue of A, namely,
λG ¼ ð1� δÞλmax, where δ is a small positive number and λmax
is the largest eigenvalue; thus, the dominant eigenvector of
λmax can be computed by the circuit. According to the FD
algorithm of Equation (12), the eigenvector solution is boosted
as long as the circuit is powered, until the boundary condition
is encountered, i.e., upon reaching the supply voltage V supp of
the OAs. The parasitic noise in the circuit provides the initial
solution xð0Þ 6¼ 0 at t ¼ 0, which initiates the transient evolution
of the circuit in Equation (12). At the steady state, the first
N elements of w constitute the dominant eigenvector, whereas
the last N elements that represent the time derivative of xðtÞ
are zero.

To assess the circuit dynamics, we simulated the time evolu-
tion of xðtÞ from the FD model in Equation (12) for the experi-
mental matrix in Figure 1c. Figure 2b shows the simulation
results, where we assumed δ¼ 0.01 and V supp ¼�1 V for gener-
ality. A lower V supp or a diode connected to the output of the OAs
might be used to protect the cross-point memory devices against
a possible voltage disturb if necessary. The results of the FD sim-
ulations are fully consistent with the SPICE circuit simulation
results, demonstrating a good description of the circuit dynamics
by Equation (12). The half-logarithmic plot in the inset evidences
the exponential increase in the output voltages, which can be
explained by a power iteration where the output voltage is regen-
erated at each cycle in the closed-loop feedback circuit. The phys-
ical power iteration process stops at the saturation of the largest
output voltage, after which point all other output voltages quickly
stabilize and provide the final eigenvector solution.

According to Equation (12), the speed of the eigenvector
circuit is controlled by λh of matrix M, namely, the larger the
value of λh, the faster the computation. To study the computing
time of the circuit, we conducted a series of simulations by vary-
ing the eigenvalue difference δ for the eigenvector computation
in Figure 1c. Figure 3 shows the computed saturation time as a
function of δ in the range from 0.003 to 0.06. In the simulations,
the initial solution of each output was assumed as xið0Þ ¼ 0.001.

The computing time is defined as the time at which point the
dynamic solution approaches the steady-state solution with an
error of <0.1%. It decreases with the inverse of δ, with the time
being 15.2 μs for the case of δ ¼ 0.06. The value of λh for each
case is also summarized in the figure, which shows a linear
dependence on δ, thus supporting the dominant role of λh in con-
trolling the computing time of the circuit. Though the circuit gets
faster for a larger δ, the resulting eigenvector deviates more from
the ideal solution, as shown in the inset of Figure 3. The solution
error ε increasing with δ is shown in Figure S2, Supporting
Information. These results indicate a tradeoff between the
computing speed and the solution accuracy, which should be
addressed according to the specific application scenario.

To study the dependence of computing time on matrix size N,
we constructed a series of randommatrices using the 12 conduc-
tance levels in Figure 1b. The size ranges from 3� 3 to 30� 30,
as shown in Figure 4a, with three representative matrices. For
each size, 100 matrices were randomly generated and simulated
in the circuit. The dominant eigenvector of every matrix was
computed in simulation by assuming different values of δ,
namely, δ ¼ 0.003, 0.01, 0.02, and 0.04. Figure 4b shows the
computing time as a function of N: the computing time is inde-
pendent of N, thus demonstrating the O(1) time complexity of
the circuit for eigenvector computation. The computing time
decreases for increasing δ, in agreement with the results in
Figure 3. For the 100 different matrices with the identical
N and δ, the computing time distribution is very tight, which
further supports the dominant role of δ in controlling the com-
puting time. Note that λh increases with δ, which is also consis-
tent with the results in Figure 3. The solution errors are also
independent of N (see Figure S3, Supporting Information),
thus supporting the scalability of time/energy efficiency gain
combined with no accuracy loss.

One concern about the computing time analysis is the para-
sitic wire resistance in the cross-point array.[19] To investigate the
impact of wire resistance on the time complexity of the circuit,
we considered the interconnect parameters at 65 nm adopted

Figure 3. Analysis of λh of the associated matrixM and computing time of
the circuit. Various mismatch degrees δ were introduced in the eigenvalue
implementation in circuit simulations. The computing time is proportional
to 1=δ, whereas the value of λh is proportional to δ. The inset shows
the correlation plot between the simulated eigenvectors and the ideal
eigenvector, with the arrows indicating the increase in δ.

(a) (b)

(c)

Figure 4. Time complexity for computing dominant eigenvectors of ran-
dommatrices. a) Illustrations of randommatrices with sizes from 3� 3 to
30� 30; 100 matrices were constructed with the 12 discrete conductance
levels in Figure 1b for each size. b) Computing time of the dominant eigen-
vectors of the matrices with different sizes, with four different δ values
introduced in the eigenvalue implementation. c) Values of λh of all
simulation cases. Both the computing time and λh show a clear indepen-
dence on the matrix size N, indicating the O(1) time complexity.
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from the International Technology Roadmap for Semiconductors
(ITRS) table.[20] For the same dataset in Figure 4, the circuit sim-
ulations including wire resistances were conducted. The comput-
ing time for matrices with different sizes and values of δ is shown
in Figure S4, Supporting Information. Compared with the ideal
circuit, the real circuit including parasitic resistances generally
shows a longer computing time, which may show a legible
N-dependence. On the other hand, the solution error becomes
lower for the real circuit, suggesting that wire resistances
equivalently reduce the mismatch degree δ of eigenvalue imple-
mentation in the circuit. These results indicate an additional
constraint on the tradeoff between the computing time and solu-
tion accuracy imposed by the wire resistance issue.

As a practical case study, we addressed the PageRank of a
real-world dataset. The PageRank algorithm is widely used for
ranking webpages in search engines,[9] and link prediction
and recommendation in social media.[21] PageRank aims at
calculating the dominant eigenvector,[22] which can be naturally
accelerated by the cross-point eigenvector circuit. We adopted the
Harvard500 database,[23] which contains 500 relevant webpages
of the Harvard University to be ranked according to their connec-
tions. In the PageRank of a webpage network, the citations
among webpages give a citation matrix C, which is defined as
follows: if page j contains a link to page i, the citation element
Cij is set to 1, otherwise Cij ¼ 0. More pages citing the same page
indicate that the latter is more important. Also, citation by impor-
tant pages gives rise to the importance of the page. Figure 5a
shows the citation matrix of Harvard500, which is a sparse logical

matrix. To rank the webpages by their importance, a transition
matrix T is defined according to

Tij ¼
8<
:

pCijP
i
Cij

þ σ, if
P
i
Cij 6¼ 0,

1=N, if
P
i
Cij ¼ 0

(13)

where N ¼ 500 is the number of pages, p ¼ 0.85 is the random
walk probability, and σ ¼ 1�p

N is the probability for randomly
picking a page. A uniform probability 1=N is assigned if a page
gets no link.[23] The transition matrix is basically a stochastic
matrix with the largest eigenvalue always being 1 and the domi-
nant eigenvector giving the importance scores of webpages.[22]

The resulting transition matrix for Harvard500 is shown in
Figure S5, Supporting Information.

The transition matrix was stored in the cross-point array, and
the largest eigenvalue was mapped in the feedback conductance
with a mismatch degree δ to compute the eigenvector in the
circuit. Figure 5b shows the circuit dynamics of the eigenvector
computation with δ ¼ 0.01, indicating a computing time of
around 135 μs. The simulated eigenvector values were normal-
ized, so that the sum of all elements is equal to one, thus giving
the importance scores of the webpages. The results are shown in
Figure 5c, where page #1 (the home page of Harvard university)
ranks in the first place in the search results.

To study the time complexity of PageRank for webpage net-
works with different sizes, we selected the first N pages in the
Harvard500 database to form a new network, for which a new

(a) (b)

(d) (e)

(c)

Figure 5. Time complexity of PageRank with the Harvard500 database and its subsets. a) The citation matrix of Harvard500, which is a sparse matrix
containing 2636 connections among webpages in the entire database. b) Transient simulation results of PageRank for Harvard500 assuming δ ¼ 0.01.
c) Importance scores of the 500 webpages obtained from the simulated eigenvector. d) Citation matrices of subsets of the Harvard500 database, with
different sizes from 4� 4 to 256� 256. e) Computing time of PageRank of Harvard500 and its subsets, with four different δ values assumed. For each δ,
the computing time of PageRank of various datasets is on the same level, thus supporting theO(1) of the cross-point circuit for eigenvector computation.
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set of importance scores is computed. N ¼ 4, 8, 16, 32, 64,
128, and 256 were assumed, and the N � N submatrix was
extracted from the entire citation matrix, as shown in
Figure 5d. For each subset of webpages, δ ¼ 0.003, 0.01,
0.02, and 0.04 were assumed for the eigenvalue implementation
in the circuit. The computing time of all simulation cases is
reported in Figure 5e, which also includes the computing time
for the original Harvard500 with the four values of δ. For a
specific δ, the computing time for all matrices is approximately
at the same level, whereas a different δ causes a significant
change in the computing time. The scattering of the computing
time over the N range is due to the variation of λh with N
(Figure S6, Supporting Information), which, in turn, is due to
the specific structure of the transition matrices. These results
support the O(1) time complexity of the eigenvector circuit for
practical application of PageRank.

Regarding the solution accuracy of PageRank, we show
the comparison between the simulated importance scores and
the ideal ones for the Harvard500 database in Figure S7,
Supporting Information, indicating a good consistency between
the two solutions. In particular, we ranked the top ten pages for
the ideal case and the four simulated cases, showing that all the
ideal top ten pages are preserved in the top ten places in the sim-
ulations, except for the case with δ ¼ 0.04, where one page was
missed out. We also studied the wire resistance issue for the
PageRank of Harvard500 subsets, with the results shown in
Figure S8, Supporting Information. The parasitic wire resistance
causes a small increase in the computing time for relatively
large δ, thus leading to an N-dependence to the time complexity
of eigenvector computation. These results suggest a careful
choice of δ for circuit implementation to achieve the best perfor-
mance regarding both the computing time and the accuracy of
the results. A strategy of dynamic tuning of δmight be adopted to
achieve both high speed and accuracy. In this algorithm, a large δ
can be used in the initial phases to accelerate the transition of the
output voltages; then, δ can be reduced in the later stages for
fine-tuning of the final solution.

As the mismatch degree δ is generally considered to be small
to maintain the eigenvector accuracy, it may suffer from the con-
ductance variation, i.e., the feedback conductance values of the
TIAs being slightly different. In this case, the associated matrix of
Equation (10) becomes

M ¼
�

0 1
2 I

UðA� ΛÞ ��
ΛU þ 1

2 I
� � (14)

where Λ is a diagonal matrix that is defined as
Λ ¼ diagðλð1ÞG , λð2ÞG , · · · , λðNÞ

G Þ, assuming λðiÞG is the ith practical
implementation of the nominal eigenvalue λ. We simulated
the PageRank of Harvard500 in the circuit by considering the
eigenvalue variations. Instead of a uniform δ ¼ 0.01 in
Figure 5b, the value of δ for each eigenvalue conductance was
assumed lying randomly in the range of (0, 0.02). Ten trials were
tested. All the results of computing time and solution error show
a tight distribution around the ones of the uniform case
(Figure S9, Supporting Information), thus confirming the
robustness of the circuit against feedback conductance variations
in a practical implementation.

3. Conclusion

We have studied the time response of the cross-point RRAM
circuit for eigenvector computation, based on the feedback
analysis of the self-sustained system. The circuit shows a
computing time that relies solely on the mismatch degree of
eigenvalue implementation in the circuit, which governs the con-
vergence rate of output voltages toward the steady-state solution.
The computing time shows no dependence on the matrix size N,
which supports the O(1) complexity of the cross-point eigen-
vector circuit. The PageRank of the Harvard500 database and
its subsets also supports the O(1) time complexity of the
circuit. With such a low time complexity, this work supports
the significant time/energy efficiency gains of in-memory
computing for big data analytics in a wide range of real-world
applications.

4. Experimental Section

Experimental Devices: The RRAM devices characterized in this work
used a HfO2 thin film as the switching layer, whose thickness was
5 nm. The HfO2 dielectric layer was deposited by e-beam evaporation
on a confined graphitic carbon bottom electrode (BE); then, a Ti thin layer
was deposited on top of the dielectric layer as top electrode (TE) without
breaking the vacuum during evaporation. The forming process of RRAM
was operated by applying a DC voltage sweep from 0 to 5 V to TE with BE
being grounded. The forming process induces a soft breakdown of the
dielectric HfO2 layer, initiating the conductive filament formation and
the resistive switching behavior. The set and reset transitions take place
under positive and negative voltages applied to the TE, respectively. The
DC conduction and switching characteristics of the RRAM were collected
by a Keysight B1500A Semiconductor Parameter Analyzer, which was con-
nected to the RRAM device in a conventional probe station for electrical
characterization.

SPICE Simulations: Simulations of the cross-point circuit were carried
out using LTSPICE (https://www.linear.com/solutions/1066). Linear resis-
tors were used to dictate the conductance values of the programmed
RRAM levels, thus mapping a matrix in the cross-point array. AD823 from
Analog Devices was used as the OA in the circuit, and parameters can be
found here (https://www.analog.com/en/products/ad823.html).

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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