
Timing of Autonomous Driving Software: Problem
Analysis and Prospects for Future Solutions

Miguel Alcon∗,†, Hamid Tabani∗, Leonidas Kosmidis∗, Enrico Mezzetti∗, Jaume Abella∗, Francisco J. Cazorla∗
∗Barcelona Supercomputing Center (BSC)
†Universitat Politecnica de Catalunya

Abstract—The software used to implement advanced function-
alities in critical domains (e.g. autonomous operation) impairs
software timing. This is not only due to the complexity of the
underlying high-performance hardware deployed to provide the
required levels of computing performance, but also due to the
complexity, non-deterministic nature, and huge input space of
the artificial intelligence (AI) algorithms used. In this paper, we
focus on Apollo, an industrial-quality Autonomous Driving (AD)
software framework: we statistically characterize its observed
execution time variability and reason on the sources behind
it. We discuss the main challenges and limitations in finding
a satisfactory software timing analysis solution for Apollo and
also show the main traits for the acceptability of statistical
timing analysis techniques as a feasible path. While providing
a consolidated solution for the software timing analysis of Apollo
is a huge effort far beyond the scope of a single research paper,
our work aims to set the basis for future and more elaborated
techniques for the timing analysis of AD software.

I. INTRODUCTION AND MOTIVATION

The provision of increasingly advanced (and complex)
software functionalities, e.g. Autonomous Driving (AD), is
a key competitive advantage in every new product in the
critical embedded market attracting significant interest from
industry [41, 24, 56]. Supporting those advanced software
functionalities requires complex software frameworks capable
of performing real-time processing of a massive amount of
diverse data, consistently coming from a score of on-board
sensors, like cameras and LiDARs, just to mention a few.
Moreover, those data are inherently involved in the critical
AD decision-making process, from perception to planning, for
which advanced AI algorithms are sought [48, 45].

The effectiveness and scalability of traditional Verification
and Validation (V&V) approaches are threatened by the com-
plexity and unboundedness of the input and result spaces of
functionalities such as perception and tracking [55, 6]. The un-
tenable number of potential inputs from the operational envi-
ronment, and the non-deterministic nature of decision-making
algorithms, complicate the definition of worst-case scenarios
in both functional and non-functional dimensions [55]. As
a result, it is hard to define budgets for software timing,
relevant criteria for software timing V&V, and adequate testing
methodologies.

To illustrate AD software’s extremely variable timing be-
havior, Figure 1 shows boxplot diagrams of the observed
per-frame execution time variability (jitter) of each of the
modules of an AD framework, Apollo [1], when running
under a representative set of inputs on our GPU-based target

Fig. 1: Observed per-module execution time of Apollo

Fig. 2: Execution time (ms) analysis of two Apollo modules.

platform, see Section II-B. Boxplot diagrams show the median,
the quantiles, maximum, minimum values and outliers across
different executions. The observed jitter (max vs. min) is vast
across all modules, up to 21x (and 6.1x on average). To make
things worse, the execution times present arbitrary distribu-
tions that vary across modules. This is illustrated in Figure 2
that shows the histogram (bars) and the cumulative distribution
function or CDF (line) of observed execution times, required
to process each frame, for two software modules of Apollo.
The x-axis shows execution times (in milliseconds), the left
y-axis the frequency of occurrence for the histogram (for a
1,000 observations sample), and the right y-axis the fraction
of observations for the CDF.

The unconventional amount and distribution of execution
time values exhibited by Apollo modules is largely determined
by the inherent variability of the deployed algorithm, though
it is also caused by the complexity of the hardware platforms
necessary to sustain the performance and timing requirements
of the intended functionalities. Both hardware and functional
complexity result in scenarios not easily analysable with
prevailing software timing analysis methods [57]. This occurs
because such complexity undermines the accuracy and scala-
bility of static analyses and the significance of measurement-
based approaches [3].

In this line, contributing to the state of the art with an

1

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other Works. DOI: 10.1109/RTAS48715.2020.000-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/326218534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

efficient software timing solution for AD software frameworks
like Apollo is an overwhelming objective that will still require
long-term efforts by the community to be designed and devel-
oped. In this paper, we perform an analysis of the execution
time variability of Apollo when run on a GPU-based platform
and reason on the sources behind the observed variability. We
also present some directions in designing a software timing
solution for Apollo, and analyze the effectiveness of statistical-
based timing analysis approaches to address such timing
variability, together with their application to Apollo’s software
running on a high-performance platform. These contributions
are meant to offer a solid baseline for future works to master
Apollo’s execution time variability.

Analysis. We make an in-depth analysis of the jitter exhib-
ited by Apollo [1] when run on a GPU-based high-end system.
We focus on the jitter in per-frame processing time of each
Apollo’s module. To our knowledge, this is the first attempt
to apply timing analysis to Apollo or to any AD software
framework of such scale and complexity. Our results show
that the observed variability is huge and also intrinsic across
modules from perception to planning. For the YOLO-based
object detection [51] module, on which we performed a deeper
analysis, our results show that observed jitter does not only
happen at the end-to-end module level but also at the main
stage (i.e. functions) level of the module.

Reasoning. We analyze some of the sources of non-
determinism of Apollo with emphasis on Apollo’s built-in
randomization features. We analyze an example function in
Apollo, RANSAC, that instantiates specific randomization
features. We show that RANSAC, in fact, combines de-
terministic input parameters and randomized input values,
generated within the function itself. The observed variability
in RANSAC’s execution time caused by each of these factors
is on average 241x and 80x, respectively. Instead, the inherent
variability of the platform, e.g., due to hardware and software
initial state, is significantly lower, nearly 5% on average.

Prospects. We focus on the analysability of Apollo as a
representative example of a class of AD software frameworks.
We highlight how its software characteristics, in combination
with the complex hardware platform (required to sustain the
framework performance requirements), are not comparable
with conventional embedded critical systems. In particular,
we discuss how randomness, huge input space, and execution
scenarios make it difficult apply established timing analysis
approaches [57, 58, 52, 3].

Statistical support. Recent statistical approaches to timing
analysis [14, 20, 35, 9] seem to offer a promising alternative
to conventional deterministic techniques, when coping with
the inherently huge variability and non-determinism of AD
solutions, as those deployed in the Apollo framework. The
timing behavior of AD systems is better described by an
execution time distribution rather than a single value. The
intuition behind the application of probabilistic techniques in
the analysis of Apollo timing builds on considering the timing
behavior of a program as the outcome of a random variable, so
that it can be reasoned in terms of probability of occurrence.

Fig. 3: Apollo AD system pipeline. Dots indicate the instru-
mentation points we use for extract timing behavior.

In this line, we discuss the scope of applicability of statistical
approaches by considering their requirements and inherent
limitations. In particular, we focus on a specific incarnation of
Measurement-Based Probabilistic Timing Analysis (MBPTA)
based on Extreme Value Theory (EVT) [18] and review its
preconditions for applicability. MBPTA cannot be directly
applied or cannot deliver reliable results whenever: (i) the
inputs and execution conditions under which execution time
observations are collected are not representative, or upper-
bound those that can arise during operation time; and (ii) input
samples (observations) do not comply with required statistical
properties, such as, for example, independence and identical
distribution (i.i.d).

In the scope of this work, we argue that those properties are
either naturally met by Apollo when executing in our target
platforms or need to be enforced at the level of the overall
test-design strategy for the functional behavior. We also show
that probabilistic timing analysis can accurately upper-bound
the observed execution time distributions of Apollo industrial
software when run on a real platform.

The rest of the paper is organized as follows: Section II
introduces Apollo and our experimental framework. Section III
presents the outcome of our analysis of the variability exhib-
ited by Apollo. Section IV analyzes some of Apollo’s sources
of non-determinism behind the observed variability and also
discusses how they impair software timing analysis. Section V
discusses the application of a specific statistical technique for
Apollo timing analysis. Section VI summarizes the related
works. Section VII presents the main conclusions of our work.

II. APOLLO AND OUR EXPERIMENTAL SETUP

A. Apollo AD Framework

Apollo [1] is an industrial-quality AD software framework
with over 110 industrial partners, most of them top-tier AI
companies and car manufacturers. Apollo has been already
deployed on a variety of prototype vehicles (including au-
tonomous trucks) and supports state-of-the-art hardware such
as the latest LiDARs and cameras, from Velodyne and other
vendors, as well as GPU acceleration.

Apollo is structured as a set of processes that are meant
to execute on a recurring basis. The execution model is
organized into stages where each stage is allocated to a specific
functional step in each module. Figure 3 presents the main
software modules in Apollo:

2

• Perception identifies the area surrounding the au-
tonomous vehicle by detecting objects, obstacles, and,
traffic signs. It is considered as the most critical and
complex module of an AD system. It fuses the output
of several types of sensors such as LiDAR, radar, and
camera to improve its accuracy.

• Localization estimates where the autonomous vehicle is
located using various information sources such as GPS,
LiDAR and IMU. State-of-the-art localization algorithms,
including the one in Apollo, are capable of localizing the
position of the vehicle at centimeter-level accuracy.

• Prediction anticipates the future motion trajectories of
the perceived obstacles.

• Planning plans the spatio-temporal trajectory for the
autonomous vehicle to take.

• Control executes the planned spatio-temporal trajectory
by generating control commands such as acceleration,
braking, and steering.

• CanBus is the interface that passes control commands to
the vehicle hardware. It also passes chassis information
to the software system.

• Map acts like a library. Instead of publishing/subscribing
messages, it works as a query engine support that pro-
vides ad-hoc structured information regarding the roads.

One of the key components of the AD framework is the
perception module, given (i) its complexity, instrumental to
deal with inputs from various components (e.g., video cameras,
short- and long-range radars and laser sensors), and (ii) its long
execution time that represents a large fraction of the overall
execution time of the AD framework. For this reason, we focus
on this module to perform the stage-level analysis.

Apollo uses a variant of YOLO [51] for camera-based object
detection, as the main part of the perception module. YOLO
(You Only Look Once) is an award-winning, widely-used
object detection system. Its most computationally-intensive
function is a Convolutional Neural Network inference algo-
rithm. The main stages of the YOLO object detection module
are shown in Figure 3 as camera macro-stages. Every second,
each camera captures multiple frames, and the object detector
processes them on a frame-by-frame basis.

• For every frame the detector first loads the frame (in an
appropriate format) into the main memory.

• Then, all the data is moved to the GPU memory (host-
to-device transfer).

• Once the data is stored in the GPU memory, GPU kernels
are launched to perform the neural network evaluation.

• The result of the operations is transferred back to the
main memory (device-to-host transfer).

• As the last step, some post-processing operations are per-
formed to finalize and publish the result of the detection.

Note that camera-based object detection is part of the
perception module, which is fused with the LiDAR-based
object detection and Radar processes.

B. Experimental Platform

We run Apollo on an x86 platform using 8 AMD Ryzen 7
1800X CPU cores and 64 GB of DDR4 RAM at 2133 MHz.
In order to satisfy the computational needs of Apollo, our
platform is equipped with a Pascal-based high-end GPU (the
NVIDIA GeForce 1080 Ti with 3584 CUDA cores). While
drastically different from traditional automotive architectures
such as the AURIX TriCore, the selected target platform
resembles state-of-the-art automotive Systems on Chip (SoCs)
targeting the automotive AD market. For example, the two
variants of the NVIDIA Drive PX2 platform, AutoCruise and
AutoChauffeur, have similar CPU and GPU configurations.
The former comprises a single Tegra X2 SoC, which contains
4 ARM Cortex-A57 and 2 Denver cores, combined with an
integrated Pascal GPU. The latter contains two Tegra X2
SoCs and 2 discrete Pascal-based GPUs. Moreover, the ARM
A57 CPUs used in these platforms exhibit similar hardware
complexity as that of the x86 cores in our platform, since
both are superscalar, out-of-order CPUs, with several levels
of cache. Note that the GPU in the automotive platforms is
integrated, i.e. both devices share the same memory, whereas
our GPU is discrete, thus requiring data transfers. However, we
have verified that data transfers account for less than 1% of the
total execution time of Apollo. Therefore, the multiprocessing
capabilities in the CPU side and the GPU architecture of our
platform are representative of the automotive domain.

Due to the software dependencies of Apollo, the framework
is executed on a Linux environment and it is built on top of
ROS (Robotic Operating System) [50]. In order to minimize
the jitter stemming from outside of the application, i.e. from
the operating system or hardware behavior, we follow standard
guidelines for real-time execution under Linux. In particular,
we minimize the running services of the system to the bare
minimum, stopping services such as mail services or the
window manager. In addition, we assign real-time priorities
from the Linux kernel to all scheduled tasks under analysis. We
have further pinned tasks on specific cores in order to prevent
costly task migration and remap all interrupts to a separate core
not assigned to any real-time task. As we discuss in Section IV,
this execution configuration results in a relatively low platform
jitter, and it is the same configuration used for both measuring
the platform variability and running Apollo.

C. Instrumentation Details

For time measurements, we used instrumentation points
at module and stage boundaries, at the granularity shown
in Figure 3. For modules using the CPU only, we use
the high_resolution_clock of C++, which provides a
high-resolution time counter. On the stages that use the GPU,
such as camera-based and LiDAR-based object detection in
Perception, we use NVIDIA CUDA events, which provide
a reliable, high-resolution time counter for GPU tasks. This
measurement method can account for the fact that GPU
tasks are asynchronous to the CPU side without affecting the
performance and timing of the software under analysis, which
is not possible with regular CPU time counters. CPU counters

3

(a) Perception (b) Prediction

(c) Localization (d) Map

(e) Planning (f) Control

(g) CanBus

Fig. 4: Distribution of execution times (ms) of each module.

cannot be used for measuring the execution time of GPU tasks,
because when a GPU task is called, the execution returns
back to the CPU immediately, while the GPU executes the
task in parallel. Hence, our instrumentation for obtaining time
measurements can be regarded as having low overhead.

III. ANALYZING APOLLO’S EXECUTION TIME JITTER

Next we report the main statistical properties of the ob-
served execution time distributions. The main conclusions in
this section are later used in Section V. We perform our
analysis at module level except for the Perception module,
where we perform a more detailed analysis at the stage level.

A. Module level analysis

We measure execution times at frame-level and capture
the resulting distribution for each of the modules when they
process real tracing data collected by autonomous car sensors.

Figure 4 shows the observed execution time histogram and
CDF of each Apollo module as described in the introduction
for Figure 2. As it can be seen, jitter distributions have
different shape and dispersion, hampering their analysis. This
phenomenon is quantified in the Table I that shows different
measures of dispersion that allow us analyzing and comparing
the distributions. It shows:
• (1) Minimum and (5) maximum values observed in the

execution time sample.

TABLE I: Measures of dispersion for Apollo modules. Values
in the first 5 rows are in milliseconds.

Per Pred Loc Map Plan Con CAN
(1) Min 30.2 16.8 4.4 98.2 175.5 6.6 6.2
(2) Q1 53.0 56.4 9.2 99.1 196.1 8.6 8.2
(3) Q2 78.6 84.0 9.9 99.8 202.3 10.4 10.1
(4) Q3 120.8 140.5 10.5 100.5 208.8 12.2 12.0
(5) Max 359.2 356.6 14.1 101.2 250.4 14.3 13.9
(6) CV 0.69 0.69 0.15 0.01 0.05 0.21 0.22
(7)IQRn 0.86 1.00 0.13 0.01 0.06 0.35 0.38
(8) Kurt 1.65 0.59 2.31 -1.13 1.22 -1.16 -1.19
(9) Var 11.9 21.2 3.5 1.03 1.4 2.1 2.2

• (2) Quantiles Q1, (3) Q2 and (4) Q3. Quantiles are cut points
dividing the range of a probability distribution into intervals:
Q1 (25% below and 75% above), Q2 (50% below and 50%
above), and Q3 (75% below and 25% above).

• (6) The estimated coefficient of variation CV that provides
the ratio between standard deviation (σ) and the mean (µ) of
the sample. Thus, values close to 0 indicate that the standard
deviation is very low in relative terms, whereas high values
(e.g., above 0.5) indicate high variability.

• (7) The Inter-Quantile Range normalized (IQRn) that pro-
vides similar relative information since IQRn = (Q3 −
Q1)/µ, but focusing only on the central 50% of the values.

• (8) The excess kurtosis (Kurt) that provides information on
whether tail values (those below µ−σ and above µ+σ) are
abundant and distant from the mean: Kurt < 0 indicates
that tail values are less significant than in a Gaussian
distribution, thus closer to the mean and/or less frequent;
and Kurt > 0 that outliers are abundant and/or distant from
the mean. For instance, Kurt = −1.2 suggests a uniform
distribution since tails are bounded.

• And (9) the variation between the max. and min. values.
Based on Table I, we derive the following conclusions:
1) The observed variability (Var) between the minimum and

maximum recorded execution times is high (up to 21x for
Prediction), above 2x for 5 out of 7 modules, and low only
for the Map module. Moreover, Q3 is 2x higher than Q1
for the 2 modules with the highest maximum execution
time (Perception & Prediction).

2) The CV is low only for 2 modules (Map and Planning),
moderate for 3, and very high for 2 (Perception and
Prediction). For the latter modules, a high CV indicates
that values are highly spread, both central and tail values.

3) IQRn shows that the dispersion of the central values is
huge for two modules (0.8-1.0) and moderate for another
2 (around 0.35), thus indicating that dispersion is relevant
even for the central part of the distribution.

4) Kurt is high for 4 modules. While this is irrelevant for
Localization, since values are relatively low, it is quite
relevant for Perception, Prediction, and Planning, whose
dispersion and execution time are high. High Kurt for
those modules indicates that extreme values are abundant or
significant. By analyzing minimum and maximum values,
we see that those values are far beyond Q1 and Q3, so that
we can expect gentle slopes in their tails.

4

(a) Loading (b) H2D

(c) GPUkernel (d) D2H

(e) PosPro

Fig. 5: Execution time (ms) distribution of YOLO stages.

B. Stage level analysis

We extend our jitter analysis at the stage level for the
Perception module, as representative of the complexity of
AD software. Our goal is analyzing whether large jitter is
caused by just few stages while the others are exhibiting
a much narrower jitter distributions – so statistical analysis
is required only for those few stages, whereas conventional
timing analysis techniques can be used for the rest. In this
experiment, we profile the per-frame processing time of each
stage in the Perception (YOLO).

As it can be seen in Figure 5 and Table II, all stages
follow the observed trend at the module level as they exhibit
significant jitter and have arbitrarily different distributions:
1) Loading, Host-to-Device (H2D), and Device-to-Host

(D2H) stages have very low execution times in relative
terms, so even if dispersion is very high for some of them,
this is irrelevant in practice.

2) GPU kernels show tiny dispersion in the central part
(IQRn = 0.02), but very large relative dispersion in the
tails (Kurt = 2.09). While the maximum is far away from
the central part of the distribution in relative terms, it is
close in absolute terms (11% higher than the median), so
dispersion in absolute terms is low.

3) Post-processing (PosPro) has moderately high dispersion
in both, the central part of the distribution and the tails.
Hence, a gentle slope is expected for its upper tail.

Figure 3 shows that the perception module consists of 4
main submodules, being Object Detection for the camera just
one of them. The others are Object Detection and tracking
for LiDAR, sensor fusion and radar. Hence, camera object
detection execution time, see Figure 5 and Table II, is lower
than the overall perception execution time.

TABLE II: Measures of dispersion (YOLO stages). Values in
the first 5 rows are in milliseconds.

Loading H2D GPU D2H PPro
(1) Min 0.01 0.68 39.02 0.94 5.33
(2) Q1 0.03 0.99 40.61 0.94 6.77
(3) Q2 0.04 1.06 40.86 0.94 7.24
(4) Q3 0.04 1.13 41.60 0.94 7.92
(5) Max 0.16 1.64 45.25 1.13 12.70
(6) CV 0.14 0.09 0.03 0.01 0.11
(7)IQRn 0.14 0.13 0.02 0.00 0.16
(8) Kurt 113.2 0.01 2.09 147.8 0.38
(9) Var 16 2.4 1.2 1.2 2.4

C. Summary

Effectively deriving timing bounds requires methods to
model highly variable execution times. Those methods must
not impose constraints on the distribution since the observed
jitter distributions present arbitrary shape and dispersion.

IV. SOURCES OF EXECUTION TIME VARIABILITY AND
IMPACT SOFTWARE TIMING

A. Reasoning on Apollo’s variability

Several well-known sources of execution time variability
exist in modern critical embedded systems. We categorize
them as follows.

Platform. At hardware level, they relate to the use of
complex heterogeneous high-performance platforms based on
GPUs or FPGAs, e.g., the NVIDIA Drive PX2 platform or the
Intel GO platform. Complex System-on-Chip might make exe-
cution time to vary due to their initial state dependence, which
is hard to control. At software level, low-level drivers (e.g.,
CUDA driver) and the operating system (e.g., memory location
of the actual buffers used for inter-thread communication),
can also keep some internal state, thus affecting execution
time [13] (more details on our hardware/software configuration
are shown in Section II-B). Also, the execution of each
function in Apollo modules can take a variable execution time,
causing variation in the way modules overlap in time. The net
result is that the set of instructions of each module that overlap
in time and compete for resource varies across frames.

Randomization and non-determinism are inherent traits
of several machine learning based state-of-the-art AD algo-
rithms, which differentiates them from conventional software
solutions [16, 1, 11, 17, 49]. In fact, non-determinism is
necessary for the AD functionality to take rapid and effi-
cient decisions. For example, randomized path planners are a
common approach to cope with the complexity of exhaustive,
deterministic path planning [22]. Randomization is also used
in the Probabilistic Roadmap Method (PRM) and Rapidly-
exploring Random Trees (RRT), where random selection of
configurations is a core step in the rapid generation of planning
solutions [22]. Also in perception, either model- or graph-
based segmentation algorithms usually incorporate randomiza-
tion elements [47]: a clear example of the former is RANSAC
(Random Sample Consensus); when it comes to the latter, two

5

1 RANSAC (Input: Vector V of vectors of size 2, integers maxIters and N,
2 float inlierThresh,
3 Output: vector C of size 4)
4 Let n = size(V), q1 = bn/4c, q2 = bn/2c and q3 = b3 · n/4c
5 If n < N then throw an error and return False
6 For j = 1, 2, ...,maxIters do
7 Generate randomly r1, r2, r3, between 0 and 231 − 1
8 Let x1 = r1 (mod q2), x2 = q2 + r1 (mod q1), x3 = q3 + r1 (mod q1)
9 Initialize matrices A and B as follows:

10

A =


V [x1, 0] · V [x1, 0] V [x1, 0] 1

V [x2, 0] · V [x2, 0] V [x2, 0] 1

V [x3, 0] · V [x3, 0] V [x3, 0] 1

 ,

B =
[
V [x1, 1] V [x2, 1] V [x3, 1]

]
11
12 Let vector c = findSolution(c, colPivHouseholderQr(A) · c = B),
13 Inliers = 0, res = 0 and y = 0
14 For i = 1, 2, ..., n do
15 y = V [i, 0]2 · c[0] + V [i, 0] · V [i, 0] · c[1] + c[2]
16 If |y − V [i, 1]| ≤ inlierThresh then ++Inliers
17 res += |y − V [i, 1]|
18 If Inliers > maxInliers or (Inliers = maxInliers and res < minRes) then
19 C[3] = 0, C[2] = c[0], C[1] = c[1], C[0] = c[2],
20 maxInliers = Inliers, minRes = res
21 If Inliers > n·earlyStopRatio then break
22 If maxInliers/n < goodLaneRatio then return False
23 Else T = V
24 V = clear(V)
25 For i = 1, 2, ..., n do
26 y = T [i, 0]2 · C[2] + T [i, 0] · C[1] + C[0]
27 If |y − T [i, 1| ≥ inlierThresh then V = V ∪ {T [i]}
28 Return True

1

Fig. 6: RANSAC fitting algorithm in Apollo’s lane detection.

illustrative examples are CRF (Conditional Random Field) and
MRF (Markov Random Field).

As a concrete example, Figure 6 shows a variant of
RANSAC fitting algorithm as it is implemented in Apollo’s
lane detection module. As it can be seen, the function, in line
7, generates three random values r1, r2, and r3 which are then
used to produce values x1, x2, and x3 respectively in line
8. Based on these randomly generated values, the function
initializes two matrices A and B in lines 10 and 11. These
matrices are then used in findSolution function, line 11, in
which a mathematical equation is solved to obtain another
vector c. Note that the randomly generated values have a
cascade effect on the flow of the function and, in fact, we
have observed that depending on the values of these matrices
during the initialization phase, the main loop, lines 6 to 27,
can iterate for a different number of times.

Impact of input data on timing and timing variability.
In order to analyze the impact of input data on timing
variability, we focus on a controlled scenario in which we
can reason on the variability caused by input data (both
random and deterministic) and the platform related variability.
Note that Apollo’s modules have more than 130,000 lines
of code, and 6,200 functions with intricate dependences and
high cyclomatic complexity [55]. Furthermore, these functions
are event-triggered by events arriving from the sensors at
different frequencies. This makes the analysis of Apollo inputs
overwhelmingly complex.

In particular, we focus on the RANSAC algorithm intro-
duced in Figure 6 as it combines four deterministic input
parameters and three randomized inputs . The input parameters

Fig. 7: Execution time variability of RANSAC

are a vector of matrices (V), an integer value showing the
maximum number of iterations (maxIters), another integer
value (N) describing the minimum number of data points
required to estimate model parameters, and a floating-point
value (inlierThresh) to determine data points that are
fit well by the model. The 3 random inputs are r1, r2, and
r3. As part of Apollo, RANSAC is called 2,002 times each
with a different set of values for the input parameters (V,
maxIters, N, inlierThresh). In each call and iteration
of RANSAC’s main loop, random values are generated for r1,
r2 and r3. We have measured that the loop iterates at most
200 times. It is also worth noticing, that r1, r2, and r3 have no
dependence with the input parameters, i.e., they are generated
randomly with the generation process and not influenced by
the particular input parameters given to RANSAC. As an
output, RANSAC produces the Matrix C and true/false.

From the execution of RANSAC as part of Apollo
(RANSAC-native) we collect 2,002 sets of input parameters –
one per invocation of RANSAC. We also collect several sets
of random values corresponding to the values of r1, r2, and
r3 as part of several invocations to RANSAC. We use those
values to feed a standalone version of RANSAC (RANSAC-
standalone) under the following scenarios to capture the effect
of input data: (DEF) same inputs data as RANSAC-native,
both input parameters and random values; (FRAND) same
input parameters as in RANSAC-native and fixed randomly
generated values inside the function; (FPARS) same random
values as in RANSAC-native, and fixed input parameters; and
(FBOTH) that fixes both input parameters and random inputs.

We first compare RANSAC-native and RANSAC-
standalone under the DEF scenario. Our results show that
both produce the same outputs in terms of C and true/false.
In terms of execution time, Figure 7 shows the variability in
each of the scenarios. For FBOTH the left chart shows that
the variability across runs under the same parameters and
random inputs, i.e. due to the platform, is 5% on average
(up to 1.26x). Under FRAND the variability caused by the
input parameters (middle chart) is much higher ranging from
200x to 300x, with 214x on average. Finally, under FPARS
the variability due to random values (right chart), is quite
high ranging from 77x to 99x (79.9x on average) as well,
though smaller than that due to input parameters. Overall,
these results evidence the huge variability caused by random
and deterministic input values, with reduced effect coming
from the platform.

6

B. Approaching AD Software Timing

Static analysis approaches, while continuing to be an appro-
priate choice for the analysis of simpler, more predictable sys-
tems, can neither effectively model the increasingly complex
hardware, nor deal with the structural and syntactical charac-
teristics of exceptionally complex software functionalities [57,
3, 58, 52]. On the modeling side, building an accurate and
reliable hardware model of modern heterogeneous platforms is
rapidly becoming an untenable task, owing to their significant
complexity and, often, by the non-disclosure of fundamental
information [3, 52]. From an analytical perspective, instead,
the typical program structure and code constructs found in
complex AD functionalities pose a challenge, when not an
impediment, to the various analysis steps in static timing
analysis. In fact, the use of dynamic references (pointers),
recursion, and unboundable loops, in combination with the
intrinsic nature and (random) logic of typical AD advanced
functionalities, often prevents the analysis from computing
an absolute, realistic worst-case path [3, 33]. To overcome
these limitations, static analysis approaches have typically
indulged into conservative models and analysis assumptions
that inevitably lead to overly pessimistic results.

Equally critical (and partially overlapping) issues also arise
for industrially-established measurement-based timing analysis
approaches [57], which cannot be straightforwardly applied to
capture the entangled interactions between complex hardware
and software functionalities. The behavior of AD software
typically builds on deep, counter-intuitive, or even random
input-output relations, that cannot be easily reconstructed. As
a result, identifying (a priori) and triggering specific execution
paths (typically among a huge number) or even fulfilling
well-known code coverage requirements, such as Modified
Condition/Decision Coverage (MCDC), becomes a cumber-
some task [3, 57]. This scenario exacerbates the inherent
shortcoming of conventional measurement-based approaches:
the collected observations can only realistically be a small
subset of the countless scenarios that can potentially happen
due to the combination of software and hardware conditions,
with the result of diminishing their predictive value [3].
Apollo modules exhibit extremely high cyclomatic complexity
(number of linearly independent paths within a region of code),
with several functions showing a cyclomatic complexity above
50, which is strongly discouraged [38], and ultimately does not
allow to reach a satisfactory level of path coverage [7].

The orthogonal dimension of parallel execution also brings
its own challenges to both static and measurement-based ap-
proaches. Bounding the timing interference potentially arising
between, for example, Apollo modules due to contending
accesses to shared resources is particularly challenging. The
contention impact incurred by a module activation depends
on the number and timing of requests sent by each module
in the system to the shared hardware resources, which in turn
depends on the particular traversed path as determined by the
modules’ input and sometimes potentially non-deterministic
(random) algorithms. Static analysis, which normally handles

multicore interference as an additive factor to be added to
timing analysis results obtained in isolation [19, 15], generally
fails to deliver sufficiently tight results. Dynamic approaches,
instead, try to design specific tests to trigger the worst-case
contention scenario [10], which is generally out of reach.

Representative Testing. In our view, the most feasible
approach to follow for software timing budgeting and ver-
ification is that used for the verification of the software and
hardware functional behavior in critical domains like avionics,
where it is accepted that system complexity (hardware and
software) makes it infeasible to scientifically prove the func-
tional correctness of software or hardware and exhaustively
test all possible conditions and scenarios [53]. On this account,
full-path coverage is not required, as practically infeasible to
achieve. Instead, a well-defined software-validation process,
supported by the use of independent development and verifica-
tion teams [53], is regarded as mandatory, with increasing rigor
depending on the target DAL (Design Assurance Level)/ASIL
(Automotive Safety Integrity Level).

The cornerstone of this approach [53] is representative
testing, which applies to both functional and non-functional
properties like software timing. In practice, the evaluated
scenarios should account for sensitive algorithm characteristics
– w.r.t. timing in our case – so that they have statistical rel-
evance. How to achieve such representative testing is already
addressed in the reference safety standard for AD systems,
ISO21448 [30], which focuses on the safety of the intended
functionality (SOTIF) and explicitly includes those functions
that use machine learning algorithms, thus complementing
the more general ISO26262. In particular, apart from sensor
and actuator testing, SOTIF (section 10) states explicitly that
“relevant use cases and scenarios” for the algorithm as
well as those inputs that may trigger potentially hazardous
behavior must be tested. Also, as part of the integration of the
system, tests must include different environmental conditions
(e.g., different visibility conditions). SOTIF also provides an
annex describing the type of testing needed for perception
systems, detailing that representative testing must include, not
only usual driving conditions, but also “conditions which are
normally rare and less represented in normal driving but that
might impact perception”, “uncommon scenarios that might
increase the likelihood of a safety violation” and additional
tests “based on system limitations”.

Randomization impacts dynamic scenario-oriented software
functional testing, the reference solution in the automotive
domain [43, 30]. First, it complicates the definition of worst-
case scenarios since the development and testing teams remain
as the ultimate responsible for guaranteeing the coverage of
relevant scenarios. And second, randomization also clouds the
definition of what should be the correct result of a particular
function. In fact, probabilistic indicators are generally accepted
as a means to express a more fluid concept of correctness,
better matching the outcomes of AD algorithms (e.g., object
detection). In fact, outcomes are typically attached some de-
gree of accuracy [46]. Interestingly, statistical and probabilistic
concepts are not new to the analysis approach in automotive.

7

In fact, they are already accepted as part of automotive
system analysis since, for instance, hardware failure rates
and coverage are represented (and operated) with probabilities
and percentages in the reference standard ISO26262 Part
5 [29]. Also, the recently issued SOTIF standard explicitly
acknowledges the use of randomized test cases and random
input data as a means to evaluate the residual risk for safety-
critical systems in the automotive domain [30].

In the context of software timing, while not yet adopted
by the automotive industry, a probabilistic treatment of the
residual risk of software faults has already been shown to
be compatible with ISO26262 [5]. Certification arguments
to fit probabilistic reasoning in current standards have been
already explored in the literature [54], showing that MBPTA
can provide quantitative means to upper-bound the residual
risk existing in any verification process of the timing of critical
functions. In the specific context of AD systems, as discussed
before, randomness is intrinsic to the delivered functionalities
as they often build upon machine learning using random
exploration techniques for efficiency purposes. This is, for
instance, the case of Apollo. Therefore, any approach deployed
for the timing analysis of this type of systems needs to account
for some degree of randomness in the system timing behavior.
Our view is that, in line with authors in [5], probabilistic
reasoning can be considered an appropriate choice to model
high execution times when their variability is, at least partly,
caused by random events or choices.

V. ON THE USAGE OF STATISTICAL ANALYSIS TO MASTER
APOLLO’S EXECUTION TIME VARIABILITY

As for hardware failure rates and software functional behav-
ior verification, statistical and probabilistic approaches [14, 20]
are promising solutions also for the characterization of the
timing behavior of this type of complex AD systems. Non-
determinism caused by randomness makes such systems to
exhibit a highly variable timing behavior where the worst-
case execution scenarios are more accurately modeled as a
distribution rather than an absolute value.

Statistical inference methods generally build on (simplify-
ing) assumptions on the target population they are meant to
model. A common assumption is that inference is made from
a random sample of the population. However, guaranteeing
the availability of a random sample of the relevant data is not
always feasible [28]. This is the case, for example, of statis-
tical inference on the timing behavior of embedded software
systems, as the relevant population (execution times during
operation) is simply unknown and unavailable at analysis
time, where the inference reasoning is applied. Therefore, the
inference data cannot be guaranteed to be a random sample
of the target population.

For these reasons, a fundamental prerequisite in statistical
timing analysis techniques is that the execution time distri-
bution at analysis time matches or upper-bounds that during
operation. This property is often referred to as representative-
ness [40, 25, 26] and is typically guaranteed by both, enforcing
worst-case scenarios at analysis time and by exercising all the

Fig. 8: Main steps in MBPTA-CV application.

relevant program inputs. As discussed before, this latter aspect
is clearly affected by the introduction of randomization in the
functional behavior of the software under analysis. In the case
of Apollo, the inference data is predetermined by the input
data set provided by the Apollo consortium itself.

A. Statistical and probabilistic approaches for timing analysis

We explore the use of EVT [18] for timing prediction as a
representative of state-of-the-art statistical analyses. EVT has
been shown suitable to model extreme events of processes in
different domains (e.g., hydrology, stock market) making no
assumption on the distribution of the random variable or its
tail. The latter aspect fits particularly well the characteristics of
Apollo (see Section III-A). There are, however, some inherent
constraints to the applicability of EVT for timing analysis.
EVT requires the input sample of observations of the process
under study to be independent and identically distributed
(i.i.d.) so that they can be directly processed by EVT. This
is assessed statistically with appropriate tests for the input
sample as a means to verify that the statistical properties of
the sample match those of the process being modelled. Also,
processes with dependencies across measurements may also
be processed taking some cautionary measures (we refer the
interested reader to other works for further details [14]). EVT
fits the parameters of the distribution, either a Generalized
Extreme Value (GEV) distribution or a Generalized Pareto
Distribution (GPD) to the maxima (or minima) of the data
sample to model the corresponding tail of the distribution.
In EVT, the shape parameter is particularly relevant since it
determines the rate at which the tail falls. Heavy tails (ξ > 0)
are appropriate for unbounded distributions, whereas light tails
(ξ < 0) are appropriate for bounded distributions. The limit
distribution (ξ = 0) is an exponential tail.

Moreover, a sensible application of EVT requires the ca-
pability of relating measurements captured from the system
at analysis time to the execution times that will occur during
operation, which is typically referred to as representativeness
problem [14, 40, 25, 26]. Guaranteeing representativeness
relates to the coverage problem in measurement-based ap-
proaches. Some authors propose the use of specific hardware
and/or software support to ease this task (i.e. by forcing
execution time jitter to exhibit a purely random nature) [34].
The representativeness argument is a usual limitation of all
measurement-based approaches, including probabilistic ones.
In the case of AD frameworks in general and Apollo in
particular, representative test cases are needed to train the
neural networks used by the framework. We build the rep-

8

Fig. 9: CV-plots for the different Apollo modules (CV estimator value in the y-axis and excluded maxima in the x-axis).

resentativeness argument on those test cases used to train the
neural networks, which we regard as representative in terms of
both path coverage and path frequency, so that measurements
from all paths can be used in a single sample for MBPTA [40].

B. MBPTA-CV

In this work, we use a specific MBPTA technique referred to
as MBPTA-CV [4] (its code is available in [31]) that builds on
EVT to upper-bound execution time probabilities for probabil-
ity ranges beyond what has been observed. MBPTA-CV deliv-
ers an exceedance probability function that can be instantiated
to derive pairs <execution time, exceedance probability>,
so that we can obtain an exceedance probability that upper-
bounds the exceedance probability for that execution time –
which indeed can be zero. MBPTA-CV does not make any
specific assumption on the input data provided: it is up to
the user providing representative input data so that WCET
estimates can be related to the target system behavior.

MBPTA-CV operates following the steps shown in Figure 8:

1) Sample collection: MBPTA-CV fits an exponential distri-
bution to predict high execution times using at least 50
values. Hence, MBPTA-CV needs a sample of at least
100 execution time measurements since only half (the
highest) values are considered for probabilistic Worst-
Case Execution Time (pWCET) estimation, regarding the
lowest values as not suitable to predict high execution
times by definition.

2) i.i.d. properties: MBPTA-CV builds on an input sample
where execution time observations are i.i.d., or at least
the set of (high) values used for prediction is i.i.d.
These properties are assessed with appropriate statistical
tests [23][4]. When any of the tests is failed, the input
sample size is increased by 50 measurements until the test
is passed, which necessarily occurs with at most few it-
erations for i.i.d. distributions. If the sampled distribution
does not meet i.i.d. properties, this step will not converge
and, after a number of iterations, the process must be
aborted. This would mean that MBPTA-CV cannot be
applied to model the observed distribution.

3) Exponential properties: MBPTA-CV uses exponential tail
distributions for pWCET estimation, as they are neces-
sarily reliable upper-bounds to the tail distribution. In
particular, it has been shown that processes with a finite
maximum can be modelled with light tails (i.e. approach-
ing asymptotically a maximum value), and reliably upper-
bounded with exponential distributions, which are their
limit distribution as explained before [4]. While this holds
by construction for real-time programs – thus with finite
execution time – it still needs to be conveniently tested on
the input sample, since random samples may not match
the properties of the distribution sampled with some prob-
ability. MBPTA-CV uses the CV estimator (described in
detail later in this section) to assess exponentiality. If the
latter property is not ascertained, the sample size needs to
be increased (e.g., by 50 measurements) until the test is
passed, which eventually occurs for distributions with a
(finite) maximum, since, naturally, an increasingly larger
sample approaches the sampled distribution. In practice,
we use samples of at least 1,000 measurements instead of
100 since the larger the sample, the lower the chances of
having false positives and false negatives for i.i.d. tests.
Moreover the chances to pass the CV test increase for
suitable distributions (those with a finite maximum). Note
that considering larger input samples, as a means to cover
high-impact and low-probability random events, is not
necessary since the effects of each random value used in
Apollo and YOLO in terms of variability are very limited
in scope, typically restricted to a function call, and several
independent random values are used in calls to the same
function on each execution time observation [39].

4) pWCET estimation: Once we have a sufficiently large
i.i.d. sample allowing exponential tail fitting, MBPTA-
CV selects the set of tail values delivering the tightest fit,
while preserving reliability. Such tightest fit is, in general,
expected for the cases where the CV estimator is closer
to the theoretical CV value. We refer the interested reader
to the MBPTA-CV method [4] for details on the process
to select the set of maxima used for tail fitting.

9

The obtained pWCET distribution bounds the actual execu-
tion time distribution during operation and appropriate residual
risk upper-bounds can be used to obtain reliable execution time
bounds [5]. Indeed, MBPTA-CV has been already shown to
upper-bound tails reliably by comparing the obtained pWCET
estimates for small samples (103 measurements) against very
large samples (107 measurements), as long as the above steps
are successfully applied [4].

C. Inputs

We executed Apollo using the datasets composed of real
sensor data including camera, LiDAR, GPS and other data [1,
2]. The total size of these datasets, known as bag files, is in
the order of Gigabytes of data per minute of driving, and they
represent a massive amount of data collected from sensors of
an equipped car driven in different traffic environments such
as highway and urban roads. The Apollo team provides several
of these bag files for different configurations and scenarios [1],
which are used for the experiments in this paper.

Apollo’s development and testing experts claim that the
scenarios from which data is provided include a variety of
road types, obstacle types and road environments, intended to
provide as much coverage of relevant cases as possible [1].
In particular, driving scenarios include urban roads and high-
speed scenes, with a variety of obstacles such as motor
vehicles, non-motor vehicles, pedestrians and static obstacles,
to name a few. In any case, representative testing is a necessary
prerequisite for a reliable timing analysis of an AD framework
and, as discussed before, this needs to be guaranteed by
following specific design and testing processes [53].

D. Module-Level Analysis

Independence and Identical Distribution Tests. For iden-
tical distribution, we apply the Kolmogorov-Smirnov two-
sample identical distribution test [23] and for independence the
Ljung-Box test [12], as described in [4]. While dependencies
may exist in the data, and so in the execution times, it has
been shown that, in the context of EVT, dependencies are
only relevant if they occur in the maxima [37]. Hence, we
have applied the independence test on the set of maxima (high
values) retained for pWCET tail fitting. As shown in Table III,
the resulting p-values for both tests are above the significance
level (α = 0.05), and therefore, i.i.d. hypotheses cannot be
rejected. This emanates from the fact that, while input data
are not independent for neighboring frames, relatively distant
frames are highly independent.

TABLE III: Results of the i.i.d tests (Apollo modules).

Per Pred Loc Map Plan Con CAN
(i.) 0.172 0.523 0.246 0.067 0.296 0.515 0.679
(i.d) 0.985 0.996 0.989 0.597 0.957 0.206 0.098

Hence, we conclude that the intrinsic variability produced
by the inputs and measurement collection of the execution
times for the Apollo modules, given that execution times of
the modules are necessarily finite, suffices to enable the use
of MBPTA.

Exponential properties. In order to test the exponential
properties of the execution time distributions, MBPTA-CV
builds upon the CV estimator, as explained before. Such
estimator is below 1 if the tail can be upper-bounded with
exponential tails, exactly 1 if it is exponential, and above 1
if exponential tails cannot upper-bound it. This estimator is
often shown graphically with the CV-plot [4, 21]. The CV-
plots for the Apollo modules are shown in Figure 9. Note
that, the CV corresponds to the ratio between the (theoretical)
standard deviation and mean of the distribution, whereas the
CV estimator is the ratio between the standard deviation and
mean of the sample. The CV-plot shows the residual CV
estimator (in the y-axis), so as we move from left to right,
an increasing number of values of the sample is excluded
(the lowest ones), and the residual CV for a set of values is
obtained for the excesses1 in the remaining set of values. For
instance, in our case, the sample size is 1,000 measurements.
The highest 500 values are used for the CV-plot. The x-axis
value 150 indicates that the lowest 150 values out of the 500
used are excluded, thus keeping only the highest 350 values.
The confidence interval in the CV-plot (within red lines)
corresponds to the 95% confidence interval for CV = 1 for a
Normal distribution of the residual CV estimator (so p-values
below 0.05 would not be compatible with the exponential
assumption), being such confidence interval wider as we use
smaller samples (i.e. more values are excluded so fewer remain
in the sample). Hence, whenever the blue line (CV estimator)
is within the red lines, exponentiality cannot be rejected. If
it is below both red lines, exponentiality can be rejected but
exponential distributions are still a tail upper-bound. Finally,
if the CV estimator is above both red lines, exponential tails
cannot be used for that particular number of excesses. As
expected, execution time distributions for all modules can
be upper-bounded with exponential tails for any number of
excesses since they are never above the confidence interval.

For completeness, we also show the Mean Excess (ME) plot
for those execution time distributions (see Figure 10), which is
a more popular way of assessing exponentiality. However, the
ME-plot has only been used qualitatively so far and hence,
is not suitable for an automatic tool as opposed to the CV
estimator. The ME-plot shows, from left to right, the mean
of the excesses over a threshold. If a tail converges towards a
maximum value close to those in the sample, the spread of the
excesses decreases as we increase the threshold and hence, the
ME value decreases. As it can be seen, this is the case for all
modules but Planning, for which the ME value decreases as
we increase the threshold. These tails, while not exponential,
have a sharper fall rate than exponential tails and hence, can be
upper-bounded with exponential tails. If the ME value remains
approximately constant or with no clear trend, an exponential
tail distribution is appropriate, as it is the case for Planning
(note that Planning has also the highest sustained CV values
across all modules). Only when the ME value grows as the

1The excesses are the values above a threshold subtracting the threshold
itself.

10

Fig. 10: Mean excess plots. The threshold in the x-axis and the mean of the excesses in the y-axis, in seconds.

Fig. 11: pWCET estimates (seconds) for the different Apollo
modules (exceedance probability in the y-axis).

threshold increases, exponential tails cannot be used. This does
not occur for any of the Apollo modules.

pWCET estimates. In Figure 11, we show the pWCET
estimates obtained from the collected execution times. We
show point estimation (solid thick black line) and interval
estimation (solid thin blue lines) for a confidence interval
of 95%. pWCET distributions are shown in the form of
complementary CDF plots, thus meaning that the lines indicate
the execution time (x-axis) that would be exceeded with a
probability upper-bounded by the corresponding value in the
y-axis. For instance, for the Perception module, the probability
of exceeding 1,000 seconds is up to 10−10 per run. In all
cases, a pWCET estimate can be derived, and it always upper-
bounds the observed values (dotted line). The decay rate
of the pWCET curves shows the increase in execution time
due to reducing the residual risk bound, that relates to the
ASIL [5]. We categorize functionalities based on whether their
pWCET distribution has high or low decay rate in the range
of (relevant) exceedance probabilities per run: 10−9 to 10−15.
• Map, Control and CAN Bus have high decay.
• Instead, Perception, Prediction, Localization, and Plan-

ning have low decay rate. This category results in rela-

Fig. 12: QQ plot for the tail values used for pWCET estimation
for the different Apollo modules (empirical quantiles in the y-
axis and theoretical exponential quantiles in the x-axis).

tively high pWCET estimates for decreasing exceedance
probabilities, which opens the door to the use of tighter
prediction models to reduce allocated CPU capacity.

Note that decay rates strongly correlate with Kurt and
maximum values, which indicate that, whenever Kurt is high,
and the maximum is relatively far away from the Q1-Q3 range,
the slope of the tail can only be gentle.

For completeness, we assess the exponentiality of the tail
values selected by MBPTA-CV for tail estimation. In particu-
lar, we compute the exponential QQ-plot for those values (see
Figure 12). We observe that values concentrate in the vicinity
of the line, thus reflecting exponentiality, except for the

11

Fig. 13: pWCET estimates for YOLO stages.

highest values, which fall below the line, thus indicating that
exponential distributions are actual upper-bounds. Therefore,
this evidence further corroborates that the use of MBPTA-CV
on Apollo modules is able to select appropriate tail values to
fit reliable pWCET distributions.

E. Stage Level Predictions

We applied the same methodology to the different stages in
the Perception module as implemented in YOLO.

Independence and Identical Distribution Tests. Given
that modules present i.i.d. execution times across runs, their
stages are also naturally i.i.d. Results in Table IV confirm
this expectation with the resulting p-values well above the
significance level α = 0.05.

TABLE IV: Results of the i.i.d tests (YOLO Stages).

Load H2D GPU D2H PPro
(i.) 0.067 0.106 0.974 0.246 0.297
(i.d) 0.988 0.974 1.000 0.863 0.991

Exponential properties. Exponential tests with the CV
estimator show analogous results to those observed for the
full modules, so we omit them due to space constraints, as
they do not provide further insights. However, we note that
the same positive conclusions for the use of EVT as part of
MBPTA-CV reached for full modules, hold also for individual
stages within modules.

pWCET estimates. As shown in Figure 13, pWCET esti-
mates can also be obtained for the stages of a module. As for
the module level analysis, slopes highly correlate with Kurt
values since most stages have both, high Kurt values and
gentle slopes for their pWCET estimates.

F. Summary

From the results in this section we conclude that statisti-
cal analysis offers a feasible path to address the variability
observed in Apollo’s modules and stages execution time
variability. In terms of the approach, MBPTA-CV is intended
to model extreme (high) timing behavior for execution times
exhibiting some form of variation with either a random or non-
obvious nature. This fits perfectly the case of test cases for AD
software which, in line with SOTIF standard, build upon some
form of random inputs or test cases. In terms of the procedure,
our analysis shows that execution times fit the statistical

properties needed for the application of EVT for pWCET
estimation, namely independence, identical distribution and
compatibility with the exponential assumption; and the ap-
plication of MBPTA-CV delves pWCET distributions where
tails are properly selected so that exponential distributions are
a suitable fit.

VI. RELATED WORK

The timing validation of automotive systems has been cus-
tomarily based on the combination of dynamic measurements
with a system-level timing model [8, 43], often extended
to capture CAN or network-based communication between
ECUs [42]. Some works have also reported on industrial
experience in applying static timing analysis to automotive
software [27, 32]. These works, however, focus on the timing
characterization of traditional, arguably simple, automotive
software, on relatively predictable hardware platforms. As
such, they are unfit to capture and understand the execution
time variability arising when shifting to complex AD soft-
ware running on multicores and GPUs. The work in [59]
advocates stochastic analysis for the characterization of end-
to-end latencies, thus focusing on system-level aspects rather
than timing characterization. Meanwhile, for the localization
module, authors in [36] report large execution time variability,
but do not analyze it as we have done in this paper for Apollo
modules and stages.

In [44], the authors evaluate the use of NVIDIA’s TX1 in
real-time computer vision-based workloads. They use a com-
bination of synthetic benchmarks, image processing samples
from NVIDIA’s CUDA SDK, and a closed-source road-sign
recognition industrial case study. Our work differs both in size
and complexity of the evaluated software, as we characterize
the timing variability and analyze the timing behavior of an
entire AD framework, far beyond the sole Perception module.

VII. CONCLUSION

The slant towards autonomous driving solutions is push-
ing for the adoption of advanced software functionalities
exploiting complex AI-based algorithms. The inherent non-
deterministic traits of AD software challenge both, effective-
ness and scalability of conventional analysis approaches. In
this work, we present an analysis of the timing variability
of Apollo, an industrial-quality AD framework showing that
Apollo modules and stages exhibit a highly variable timing
behavior and arbitrary distributions. We analyze randomization
as one of the reasons behind this variability, and show how
it impairs some of the fundamentals of consolidated timing
analysis techniques. We also discuss approaches and prospects
to address this variability. In line with the latter, we show that
statistical approaches are better equipped to effectively model
the timing behavior of AD frameworks similar to Apollo.
We illustrate this by analyzing the execution time of Apollo
modules and single stages of the Perception module when
running on a real board.

12

ACKNOWLEDGMENT

This work has been partially supported by the Spanish Min-
istry of Economy and Competitiveness (MINECO) under grant
TIN2015-65316-P, the SuPerCom European Research Council
(ERC) project under the European Union’s Horizon 2020
research and innovation programme (grant agreement No.
772773), and the HiPEAC Network of Excellence. MINECO
partially supported Enrico Mezzetti under Juan de la Cierva-
Incorporación postdoctoral fellowship (IJCI-2016-27396), and
Leonidas Kosmidis under Juan de la Cierva-Formación post-
doctoral fellowship (FJCI-2017-34095).

REFERENCES

[1] Apollo, an open autonomous driving platform. http://
apollo.auto/, 2019.

[2] Apollo, an open autonomous driving platform, source-
code and manuals. https://github.com/ApolloAuto/apollo,
2019.

[3] Jaume Abella et al. WCET analysis methods: Pitfalls
and challenges on their trustworthiness. In 10th IEEE
International Symposium on Industrial Embedded Sys-
tems, SIES, pages 39–48. IEEE, 2015.

[4] Jaume Abella, Maria Padilla, Joan del Castillo, and
Francisco J. Cazorla. Measurement-based worst-case ex-
ecution time estimation using the coefficient of variation.
ACM Trans. Design Autom. Electr. Syst., 22(4):72:1–
72:29, 2017.

[5] Irune Agirre et al. Fitting software execution-time
exceedance into a residual random fault in ISO-26262.
IEEE Trans. Reliability, 67(3):1314–1327, 2018.

[6] Sergi Alcaide et al. Safety-related challenges and op-
portunities for GPUs in the automotive domain. IEEE
Micro, 38(6):46–55, 2018.

[7] Anders Arpteg, Björn Brinne, Luka Crnkovic-Friis, and
Jan Bosch. Software engineering challenges of deep
learning. In 44th Euromicro Conference on Software
Engineering and Advanced Applications, SEAA, pages
50–59. IEEE Computer Society, 2018.

[8] AUTOSAR. Recommended methods and practices for
timing analysis and design within the autosar develop-
ment process. Technical Report (n.645), 2017.

[9] Kostiantyn Berezovskyi et al. Measurement-based prob-
abilistic timing analysis for graphics processor units. In
Architecture of Computing Systems - ARCS International
Conference, Proceedings, volume 9637 of Lecture Notes
in Computer Science, pages 223–236. Springer, 2016.

[10] Jingyi Bin et al. Studying co-running avionic real-
time applications on multi-core COTS architectures. In
Embedded Real Time Software and Systems, ERTS 2014,
February 2014.

[11] Mariusz Bojarski et al. End to end learning for self-
driving cars. CoRR, abs/1604.07316, 2016.

[12] George E. P. Box and David A. Pierce. Distribution
of residual autocorrelations in autoregressive-integrated
moving average time series models. Journal of the Amer-
ican Statistical Association, 65(332):1509–1526, 1970.

[13] Alejandro J. Calderón et al. Understanding and exploiting
the internals of GPU resource allocation for critical
systems. In Proceedings of the International Conference
on Computer-Aided Design, ICCAD, pages 1–8. ACM,
2019.

[14] Francisco J. Cazorla et al. Probabilistic worst-case timing
analysis: Taxonomy and comprehensive survey. ACM
Comput. Surv., 52(1):14:1–14:35, 2019.

[15] Sudipta Chattopadhyay et al. A unified WCET analysis
framework for multicore platforms. ACM Trans. Embed-
ded Comput. Syst., 13(4s):124:1–124:29, 2014.

[16] Chenyi Chen, Ari Seff, Alain L. Kornhauser, and Jianx-
iong Xiao. Deepdriving: Learning affordance for direct
perception in autonomous driving. In IEEE International
Conference on Computer Vision, ICCV, pages 2722–
2730. IEEE Computer Society, 2015.

[17] Xiaozhi Chen et al. Multi-view 3d object detection
network for autonomous driving. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR, pages
6526–6534. IEEE Computer Society, 2017.

[18] Stuart Coles. An introduction to statistical modeling of
extreme values. Springer Series in Statistics. Springer-
Verlag, London, 2001.

[19] Dakshina Dasari et al. Identifying the sources of un-
predictability in cots-based multicore systems. In 8th
IEEE International Symposium on Industrial Embedded
Systems, SIES, pages 39–48. IEEE, 2013.

[20] Robert I. Davis and Liliana Cucu-Grosjean. A survey
of probabilistic timing analysis techniques for real-time
systems. LITES, 6(1):03:1–03:60, 2019.

[21] Joan del Castillo and Isabel Serra. Likelihood inference
for generalized pareto distribution. Comput. Stat. Data
Anal., 83:116–128, 2015.

[22] Mohamed Elbanhawi and Milan Simic. Sampling-based
robot motion planning: A review. IEEE Access, 2:56–77,
2014.

[23] William Feller. An introduction to Probability Theory
and Its Applications. 1966.

[24] Ford. Media Center Release. https://media.ford.
com/content/fordmedia/fna/us/en/news/2017/02/10/
ford-invests-in-argo-ai-new-artificial-intelligence-company.
html, 2017.

[25] Samuel Jimenez Gil et al. Open challenges for prob-
abilistic measurement-based worst-case execution time.
Embedded Systems Letters, 9(3):69–72, 2017.

[26] Fabrice Guet, Luca Santinelli, and Jérôme Morio. On
the representativity of execution time measurements:
Studying dependence and multi-mode tasks. In 17th
International Workshop on Worst-Case Execution Time
Analysis, WCET, pages 3:1–3:13, 2017.

[27] Jan Gustafsson and Andreas Ermedahl. Experiences from
applying WCET analysis in industrial settings. In IEEE
International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC), pages 382–392, 2007.

[28] Gerald J. Hahn and William Q. Meeker. Assumptions for
statistical inference. The American Statistician, 47(1):1–

13

11, 1993.
[29] International Organization for Standardization. ISO/DIS

26262. Road Vehicles – Functional Safety, 2009.
[30] International Organization for Standardization. ISO/PAS

21448. Road Vehicles – Safety of the Intended Function-
ality, 2019.

[31] Jaume Abella. MBPTA-CV brief user guide, v1.0. https:
//zenodo.org/record/1065776#.XbBB8-gzaVk, 2017.

[32] Daniel Kästner et al. Timing validation of automotive
software. In Leveraging Applications of Formal Methods,
Verification and Validation, Third International Sympo-
sium, ISoLA. Proceedings, pages 93–107, 2008.

[33] Raimund Kirner and Peter P. Puschner. Obstacles in
worst-case execution time analysis. In 11th IEEE In-
ternational Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC), pages 333–339. IEEE
Computer Society, 2008.

[34] Leonidas Kosmidis et al. Fitting processor architectures
for measurement-based probabilistic timing analysis. Mi-
croprocess. Microsystems, 47:287–302, 2016.

[35] George Lima, Dario Dias, and Edna Barros. Extreme
value theory for estimating task execution time bounds:
A careful look. In 28th Euromicro Conference on Real-
Time Systems, ECRTS, pages 200–211, 2016.

[36] Shih-Chieh Lin et al. The architectural implications of
autonomous driving: Constraints and acceleration. In
Proceedings of the International Conference on Archi-
tectural Support for Programming Languages and Oper-
ating Systems, ASPLOS, pages 751–766, 2018.

[37] Yue Lu, Thomas Nolte, Iain Bate, and Liliana Cucu-
Grosjean. A new way about using statistical analysis of
worst-case execution times. SIGBED Review, 8(3):11–
14, 2011.

[38] Thomas J. McCabe. Cyclomatic complexity and the year
2000. IEEE Software, 13(3):115–117, 1996.

[39] Suzana Milutinovic, Enrico Mezzetti, Jaume Abella, and
Francisco J. Cazorla. Increasing the reliability of soft-
ware timing analysis for cache-based processors. IEEE
Trans. Computers, 68(6):836–851, 2019.

[40] Suzana Milutinovic, Enrico Mezzetti, Jaume Abella, Tul-
lio Vardanega, and Francisco J. Cazorla. On uses of
extreme value theory fit for industrial-quality WCET
analysis. In 12th IEEE International Symposium on
Industrial Embedded Systems, SIES, pages 1–6, 2017.

[41] Detlev Mohr et al. The road to 2020 and beyond: What’s
driving the global automotive industry, 2013.

[42] Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin.
Support for end-to-end response-time and delay analysis
in the industrial tool suite: Issues, experiences and a case
study. Comput. Sci. Inf. Syst., 10(1):453–482, 2013.

[43] Nicholas Navet. Timing analysis of automotive architec-
tures and software. 53rd Design Automation Conference
(DAC), 2016. Invited Talk.

[44] Nathan Otterness et al. An evaluation of the NVIDIA
TX1 for supporting real-time computer-vision workloads.
pages 353–364, 2017.

[45] Brian Paden, Michal Cáp, Sze Zheng Yong, Dmitry S.
Yershov, and Emilio Frazzoli. A survey of motion
planning and control techniques for self-driving urban
vehicles. IEEE Trans. Intelligent Vehicles, 1(1):33–55,
2016.

[46] Scott Pendleton et al. Perception, planning, control, and
coordination for autonomous vehicles. Machines, 5(1):6,
Feb 2017.

[47] Scott Drew Pendleton et al. Perception, planning, con-
trol, and coordination for autonomous vehicles. MDPI
Machines, 5, 2017.

[48] Cuong Cao Pham and Jae Wook Jeon. Robust object
proposals re-ranking for object detection in autonomous
driving using convolutional neural networks. Signal
Process. Image Commun., 53:110–122, 2017.

[49] Roger Pujol et al. Generating and exploiting deep learn-
ing variants to increase heterogeneous resource utiliza-
tion in the NVIDIA xavier. In 31st Euromicro Conference
on Real-Time Systems, ECRTS, volume 133 of LIPIcs,
pages 23:1–23:23. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019.

[50] Morgan Quigley et al. ROS: an open-source robot
operating system. In ICRA workshop on open source
software, volume 3, page 5. Kobe, Japan, 2009.

[51] Joseph Redmon and Ali Farhadi. YOLO9000: better,
faster, stronger. pages 6517–6525, 2017.

[52] Jan Reineke. Challenges for timing analysis of multi-core
architectures. Workshop on Foundational and Practical
Aspects of Resource Analysis, 2017. Invited Talk.

[53] Leanna Rierson. Developing Safety-Critical Software:
A Practical Guide for Aviation Software and DO-178C
Compliance. 2017.

[54] Zoë R. Stephenson, Jaume Abella, and Tullio Vardanega.
Supporting industrial use of probabilistic timing analysis
with explicit argumentation. In 11th IEEE International
Conference on Industrial Informatics, INDIN, pages 734–
740. IEEE, 2013.

[55] Hamid Tabani et al. Assessing the adherence of an
industrial autonomous driving framework to ISO 26262
software guidelines. In Proceedings of the 56th Annual
Design Automation Conference 2019, DAC, page 9, 2019.

[56] Toyota Motor Corporation. Toyota News Release.
https://corporatenews.pressroom.toyota.com/releases/
toyota+establish+artificial+intelligence+research+
development+company.htm, 2015.

[57] Reinhard Wilhelm et al. The worst-case execution-time
problem - overview of methods and survey of tools. ACM
Trans. Embedded Comput. Syst., 7(3):36:1–36:53, 2008.

[58] Reinhard Wilhelm and Jan Reineke. Embedded systems:
Many cores - many problems. In 7th IEEE International
Symposium on Industrial Embedded Systems, SIES, pages
176–180. IEEE, 2012.

[59] Haibo Zeng, Marco Di Natale, Paolo Giusto, and Alberto
Sangiovanni-Vincentelli. Stochastic analysis of can-
based real-time automotive systems. IEEE Transactions
on Industrial Informatics, 5(4):388–401, Nov 2009.

14

