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Abstract. The current paper presents the Pseudo-Incident Wave method for the theoretical 
treatment of the dynamic interaction between general inhomogeneities in advanced 
piezoelectric structures. Instead of simulating the response of such complicated systems using 
purely numerical or analytical methods, the current technique will take the advantages of the 
accuracy and reliability of analytical solutions and the flexibility of numerical methods. Using 
this method the original interaction problem is reduced to the solution of coupled single 
inhomogeneity problems, for which analytical solutions or simpler numerical solutions could 
be derived. By considering the consistency condition between different inhomogeneities, the 
steady state dynamic solution of multiple interaction problems can be formulated in terms of 
coupled single inhomogeneity solutions. The current method is very general and can provide 
reliable simulation of complicated interaction problems. Numerical examples are presented to 
illustrate the effectiveness of the Pseudo-Incident Wave method in simulating dynamic 
interaction between general inhomegeneities under complicated geometries. 

1 INTRODUCTION 
 Piezoelectric materials are widely used in advanced structures to form self-monitoring and 

self-controlling smart systems and have drawn considerable attention from the research 
community. Mechanical deformation of such materials can be directly converted into electric 
signals for monitoring the mechanical deformation. In the reverse process, an applied electric 
field could induce deformation in the material. Therefore, the designers of such advanced 
structures will constantly face the challenge of properly modeling the electromechanical 
coupling between the electric and mechanical fields. 

 One of the most fundamental issues surrounding the optimization of the effectiveness and 
reliability of piezoelectric structures with multiple piezoelectric components is the evaluation 
of the effect of the interaction between different inhomogeneities, which will significantly 
affect both the local and global response of the coupled system. An accurate assessment of the 
coupled electromechanical behavior of an integrated piezoelectric composite system would, 
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therefore, require the determination of the local stress and electric fields involving interacting 
inhomogeneities. 

 Significant efforts had been made to the study of the quasistatic electromechanical 
behavior of piezoelectric composite materials. For example, the problems of a single elliptical 
(ellipsoidal) inhomogeneity in unbounded piezoelectric materials were solved using the 
Green’s function approach [1, 2], the effective properties of piezoelectric composites was 
determined using different micromechanical models [3-6], and the fracture and damage of 
piezoelectric materials was also studied [7]. However, relatively few studies have focused on 
the interaction between inhomogeneities, especially the dynamic interacting behavior of 
inhomogeneities. It should be noted, however, that piezoelectric structures are currently being 
used or intended to use in situations where dynamic loading is involved, such as smart 
structures under impact loading and the acoustic control of smart skin systems. Even for static 
cases, it was observed that for composite material systems the mechanical properties are more 
sensitive to the local response of individual inhomogeneities [8, 9], which is closely related to 
the interaction among inhomogeneities.  

 The mechanical and electrical properties of advanced piezoelectric composite structures 
are greatly affected by the attached piezoelectric sensors/actuators, debondings, fibres and/or 
embedded cracks. The interaction between these inhomogeneities will cause the redistribution 
of the local stress and electric fields, which results in mechanical shielding or amplification 
effects and affects the overall failure mechanism, and alters the electrical behavior of the 
structures. Because of the complexity of the problem, when dynamic loads are applied, the 
simulation of the dynamic response of such coupled systems possesses a significant challenge. 
Typical numerical methods, such as finite element method or boundary element method, can 
be used to conduct dynamic simulation of these problems under certain conditions but have 
their own limitations when multiple interactions are involved, because of the computing 
resource needed to obtain reliable results. Analytical study of interacting inhomogeneities 
under dynamic loads is very attractive because of its high reliability and accuracy, but is 
limited to only simple cases of single inhomogeneity of certain types.  

 It is therefore the objective of the present paper to provide a comprehensive treatment of 
the steady-state dynamic behavior of interacting inhomogeneities in piezoelectric composites. 
The original problem is decomposed into single inhomogeneity subproblems. The solutions of 
these subproblems are then implemented into a pseudo-incident wave method to account for 
the interaction between different inhomogeneities. Numerical examples are provided to show 
the effect of the interaction between inhomogeneities, the material mismatch and the loading 
frequency upon the dynamical field. 

2 PROBLEM FORMULATION 

 Consider an infinitely extended piezoelectric medium containing M  arbitrarily located 
circular piezoelectric inhomogeneities of radius mR (m=1,2, ... , M ), as shown in Fig.1. 
Inhomogeneity m and the matrix are bonded through a thin layer of thickness mh . A global 
Cartesian (x, y) and local polar ),( mmr θ coordinate systems are used to characterize the 
inhomogeneities. The position of the center of inhomogeneity m is denoted ),( mm yx  in the 
global coordinate system. The piezoelectric materials are assumed to be transversely isotropic 

441



Xiaodong Wang, Huangchao Yu, S. Abdel-Gawad and Chen Wang 

3 

with the axis of symmetry being perpendicular to the yx −  plane. The shear moduli, the 
piezoelectric constants, the dielectric constants and the mass densities of the matrix and the 
inhomogeneities are denoted as MMMM ec ρκ ,,, 111544  and FFFF ec ρκ ,,, 111544 , respectively. The 
corresponding material constants of the interphase of inhomogeneity m  are mm ec 1544 ,  and m

11κ . 
 When subjected to a steady state load of frequency ω , the resulting fields will generally 

involve an exponential harmonic factor )exp( tiω− . For the sake of convenience, this factor 
will be suppressed and only the amplitude of different field variables will be considered. 

Figure 1: Interacting Piezoelectric Inhomogeneities 

The steady state behavior of a homogeneous piezoelectric material under antiplane 
mechanical and inplane electric loading is fully described by the following governing 
equations: 
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and the corresponding non-vanishing stress and electric displacement components can be 
expressed as: 
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In these equations, 111544 ,, κec  and ρ  are the elastic modulus, the piezoelectric constants, the 
dielectric constant and the mass density, which should be replaced by the corresponding 
material constants of the matrix, the inhomogeneities and the interphases, respectively, when 
these media are considered. 

3 INTERFACE MODEL 
 Interphases between matrix and fibers play a dominant role in characterizing the behavior 

of composites [10, 11]. In the current study, it is assumed that the thickness of interfacial 
layers is much smaller than the radius of fibers and the wavelength and that the inertial effect 
of the interfacial layers can be ignored. Accordingly, the radial shear stress rzτ , strain rzγ , 
electric displacement rD  and electric field intensity rE are assumed to be uniform across the 
thickness of interphases, and the constitutive relation of interphase m can be expressed as 
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4 SINGLE INHOMOGENEITY PROBLEM 

 For a single inhomogeneity m subjected to an incident wave. The general solution of the 
displacement and electric fields can be expressed in terms of Fourier expansions in a local 
polar coordinate system ),( mmr θ , as 
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where )1(
nH  and nJ  are Hankel function and Bessel function of the first kind, respectively. 
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where [ ]mA is a known matrix, { }C m represents the coefficients of Fourier expansion of 
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5 INTERACTING INHOMOGENEITIES 
For the cases where multiple inhomogeneities are involved, the interaction between these 

inhomogeneities may significantly affect the electromechanical behavior of the composites. 

Figure 2:  Pesudo-incident wave 
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5.1 Pseudo-incident wave method 

Let us now focus our attention on a specific inhomogeneity m . The total incident wave for 
inhomogeneity m can be expressed as 

                                               p
m

I
m uuu += 0                                                                   (14) 

where 0u  is the initial incident wave and p
mu  is the unknown pseudo-incident wave from other 

inhomogeneities with u representing both the mechanical and the electric fields. As a result of 
this incident wave, inhomogeneity m will result in a scattering wave sc

mu , as shown in Fig.2. 
The total field in the matrix can then be expressed as 
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can also be obtained by summing up the initial field and the contributions from all 
inhomogeneities, such that 
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The equivalence between eqns. (15) and (16) indicates that 
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Equation (17) represents the relation between different inhomogeneities. 

5.2 Solution of interacting inhomogeneities problems 

 According to eqns. (14) and (17), the general load { }mF  used in eqn. (11) can be 
expressed as  
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where mF }{ 0 is due to the original incident wave and m
j

scF }{ is the general load due to the 

scattered wave of inhomogeneity j . m
j

scF }{  can be obtained by using the general solution 
given by (8) and (9), and the constitutive relation (4) and (5) as 
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m
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where jC}{ represents the Fourier expansion coefficients of inhomogeneity j and m
jT ][  is a 

known matrix obtained by rearranging (8) and (9). Substituting eqns. (18) and (19) into (11) 
results in 

                              MmFACTAC mmj
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from which ),...,2,1(}{ MmC m = can be determined by solving a system of linear algebraic 
equations. 

 According to eqn. (16), the resulting mechanical and electric fields in the matrix given by 
eqns. (8) and (9) can be expressed in terms of the coefficients of Fourier expansions as 
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From Eqns. (21) and (22), the stress and the electric displacement in the matrix can be 
obtained using the constitutive relation given by (4) and (5). 

6 RESULTS AND DISCUSSIONS 
 The theoretical analysis described in previous section is used to investigate the coupled 

electromechanical response of piezoelectric composites to an incident harmonic wave, as 
shown in Fig. 1. The incident antiplane displacement and the electric potential can be 
expressed as 
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where τ is the maximum value of the shear stress carried by the incident wave, and Γ is the 
incident angle. In the following examples, uniformly distributed identical piezoelectric fibers 
will be examined. The present formulations predict the dependence of the electric and 
mechanical fields upon the geometry of the fibers, the material combination, the interfacial 
property, the frequency and angle of the incident wave. It should be recognized that only the 
amplitudes of the complex shear stress and electric potential are considered in the following 
figures.  

6.1 Local Shear Stress 
 It is well known that local stress field in composites will be disturbed by the existence of 

fibers due to material mismatch [12]. The current study indicates that even when there no 
elastic mismatch exists, the electromechanical coupling between electric and mechanical 
fields in piezoelectric inhomoheneities may also result in significant change in the local stress 
level. Figure 3 shows the distribution of the scattering shear stress (τ*=τrz/τ) along the 
circumference of a single fiber embedded in an insulating medium subjected to an incident 
wave with 090=Γ . The shear wave speeds (and shear moduli) of the fiber and the matrix are 

assumed to be same. In this figure, the normalized piezoelectric constant FF

F

c
e

11*

2
15}{

κλ =  is 

taken to be 1=λ and FRkk =*  represents the normalized frequency of the incident wave. 
Unlike non-piezoelectric materials for which no scattering will be generated for the current 
material combination, the piezoelectric fiber results in shear stresses over τ25.0 at 030=θ
and 0150 . Significant stress distribution is also observed in Fig. 4, which shows the 
corresponding interfacial shear stress distribution along the surface of inhomogeneity one with 
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the presence of inhomogeneity two. The distance between them is R2.0 with R  being the 
radius of the inhomogeneities. 

6.2 Electric field 
Electric potential induced in a piezoelectric composite could be used to monitor the 

deformation of the material and the property of the incident wave. Figure 5 shows the 

distribution of the electric potential ( τ
φφ R

eF
15* = ) along the boundary of a single fiber 

examined in Fig. 3. It is very interesting to note that the peak value of *φ has a unique relation 
with the incident angle ( 090=Γ ) for different loading frequencies. Figure 6 shows the 
corresponding results for two interacting inhomogeneities, similar to the case discussed in Fig. 
4. In this case, the relation between the incident angle and the position of the peak value of *φ
shows a strong frequency-dependence. 

6.3 Multiple interaction of inhomogeneities 
Interaction between multiple inhomogeneities was studied using the current method for 

mechanical problems. Figure 7 shows the displacement field (real part) of two interacting 
inhomogeneities with 090,5.7 =Γ=MRk and the distance between the inhomogeneities being 
R. The distribution of displacement (amplitude) around the boundary of the left 
inhomogeneity for different distances between the inhomogeneities is given in figure 8. The 
asymmetry of the results indicates the effect of the interaction between the inhomogeneities. 
Figure 9 shows the displacement field caused by four interacting inhomogeneities with

090,0.1 =Γ=MRk , the distance between adjacent inhomogeneities being 0.5R and the ratio 
of the wave speed (matrx/inhomogeneity) being 0.707. 

Interaction between multiple inhomogeneities, as shown in figure 10, is also considered, 
where the distance between the adjacent inhomogeneities is R. Figures 11 and 12 show the 
displacement field generated by the multiple interaction for 090,59.0 =Γ=MRk and 

090,37.1 =Γ=MRk , respectively. The incident wave is blocked by the inhomogeneity array 
for both frequencies, which are in the bandgap of the inhomogeneity array. The successful 
treatment of the interaction between large numbers of inhomogeneities clearly shows the 
advantage of the current method. 
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Figure 3: Shear stress of a single inhomogeneity                 Figure 4:  Shear stress of interacting inhomogeneities 

Figure 5:  Potential of a single inhomogeneity                         Figure 6:  Potential of interacting inhomogeneities
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Figure 7: Wave field of two inhomogeneities                           Figure 8: Displacement around the boundary 

Figure 9: Displacement field due to four inhomogeneities 
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Figure 10: Array of multiple inhomogeneities 

Figure 11: Displacement field for a normal incident wave, kMR=0.59 

Figure 12: Displacement field for a normal incident wave, kMR=1.37 
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