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Solid-liquid interfacial properties out of equilibrium provide the essential information required for understand-
ing and controlling solidification microstructures in metallic materials. However, few studies have attempted
to reveal all interfacial properties out of equilibrium in detail. The present study proposes an approach for
simultaneously estimating all interfacial properties in a pure metal below the melting point on the basis of the
Bayesian inference theory. The solid-liquid interfacial energy, interfacial mobility, and anisotropy parameters
in pure Fe are estimated by combining molecular dynamics simulation with phase-field simulation using an
ensemble Kalman filter, which is a data assimilation technique. Furthermore, the temperature dependences of
all interfacial parameters are computed and discussed. In summary, the proposed multiscale approach integrates
atomistic and microstructural simulations within the framework of data science and it has considerable potential
for a wide variety of applications in materials engineering.
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I. INTRODUCTION

The evolution and devolution processes of solidification
microstructures in metallic materials originate from the in-
terface dynamics, which are controlled by the solid-liquid
interfacial properties, such as the interfacial energy and mo-
bility as well as their dependences on the crystallographic
orientation of the solid, i.e., their anisotropies [1]. As solid-
ification microstructures are products of nonequilibrium pro-
cesses, prediction and control of the microstructural processes
essentially require the knowledge of solid-liquid interfacial
properties out of equilibrium.

Accurate determination of the physical parameters asso-
ciated with microstructural processes is one of the most
important issues to be addressed for the advancement of tech-
niques for controlling microstructures [2]. Several experimen-
tal methods have been developed for determining solid-liquid
interfacial properties [3–5]. Moreover, solid-liquid interfacial
properties have been extensively investigated in theoretical
studies [6–8] and numerical studies based on the classical
density-functional theory [9–11] and the phase-field crystal
theory [12]. Currently, atomistic simulation, such as molec-
ular dynamics (MD) simulation, is considered as a method
of choice for determining solid-liquid interfacial properties
with high accuracy [13,14]. The capillary fluctuation method
(CFM) [15] and cleaving technique (CT) [16] were developed
for computing the solid-liquid interfacial energy σ0 and its
anisotropy parameter εc, which will be defined later in detail,
via MD simulation. They have been successfully applied to
several metallic materials [14]. Furthermore, the interfacial

*Corresponding author:mohno@eng.hokudai.ac.jp

mobility μ0 and its anisotropy parameter εk can be evaluated,
for instance, by measuring the solid-liquid interfacial veloc-
ity in an undercooled melt via MD simulation [17]. These
approaches have contributed toward widening the application
range of microstructure simulation, such as phase-field simu-
lation [1,13,14]. However, determining all interfacial parame-
ters is not a trivial task because it requires elaborate analyses
with a combination of different types of MD simulation. Ac-
cordingly, not all interfacial parameters have been computed
for many metallic materials. In this regard, it is desirable to
develop an efficient approach for clarifying all the properties
simultaneously and accurately from a single MD simulation,
which is tackled in this work.

Solidification is a nonequilibrium phenomenon. As solid-
ification in pure metals takes place in an undercooled melt,
simulation of the solidification microstructures in pure metals
requires the interfacial parameters to be determined below
the melting point Tm. However, for instance, the CFM and
CT have so far been applied only to flat and static inter-
faces in equilibrium and questions about σ0 and εc out of
equilibrium remain to be answered. Early theoretical and
numerical studies implicitly or explicitly indicated that σ0

monotonically increases with the temperature [6–9,14,18,19].
In other words, it exhibits a positive temperature dependence.
However, some theoretical studies have shown that the tem-
perature dependence of σ0 is not monotonic [20,21]. More
specifically, as the temperature increases, σ0 increases in low-
temperature regions and then decreases near Tm. Such a neg-
ative temperature dependence near the transition temperature
has often been found in studies of other interfacial energies,
such as the surface tensions of pure liquid and solid metals
[22,23] and antiphase boundary energies in ordered systems
[24,25]. Moreover, a recent study based on metadynamics MD
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simulation with the Lennard-Jones potential demonstrated
the possibility of the negative temperature dependence of σ0

[26]. Hence, further investigation is required for clarifying
the temperature dependence of σ0. In addition, simulation
of solidification microstructures at undercooling temperatures
requires the knowledge of the temperature dependences of εc,
μ0, and εk as well as σ0.

The rapid development of high-performance computing
techniques has made it possible to scale up MD simulation to
the level of small microstructures [27–31]. Currently, we can
directly compare the time evolution processes of solidification
microstructures described by MD and a continuum model
such as the phase-field model [31]. Such overlap of spatial and
temporal scales of both methods allows simultaneous use of
information from different scales in collaboration with recent
techniques from data science. Here we present an approach
for computing all the parameters of solid-liquid interfaces out
of equilibrium on the basis of an ensemble-based Bayesian
inference approach, i.e., data assimilation technique [32–34]
combined with MD and phase-field simulations. The data
assimilation offers a technique for combining observation
data with a simulation model to estimate the model param-
eters and/or states of the system. Feasibility studies on the
parameter estimation of phase-field models for solid-state
transformations on the basis of data assimilation have recently
been conducted within the framework of the so-called twin
experiments, i.e., testing of estimation with the use of hypo-
thetical data [35,36]. In this study, we demonstrate that all
the interfacial parameters for solidification in a pure metal
out of equilibrium can be simultaneously estimated on the
basis of an ensemble Kalman filter (EnKF) [34], where the
simulation model is the phase-field model and the observation
data are microstructural data obtained by the MD simulation
reported in our previous study [27]. Further, we investigate the
temperature dependences of all the interfacial parameters.

The remainder of this paper is organized as follows. Sec-
tion II introduces the interfacial parameters for isothermal
solidification in a pure metal, which is the main focus of this
study. Sections III, IV, and V describe the phase-field model,
MD simulation, and EnKF, respectively. Section VI discusses
the parameter estimation results and temperature dependences
of all the interfacial parameters. A summary is provided in
Sec. VII.

II. INTERFACIAL PARAMETERS FOR ISOTHERMAL
SOLIDIFICATION IN A PURE METAL

In isothermal solidification of a pure metal, the inter-
face dynamics is described by the Gibbs-Thomson equation
[37,38]

vn = μ(n)

[
�Gdriv −

∑
i=1,2

(
σ (n) + ∂2σ

∂θ2
i

)
κi

]
, (1)

where vn is the interfacial velocity in the direction normal to
the interface, μ(n) is the interfacial mobility with the unit
vector normal to the interface n, �Gdriv is the driving force
of solidification, σ (n) is the solid-liquid interfacial energy, θi

is the angle between n and the direction of principal curvature
of the interface specified by i, and κi is the principal curvature

of the interface. When the average values of μ(n) and σ (n)
are denoted by μ0 and σ0, respectively, μ(n) and σ (n) can
be described as μ(n) = μ0ak (n) and σ (n) = σ0ac(n) with
anisotropy functions αk (n) and αc(n), respectively [37–39].

In this study, we focus on the (quasi-)two-dimensional
(2D) growth of a solid in an undercooled melt of pure Fe,
which was investigated in the previous MD simulation [27].
The anisotropy functions are given as ac(n) = 1 + εc cos(4θ )
and ak (n) = 1 − ek cos(4θ ) [39], where εc and εk are the
anisotropy parameters of the interfacial energy and mobility,
respectively, and θ is the angle between the interface normal
and 〈100〉 of the crystal. Furthermore, the driving force �Gdriv

can be approximated as �Gdriv = �H�T/Tm, where �H is
the latent heat and �T is the degree of undercooling. Then
Eq. (1) can be rewritten as

uint = Tmcp

�H2
σ0[1 − 15εc cos(4θ )]κ

+ β0[1 − εk cos(4θ )]vn + ζ , (2)

where uint is the dimensionless undercooling at the interface,
defined as uint = �T/(�H/cp) with specific heat cp, and β0

is the kinetic coefficient defined as β0 = Tmcp/μ0�H2. Here
the noise term ζ is added to describe the fluctuation in the
interface dynamics.

The interfacial properties in this problem can be com-
pletely characterized by four parameters: σ0, εc, β0, and εk .
In Eq. (2), bulk quantities such as Tm, cp, and �H can be
easily obtained via experimentation and/or simulation, and
these data are generally available in the literature. However, it
is rather rare that all four interfacial parameters are available.
In this study, these four parameters at a given temperature are
estimated from a single MD simulation.

III. PHASE-FIELD MODEL

In the phase-field model, the microstructure is character-
ized by an order parameter called the phase-field φ, which
takes a value of +1 for a solid and −1 for a liquid; φ

continuously changes from +1 to −1 inside the solid-liquid
interface. Thus, the interface has a thickness and it is called
the diffuse interface. In this model, isothermal solidification
in a pure metal can be described by the phase-field equation
[39]

τ (n)
∂φ

∂t
= ∇[W (n)2∇φ] +

∑
i=x,y

∂i

(
|∇φ|2W (n)

∂W (n)

∂ (∂iφ)

)

+ φ − φ3 − λ(1 − φ2)2uint + τ (n)ξ, (3)

where

W (n) = W0ac(n), (4)

ac(n) = (1 − 3εc)

(
1 + 4εc

1 − 3εc

(
n4

x + n4
y

))
, (5)

τ (n) = 1

a2
1

W 2
0

d0
β0ac(n)ak (n), (6)

ak (n) = (1 + 3εk )

(
1 − 4εk

1 + 3εk

(
n4

x + n4
y

))
. (7)
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Here W0 is the interface thickness, λ is the coupling con-
stant given by λ = a1W0/d0, with a1 = 5

√
2/8 and d0 the

capillary length defined as d0 = σ0(Tmcp/�H2), n is the unit
vector normal to the interface, and n4

x + n4
y is given by n4

x +
n4

y = [(∂φ/∂x)4 + (∂φ/∂y)4]/|∇φ|4. Further, ξ is the noise
term that represents the fluctuation of the interface dynamics
and it obeys the Gaussian noise distribution whose variance is
given by the fluctuation-dissipation theorem as [40,41]

〈ξ (ri, t j )ξ (rk, tl )〉 = 2Fφ

�t�x2
δikδ jl , (8)

where �T is the time step, �x is the grid spacing in the
simulation, δik is the Kronecker delta function, and Fφ is given
by

Fφ = aRJλ
kBT 2

m cp

�H2W 2
0

, (9)

where kB is the Boltzmann constant and J = 16/15. Although
aR must be unity, it is varied in our analysis to control the
system noise in the EnKF, as explained later. To avoid unstable
calculations due to the large contribution of the noise term, the
upper and lower limits of φ are set to +1 and −1, respectively,
in the phase-field simulation. Note that Eq. (3) exactly repro-
duces the Gibbs-Thomson effect given by Eq. (2).

Equation (3) is discretized using a second-order finite-
difference scheme with the grid spacing �x and it is solved us-
ing a first-order Euler scheme. As described later, the previous
MD simulation [27] was conducted in a quasi-2D system with
a size of 53.4 × 53.4 × 4.3 nm3. In the preliminary investiga-
tion, we carried out the twin experiments on the basis of 3D
phase-field simulation for the quasi-2D system and 2D phase-
field simulation to observe the effects of the dimension on the
parameter estimation accuracy. Here the twin experiments are
conducted to evaluate the accuracy of parameter estimation
[32–36]. It is a test of the parameter estimation in which the
observation data are not actual MD data, but hypothetical
data obtained from phase-field simulation with the use of
prescribed (assumed) values of the interfacial parameters in
the present case. The twin experiments indicated that there is
no significant difference between the estimation accuracies of
the 3D and 2D simulations. Therefore, we focus on only 2D
phase-field simulation in this study. Furthermore, we checked
the effect of the grid spacing �x on the estimation accuracy
by carrying out the simulations with 642, 1282, 2562, and 5122

grid points. In view of the trade-off between accuracy and
computational cost, the number of grid points is set to 1282

in all the phase-field simulations described in this paper. The
interface thickness is given by W0 = 1.5�x.

The previous MD simulation [27] was carried out using
the Finnis-Sinclair (FS) potential [42], which is one of the
representative potentials for bcc metals. In this study, ac-
cordingly, the bulk quantities �H , Tm, and cp are set to
values obtained via MD simulation with the FS potential, i.e.,
�H = 2.147 × 109 J/m3 [17], Tm = 2400 K [17], and cp =
3.685 × 106 J/(m3 K), which was obtained in the present MD
simulation. Then, except for the interfacial parameters, the
only remaining input parameter in Eq. (3) is uint, which is
determined from the results of the previous MD simulation
[27], as described in the next section.

IV. MD SIMULATION FOR ISOTHERMAL
GROWTH OF A BCC CRYSTAL

Recent high-performance computing techniques, espe-
cially those involving a graphics processing unit (GPU), allow
large-scale MD simulation of solidification microstructures
[27–31]. Solidification in pure Fe was investigated via MD
simulation, where a single solid grows in the undercooled
melt [27]. This process is basically dominated by the Gibbs-
Thomson relation given by Eqs. (2) and (3). In this study, the
results of the MD simulation [27] are used as observation data
in the EnKF. The essential aspects of the MD simulation are
briefly described below.

The interatomic interaction between Fe atoms was repre-
sented using the FS potential [42]. The pure Fe melt was
obtained by heating a bcc crystal consisting of 1 037 880 Fe
atoms with a size of 53.4 × 53.4 × 4.3 nm3 (186 × 186 × 15
unit cells) up to 3500 K under a constant NVT condition. The
solid particle of the bcc crystal was then inserted into the melt.
This system was annealed under zero pressure and a constant
NPT condition at various degrees of undercooling �T .

Figures 1(a) and 2(a) shows snapshots of the MD simula-
tion for �T = 200 and 300 K, respectively. The solid (blue)
and liquid (gray) atoms are distinguished on the basis of
common neighbor analysis [29]. The vertical and horizontal
axes correspond to 〈100〉 of the bcc crystal located in the
center part of the system. In both cases, preferential growth of
the solid takes place slightly in the 〈100〉 direction, resulting in
a slight deviation from the circle shape expected in the case of
isotropic interfacial properties. It is important to note that the
interface shape largely fluctuates during the growth processes.

All the interfacial parameters in Eq. (2) should be evaluated
by analyzing the growth processes shown in Figs. 1(a) and
2(a). For instance, time changes of the local velocity and
interface curvature are measured in different crystallographic
orientations. Then the four parameters in Eq. (2) can be
evaluated on the basis of the relationship between the local
velocity and the curvature by minimizing a cost function, e.g.,
the mean square error. However, such simple parameter fitting
procedures are ineffective and inaccurate in the present case,
because very strong fluctuation of the interface shape occurs
at the atomistic level; accordingly, the local velocity and
curvature fluctuate strongly, which causes extremely high un-
certainty in the parameter fitting based on minimization of the
cost function. In other words, the effect of the noise term ζ in
Eq. (2) is extremely high at this scale, which hampers accurate
determination of the interface dynamics. How to treat fluctua-
tion at the atomistic scale within the continuum description is
an essential problem in multiscale analysis. To solve this prob-
lem, this study treats the data of MD simulation as stochastic
variables and the interfacial properties are probabilistically
estimated on the basis of a Bayesian filtering method, i.e., the
EnKF, which will be explained in Sec. V. More specifically,
the results of MD simulation are assimilated into the phase-
field simulation described in Sec. III to estimate the interfacial
parameters. To this end, we convert the MD data into the
diffuse-interface description, as explained below.

The output data of the MD simulation are the velocity
and spatial coordinates of the atoms. Such data are not
suitable for data assimilation with the phase-field model. In
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FIG. 1. Result of MD simulation for growth of a single solid in an undercooled melt of pure Fe at �T = 200 K [27]. (a) Atomistic
description of data where the solid and liquid atoms are shown in blue and gray, respectively. The vertical and horizontal axes correspond
to 〈100〉 of the crystal. (b) Diffuse-interface description (phase-field profile) converted from the MD data in (a) in a domain consisting of
128 × 128 grid points. (c) Temperature distribution calculated from the local velocity of atoms in the MD simulation.

this study, the MD data were converted into the phase-field
profile on the basis of a method developed previously [43] to
assimilate the MD data into the phase-field simulation. Atoms
in a bcc configuration were first identified by the common
neighbor analysis. A cross section (53.4 × 53.4 nm2) of the
MD computational system was divided into 2D square grid
points. Then the phase-field variable φ was set to −1 for a
liquid and +1 for a solid. The sharp-interface profile thus
obtained was relaxed to get the diffuse interface by solving the
phase-field equation without the curvature effect and driving
force. This data conversion was carried out for the time series
of the MD data. The results of the converted MD data for
�T = 200 and 300 K are shown in Figs. 1(b) and 2(b),
respectively. The size and shape of the growing solid are
reproduced well in the diffuse-interface description for both
cases. These data of φ are used in the EnKF.

Note that only the temperature spatially averaged over the
entire system was controlled to be constant with the NPT
ensemble in the previous MD simulation [27]. This does not
guarantee that the temperature is completely uniform during
solidification because of the release of latent heat. The temper-
ature distributions calculated from the velocity distributions of
the atoms at �T = 200 and 300 K are shown in Figs. 1(c) and
2(c), respectively. The temperature is not completely uniform

in both cases and it is high in the solid because of the release
of latent heat. In particular, in the late stage at �T = 300 K,
the difference between the temperatures in the solid and liquid
regions becomes remarkable. Hence, the heat diffusion equa-
tion must be coupled with Eq. (3) in the parameter estimation.
However, the time changes of temperature shown in Figs. 1(c)
and 2(c) cannot simply be described by the heat diffusion
equation with the usual boundary conditions, because only the
spatially averaged temperature was controlled to be constant
using the thermostat in the MD simulation [27]. Furthermore,
another problem arises even if one can accurately describe
the time change of temperature. As the interfacial parameters
depend on the temperature, their spatial and temporal varia-
tions occur inside the interface according to the temperature
distribution and such changes must be handled by introducing
new coupling terms between φ and T in Eq. (3). Hence, the
parameter estimation becomes extremely complicated. These
problems are readily resolved when one employs MD data
for completely isothermal solidification. In this attempt to
develop an approach for computing the interfacial parameters
on the basis of the EnKF, we introduce a simplification of uint

as described below.
Figures 3(a) and 3(b) show the time changes of uint

averaged over the interface region (−0.999 < φ < 0.999)
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FIG. 2. Result of MD simulation for growth of a single solid in an undercooled melt of pure Fe at �T = 300 K [27]: (a) atomistic
description, (b) diffuse-interface description (phase-field profile), and (c) temperature distribution.

obtained from the MD simulation for �T = 200 and 300 K,
respectively. Furthermore, the radius of the circle that has
an area equivalent to that of the solid rec is shown in each
figure. In the case of �T = 200 K, uint takes a nearly constant
value during the solidification and stable growth of the solid
occurs after around t = 150 ps. Therefore, we have decided to
employ the MD data from 200 to 500 ps as the observation
data in the parameter estimation for �T = 200 K. The time-
averaged value of uint is calculated as uint = −0.15 and it is
used in the phase-field simulation in the EnKF for simplicity.
In the case of �T = 300 K, the growth takes place from
the beginning and uint takes a nearly constant value until
t = 300 ps. Hence, the MD data from 0 to 300 ps are used
as the observation data in the case of �T = 300 K. The
value of uint averaged over this time period is calculated
as −0.23 and it is used in the phase-field simulation. Such
simplification of uint is introduced in this study to avoid the
cumbersome problems associated with the time change of
temperature distribution. Note that truly isothermal processes
over the entire system must be realized by controlling the
local velocities of the atoms, i.e., using a local thermostat in
the MD simulation. In such cases, the degree of undercooling
set as a computational condition can be directly employed in
the phase-field simulation without analysis of the temperature
distribution.

V. ENSEMBLE KALMAN FILTER

Data assimilation provides a methodology for integrating
observation data and the simulation model to estimate the state
of the system and/or the parameters governing the dynamics
of interest. Because it achieves a reasonable trade-off between
accuracy and computational cost, the EnKF has been used
in various fields, such as oceanography and meteorology
[32–34]. Our objective is to estimate σ0, εc, β0, and εk in
Eq. (3) using the data of MD simulation (Figs. 1 and 2) as
the observation data.

The EnKF is a method based on the Monte Carlo approx-
imation of the Kalman filter. It is an ensemble-based method
in which a number of simulations are conducted for different
parameters and/or different initial states and these simula-
tions correspond to ensemble members for approximating the
probability distribution function of the state. In the EnKF, the
state variable, model parameters of interest, and observation
data are treated as stochastic variables and the estimation is
conducted in a probabilistic manner. The EnKF consists of
cycles of a forecast stage and an analysis stage (see Fig. 4).
The simulations are independently and simultaneously carried
out in the forecast stage, while the simulations are correlated
with each other in the analysis stage. In the analysis stage, the
parameters and state variables in the simulations are updated
by the filtering procedure on the basis of the observation data.
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FIG. 3. Time changes of the dimensionless undercooling at the
interface uint and the equivalent-circle radius of the solid rec obtained
from the MD simulation for (a) �T = 200 K and (b) �T = 300 K.
The arrows indicate the ranges of the data employed in the data
assimilation.

Repeating this cycle gradually minimizes the expectation
values of the variance-covariance matrix composed of the
differences between the observation data and the simulation
results.

In the forecast stage, the time evolution of the states is
calculated as [34]

x f
i (tn) = F

(
x

a

i (tn−1
)
) + vi(tn) for i = 1, 2, . . . , M, (10)

where tn represents a discrete time where the observation data
are available and xa

i (tn) is the state vector (column vector)
of the ensemble member i at time tn, containing all the state
variables at tn. In the present case, xa

i (tn) is composed of the
phase-field variables φ at all the discrete spatial points at tn

in the phase-field simulation specified by i, M is the total
number of ensemble members, and F is a nonlinear operator
describing the time evolution of the states from time tn−1 to
tn. Hence, F is given by the time evolution equation of φ

[Eq. (3)] in the present case. Note that the superscripts a and
f in the state vector [xa

i (tn) and x f
i (tn)] indicate the analysis

and forecast values, respectively. Further, vi(tn) is the system
noise that accounts for the uncertainty of the model, i.e., the
uncertainty of the dynamics originating from physics and/or
factors that are not explicitly described in the operator F (the
phase-field model). In addition, vi(tn) is given as Gaussian
noise with zero mean and a covariant matrix Qv and it is
expressed as vi(t ) ∼ N (0, Qv ). Note that the parameters to be
estimated are included in the state vectors xa

i and x f
i . In other

words, the state vector contains σ0, εc, β0, and εk as well as
φ. The operator F for the interfacial parameters is the identity
operator.

The forecast stage is followed by the filtering operation in
the analysis stage. In the filtering, x f

i (tn) is updated as [32–34]

xa
i (tn) = x f

i (tn) + K(tn)
[
yobs(tn) + δωi(tn) − Hx f

i (tn)
]

for i = 1, 2, . . . , M, (11)

where yobs(tn) represents the observation data corresponding
to the values of φ at different positions obtained from the MD
simulation [Figs. 1(b) and 2(b)], H is the observation matrix
that yields the values corresponding to the observation data
for x f

i (tn), and K(tn) is the Kalman gain given by

K(tn) = V(tn)HT [HV(tn)HT + R(tn)]−1, (12)

where the superscript T indicates the transpose of the matrix
(or vector) and V(tn) is the sample covariance matrix given by

V(tn) = 1

M − 1

M∑
i

δx f
i (tn)

[
δx f

i (tn)
]T

, (13)

with δx f
i (tn) = x f

i (tn) − 〈x f
i (tn)〉, where angular brackets rep-

resent the ensemble average. In addition, R(tn) in Eq. (12) is
the observation error covariance matrix given by

R(tn) = 1

M − 1

M∑
i=1

δωi(tn)[δωi(tn)]T , (14)

TABLE I. Values of hyperparameters tested in this study.

Hyperparameters Values

number of ensemble members M 128, 256, 512, 1024, 2048
time interval of filtering �tobs (ps) 1–300
variance of observation noise QR 1–40
parameter proportional to variance of noise for φ, aR 0–40
variance of noise for σ0 0−1 × 10−3

variance of noise for εc 0−1 × 10−6

variance of noise for β0 0–0.01
variance of noise for εk 0−1 × 10−6

maximum of initial values of σ0 and σ0,max (J/m2) 0.1–0.8
maximum of initial values of εc and εc,max 0.01–0.04
maximum of initial values of β0 and β0,max (s/m) 0.01–0.1
maximum of initial values of εk and εk,max 0.01–0.4
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FIG. 4. Schematic illustration of forecast and analysis stages in the EnKF.

where δωi(tn) = ωi(tn) − 〈ωi(tn)〉 and ωi(tn) is the observa-
tion noise, i.e., the error included in the observation data,
given by ωi(tn) ∼ N (0, R(tn)). In this ensemble approxi-
mation, the probability distribution function for state x(tn),
ρ(x(tn)), can be approximated as

ρ(x(tn)) = 1

M

M∑
i=1

δ
(
x(tn) − xa

i (tn)
)
. (15)

By repeating the forecast and analysis stages, the param-
eters and state variables approach the true values (the most
probable values). The expectation values of the parameters are
obtained from the ensemble average of the parameters at each
filtering step. The estimated value of each parameter can be
obtained by time-averaging the expectation value in the late
time period.

Many variants on the EnKF algorithm have been developed
to achieve higher efficiency and accuracy of the EnKF. By car-
rying out the twin experiments, in this study, we determined
the suitable algorithm and optimal conditions of the EnKF
as explained below. First, diagonalization of the matrix R(tn)
given by Eq. (14) is generally a good approximation [44];
hence, we treated it as a diagonal matrix, which accelerates
the computation of the inverse matrix in Eq. (12). Then R
is represented as R = QRI with the identity matrix I and
variance QR. We investigate the effect of QR on the estimation
accuracy. In addition, the noise term for φ in Eq. (3) was
regarded as the system noise in Eq. (10) and the effect
of aR on the estimation accuracy is investigated. Similarly,
small Gaussian noise was added to the interfacial parameters
during the time evolution of the system, which was regarded
as the system noise. Its variance is denoted by Qσ for σ0,
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FIG. 5. Example of estimated result of two parameters (a) σ0 and (b) εc on the basis of the EnKF with MD data at �T = 200 K (uint =
−0.15). Here β0 and εk were set to 6.15 × 10−3 s/m and 0.085, respectively [17]. The estimation condition was given as QR = 4, aR = 10,
Qσ = 1.0 × 10−4, Qc = 1.0 × 10−6, σ0,max = 0.4 J/m2, and εc,max = 0.04.

Qc for εc, Qβ for β0, and Qk for εk and its effects on the
accuracy were examined. Furthermore, the initial values of
the interfacial parameters are randomly set with the prescribed
upper limits. The upper limits of the interfacial parameters
in the initial random setting are denoted by σ0,max, εc,max,
β0,max, and εk,max, and the effects of these upper limits on
the estimation accuracy are investigated. The filtering time
interval �tobs is also important for accurate estimation and
its effect is investigated. Finally, the number of ensemble
members M is varied to obtain the optimal condition on the
basis of the trade-off between accuracy and computational
cost. The ranges of the parameters investigated in this study
are summarized in Table I, and these parameters are called
hyperparameters.

In this study, estimation using MD data is referred to
as actual estimation to distinguish it from the estimation
in the twin experiments. All the computations of the twin
experiments and the actual estimation are performed three
times for each condition using different seeds for the noise
terms. Furthermore, all the computations are accelerated using
a GPU (Tesla P100).

VI. RESULTS AND DISCUSSION

A. Twin experiments and estimation accuracy

We carried out the twin experiments to clarify the optimal
values of some hyperparameters for accurate estimation. First,
the number of ensemble members M was changed from 128
to 2048 with several sets of hyperparameters. Although the
estimation accuracy gradually increases with M, there is no
significant difference when M � 512. Hence, M was set to
512 in the twin experiments. We tested the effects of the time
interval of filtering �tobs on the estimation accuracy and found
that the accuracy increases as �tobs decreases. However, when
�tobs is extremely small, there is a slight change in the mi-
crostructure between the filtering steps, which results in low
accuracy. Thus, �tobs was set to 10 ps in the twin experiments.

The optimal values of the other hyperparameters can be
determined in the twin experiments. However, the optimal set
of values was found to depend on the magnitude of the ob-
servation noise, i.e., QR. It is extremely difficult to determine
the appropriate value of QR prior to the actual estimation.

Hence, we carried out a number of actual estimations using
different values of QR and different sets of the other hyperpa-
rameters. As the estimation result depends on the values of the
hyperparameters, it is necessary to evaluate the accuracy of
the result in the actual estimation. Therefore, we seek a
quantity related to the accuracy of the result in the twin experi-
ments. We found that the accuracy of the result monotonically
increases with the likelihood Z defined as

Z =
〈
exp

(
−�E

QR

)〉
, (16)

where �E is given by �E = (yobs − Hxa
i )T (yobs − Hxa

i ). In
this study, therefore, the accuracy of the result of the ac-
tual estimation is evaluated on the basis of Z according to
Eq. (16).

B. Simultaneous estimation of all interfacial
parameters from MD simulation

Before conducting simultaneous estimation of the four
interfacial parameters, we tested the estimation of two param-
eters to investigate the feasibility of the present approach. It
should be instructive to demonstrate the result of testing the
estimation of two parameters, namely, σ0 and εc. In a previous
study, β0 and εk of pure Fe were computed by analyzing
the solid-liquid interfacial motion in an undercooled melt via
MD simulation with the FS potential [17]. The computed
values were β0 = 6.15 × 10−3 s/m and εk = 0.085, which
were obtained by taking the averages in a temperature range.
We considered that these average values of β0 and εk do not
significantly differ from the true values below Tm. Therefore,
to check the feasibility of the approach, we examined only
σ0 and εc with the MD data at �T = 200 K (uint = −0.15) by
assuming β0 = 6.15 × 10−3 s/m and εk = 0.085. An example
of the result is shown in Fig. 5. The estimation condition
is given as QR = 4, aR = 10, Qσ = 1.0 × 10−4, Qc = 1.0 ×
10−6, σ0,max = 0.5 J/m2, and εc,max = 0.04. In each figure, the
horizontal axis represents the time. Note that the observation
data from t = 200 to 500 ps in Fig. 3 (a) are employed in the
EnKF. Hence, the estimation starts from the microstructure
at t = 200 ps; accordingly, t = 0 ps in Fig. 5 corresponds to
t = 200 ps in Fig. 3(a). The circle represents the expectation
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FIG. 6. Example of simultaneous estimation of the four interfacial parameters on the basis of the EnKF with MD data at �T = 200 K
(uint = −0.15): (a) σ0, (b) εc, (c) β0, and (d) εk . The estimation condition was given as QR = 1, aR = 5, Qs = Qc = Qb = Qk = 0, σ0,max =
0.4 J/m2, εc,max = 0.04, β0,max = 0.01 s/m, and εk,max = 0.3.

value at each filtering step and the hatched area indicates the
range of standard deviation. In Fig. 5(a), the red horizontal
line indicates the value of σ0 obtained by MD simulation
with the FS potential on the basis of the classical nucleation
theory (CNT) [17] and it represents the average value in
a temperature range. This value is slightly higher than the
original value because the liquid density was recalculated for
computing σ0 in this study. The estimated value of σ0 based
on the present approach becomes nearly constant after 80 ps
and its constant value is in good agreement with the data of
the previous MD simulation [17]. Although σ0, β0, and εk re-
ported in the previous study [17] are the average values in the
temperature ranges and thereby this testing is not rigorous, the
good agreement shown in Fig. 5(a) strongly indicates that the
present approach is feasible and accurate. Actually, as shown
later, σ0, β0, and εk estimated at this undercooling temperature
on the basis of the present approach are comparable to these
literature data [17]. In Fig. 5(b), the estimated value of εc

gradually decreases with time and it exhibits no significant
change in the late time period, approaching εc ≈ 8.6 × 10−3.
It is found that this value of εc does not depend significantly
on the values of the hyperparameters that we tested; hence, it
can be regarded as the estimated value. This result implies that
the anisotropy of the interfacial energy can be estimated in the
present approach, even though only a slight anisotropy in the
shape of a solid appears in the MD simulation adopted in this
study [Fig. 1(b)]. Furthermore, if one takes a different view
of Fig. 5, it demonstrates that the result of MD simulation

for the growth of a single solid [27] can be explained by the
Gibbs-Thomson relation described by Eq. (2) or (3) with the
interfacial parameters independently obtained from different
MD simulations, i.e., σ0 based on CNT analysis [17], β0

and εk based on analysis of the moving interface [17], and
εc ≈ 8.6 × 10−3 based on the EnKF.

Let us focus on the results of the simultaneous estima-
tion of all the interfacial parameters. Figures 6 and 7 show
examples of actual estimations of the four parameters with
MD data at �T = 200 K (uint = −0.15) and �T = 300 K
(uint = −0.23), respectively. The estimation conditions are
given as QR = 1, aR = 5, Qs = Qc = Qb = Qk = 0, σ0,max =
0.4 J/m2, εc,max = 0.04, β0,max = 0.01 s/m, and εk,max = 0.3
in the former case and QR = 10, aR = 10, Qσ = 1 × 10−4,
Qc = 1 × 10−6, Qβ = 1 × 10−5, Qk = 1 × 10−7, σ0,max =
0.6 J/m2, εc,max = 0.04, β0,max = 0.01 s/m, and εk,max = 0.1
in the latter case. The horizontal axis represents the time. The
circle represents the expectation value at each filtering step
and the hatched area indicates the range of standard deviation.
Note that all the parameters take nearly constant values in the
late stage (t >∼ 200 ps) in both cases. Hence, the estimated
values of the parameters are determined by averaging the
expectation values after 200 ps. The results shown in Figs. 6
and 7 demonstrate that all the interfacial parameters at a given
undercooling temperature can be simultaneously estimated
from a single MD simulation. We emphasize that these values
are not equilibrium values at Tm but the values at uint = −0.15
(Fig. 6) and uint = −0.23 (Fig. 7). Therefore, these values are
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FIG. 7. Example of simultaneous estimation of the four interfacial parameters on the basis of the EnKF with MD data at �T = 300 K
(uint = −0.23): (a) σ0, (b) εc, (c) β0, and (d) εk . The estimation condition was given as QR = 10, aR = 10, Qσ = 1 × 10−4, Qc = 1 × 10−6,
Qb = 1 × 10−5, Qk = 1 × 10−7, σ0,max = 0.6 J/m2, εc,max = 0.04, β0,max = 0.01 s/m, and εk,max = 0.1.

employed for the simulation of solidification microstructures
at these undercooling temperatures.

The estimation was carried out three times for each condi-
tion using different seeds of the noise terms. As described in
the preceding section, the accuracy of the results is evaluated
on the basis of Z given by Eq. (16). The actual estimation
was carried out for three values of QR, i.e., QR = 1, 4, and
10; then the five most accurate results for each value of QR

were selected from the results obtained for more than 100
different conditions. As the actual estimation was conducted
three times for each condition, a total of 45 estimated data
were averaged to obtain the final estimated value for each
value of uint.

C. Temperature dependence of interfacial parameters

Figure 8(a) shows the temperature dependence of σ0

estimated by the EnKF. The two blue symbols represent
the results of the present study. The green open rhombus
represents the experimental value of pure Fe [3]. The other
green symbols represent the literature data obtained from MD
simulations with different potentials for Fe on the basis of the
CFM, CT, or CNT [45,46]. These are plotted at Tm (uint = 0)
because the simulations are carried out at Tm or near Tm.
The dashed red line represents the result of MD simulation
with the FS potential on the basis of the CNT [17]. In the

(a)

(b)

FIG. 8. Temperature dependences of (a) the interfacial energy σ0

and (b) its anisotropy parameter εc.
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previous study [17], the critical radius was computed for
both a freestanding spherical crystal and a semispherical
crystal on a substrate in the undercooled melt. In this study,
these data are employed one by one to plot σ0 at different
temperatures. The open and closed red circles represent the
values calculated at each temperature for the former and latter
cases, respectively.

First, it is important to note that our result clearly shows
that σ0 decreases as the temperature increases, although there
are only two data points. The negative temperature depen-
dence can also be indicated by the closed red circles. Our
result at uint = −0.15 is fairly close to the values recalculated
from the literature data [17], while the value at uint = −0.23
is higher than the literature data [17]. The reason for this
difference is not clear. In this study, we have simplified the
value of uint as described in Sec. IV, which may reduce the
estimation accuracy. On the other hand, a large fluctuation at
the atomistic scale generally makes it difficult to precisely
measure the critical size of a solid in an undercooled melt
in MD simulation, which may cause some uncertainty in the
literature data [17].

As described in the Introduction, the temperature depen-
dence of σ0 has been explicitly or implicitly investigated in
theoretical and numerical works [6–9,14,18–21,47]. It was
found in all these works that σ0 increases as the temperature
increases in a relatively-low-temperature region. However,
there is a difference in the behavior near Tm. Some works
demonstrated the negative temperature dependence of σ0 near
Tm [20,21], while the other works showed the positive tem-
perature dependence even near Tm [6–9,14,18,19,47]. It is
not straightforward to clarify which dependence is correct by
examining the validity of assumptions and/or simplifications
made in the theoretical and numerical works one by one.
Experimental determination of σ0 has been conducted by
means of several techniques such as the maximum nucle-
ation undercooling (MU) technique [3], the dihedral angle,
the contact angle, and the grain boundary groove techniques
[4,48,49]. Although these techniques, except for the MU
technique, were employed to determine σ0 at Tm, the value
of σ0 derived from the MU technique represents the one at the
nucleation temperature that is far below Tm. The values of the
MU technique tend to be lower than the other experimental
data measured at Tm [14]. This trend is indicative of the
positive temperature dependence of σ0. However, it is not
clear whether this trend found at temperatures far below Tm

can be applied to the temperature range near Tm. In addition,
the effect of interface curvature on σ0 [50] and the possibility
of the appearance of the metastable phase(s) before crystal-
lization of the primary phase may cause uncertainty in σ0

derived from the nucleation undercooling experiment. The
same uncertainty may be considered in numerical works based
on the CNT [19]. In this respect, the recent approach based on
metadynamics MD simulation [26] is expected to provide the
reliable result for the temperature dependence of σ0 because
it enables the computation of σ for the planar solid-liquid
interface at T �= Tm without relying on the CNT and the phe-
nomenological assumptions. The metadynamics MD work for
the Lennard-Jones system showed that the behavior of σ with

T depends on the choice of reference state for computing the
solid-liquid interface. Importantly, regardless of the reference
states tested in the work, the negative temperature dependence
of σ was computed for the (111) plane [26]. This result is
consistent with our finding in this study. However, there are
only two data points in the present results and, moreover, we
have introduced the simplification of uint, which may cause
estimation error of σ0 in the present work. In this regard,
additional information is explained below.

In Fig. 3(b), uint approximately takes a constant value from
0 to about 300 ps and then it gradually decreases until about
550 ps. The estimation was accordingly conducted using the
data from 0 to 300 ps because our focus is on the steady-state
growth. In the preliminary investigation, on the other hand, we
tested the data assimilation using the data from 0 to 550 ps. In
such cases, the estimated value of σ0 gradually increases as
the time increases (i.e., as uint decreases) in the late stage of
the estimation. This behavior seems to be consistent with the
negative temperature dependence shown in Fig. 8(a). Further-
more, although the MD data only at �T = 200 and 300 K
have been employed in the actual estimation in this study,
the MD simulation was actually carried out at �T = 500 K
in Ref. [27]. The data at �T = 500 K are not utilized in this
study because uint continuously decreases with time and hence
the steady-state value of uint cannot be obtained. In the prelim-
inary investigation, however, the estimation was performed
using the data at �T = 500 K. In many cases for different
estimation conditions, σ0 gradually increases with the increase
in time (thus with the decrease in uint). Although the results in
the preliminary investigation are not the steady-state value and
more careful analysis is necessary, these results support our
finding. More detailed investigations are necessary to obtain
conclusive evidence about the temperature dependence of σ0,
which is left for future work. The estimation accuracy in the
present approach should be improved when the MD simula-
tion data best suited for the present purpose are used as the
observation data. For instance, one may expect more accurate
results when using MD simulation data for a growth process
in a larger system under completely isothermal conditions;
this is a topic for future work. Although there is room for
further investigation regarding the quantitative aspect, it is
important to note that both our results and the literature data
[17] demonstrate that dσ0/dT < 0, which is consistent with
previous theoretical studies [20,21] and numerical work [26].

Figure 8(b) shows the temperature dependence of εc. Our
results are represented by the two blue symbols, while the
literature data are represented by the green symbols. It is
shown that εc obviously depends on the temperature. More
specifically it decreases as the temperature increases. This
negative temperature dependence of εc is comparable to the
result of the phase-field crystal theory for a model alloy [12],
although the literature data are not free from the effects of
solute concentration.

The temperature dependences of β0 and εk are shown in
Figs. 9(a) and 9(b), respectively. In each figure, the blue
symbols represent the present results, while the green symbols
represent the literature data with different potentials for Fe.
The dashed red lines represent the results of MD with the FS
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(a)

(b)

FIG. 9. Temperature dependences of (a) the kinetic coefficient β0

and (b) its anisotropy parameter εk .

potential [17], which are averaged values over a wide temper-
ature range. Our result shows that β0 is nearly independent
of the temperature in this temperature range. Importantly, the
results are in good agreement with the data of Ref. [17], which
strongly support the accuracy of the present estimation. In
Fig. 9(b), εk increases with the temperature. The range of
variation of εk estimated in this study is consistent with the
result of the FS potential [17], which also supports the validity
of the present data.

In summary, the present investigation demonstrated that
dσ0/dT < 0, dεc/dT < 0, dβ0/dT 	 0, and dεk/dT > 0 in
the temperature range that we investigated. It is desirable to
reveal the underlying mechanism of these behaviors in order
to gain a deeper understanding of the interfacial properties.
Also, understanding the mechanism may facilitate develop-
ment of theoretical or numerical models for predicting the
temperature dependences of these parameters. Such models
can effectively be utilized for computing the interfacial pa-
rameters with high accuracy in combination with the present
approach. Therefore, it is important to reveal the underlying
mechanisms of the temperature dependences, even though it
is beyond the scope of this study.

VII. CONCLUSION

Understanding and controlling evolution processes of so-
lidification microstructures require the knowledge of solid-
liquid interfacial properties out of equilibrium. Here we
demonstrated an approach for computing the interfacial pa-
rameters out of equilibrium via MD simulation of microstruc-
tural processes. Since large fluctuations of the interface curva-
ture and velocity appear at the atomistic scale, which causes
high uncertainty in a simple parameter fitting, the results of
MD simulations should be regarded as stochastic data at the
microstructural level; thus, one needs a method for estimating
the parameters on the basis of stochastic variables. In this
study, we employed a data assimilation technique, namely,
an ensemble Kalman filter, which allows simultaneous es-
timation of all the interfacial parameters in pure Fe at a
given undercooling temperature from a single MD simulation.
This is a multiscale approach that combines state-of-the-art
techniques, data assimilation, large-scale MD, and phase-field
simulations.

We investigated the temperature dependence of the inter-
facial parameters in pure Fe. Our analysis demonstrated that
dσ0/dT < 0, dεc/dT < 0, dβ0/dT 	 0, and dεk/dT > 0
in the temperature range that we investigated. Although the
results of a previous MD simulation [27] were used as obser-
vation data in this study, it is important to find or develop MD
simulation conditions best suited for the parameter estimation
based on the EnKF to make the present approach more effi-
cient and more accurate. This is an important topic for future
work.

The rapid development of high-performance computing
techniques has made it possible to scale up MD simulation
to the level of small microstructures. Currently, the growth
process of a single solid in an undercooled melt of pure
material can readily be described by MD simulation at a
reasonable computational cost. Also, it is easy to obtain the
bulks’ quantities by means of MD simulations with high accu-
racy. Once a set of hyperparameters is determined, the present
approach enables simultaneous estimation of all interfacial
parameters for a material of interest from such MD data in an
automated manner. In particular, the single estimation of all
parameters takes less than 30 min with a single GPU (Tesla
P100) in the cases investigated in this study. Therefore, the
present approach is considered very effective in terms of the
computational cost as well as the applicability. We believe
that the present approach will contribute to the advancement
of our understanding of interfacial properties in a variety of
materials.
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