
Multiphysics finite-element modelling of an all-vanadium redox flow battery for stationary energy storage

VI International Conference on Computational Methods for Coupled Problems in Science and Engineering 
COUPLED PROBLEMS 2015 

B. Schrefler, E. Oñate and M. Papadrakakis (Eds) 

MULTIPHYSICS FINITE – ELEMENT MODELLING OF AN ALL –
VANADIUM REDOX FLOW BATTERY FOR STATIONARY ENERGY 

STORAGE 

F. MORO, A. BERTUCCO, V. FIORENZATO, M. GIOMO, AND M. GUARNIERI 

Dipartimento di Ingegneria Industriale (DII) 
Università degli Studi di Padova  

Via Gradenigo 6/A, 35131 Padova, Italy 
e-mail: federico.moro@unipd.it 

Key words: Coupled Problems, Multiphysics Problems, Redox Flow Battery, Vanadium, 
Energy Storage. 

This work was supported by the University of Padova under the MAESTRA 2011 strategic 
project.  

Abstract. All-Vanadium Redox Flow Batteries (VRFBs) are emerging as a novel technology 
for stationary energy storage. Numerical models are useful for exploring the potential 
performance of such devices, optimizing the structure and operating condition of cell stacks, 
and studying its interfacing to the electrical grid. A one-dimensional steady-state multiphysics 
model of a single VRFB, including mass, charge and momentum transport and conservation, 
and coupled to a kinetic model for electrochemical reactions, is first presented. This model is 
then extended, including reservoir equations, in order to simulate the VRFB charge and 
discharge dynamics. These multiphysics models are discretized by the finite element method 
in a commercial software package (COMSOL). Numerical results of both static and dynamic 
1D models are compared to those from 2D models, with the same parameters, showing good 
agreement. This motivates the use of reduced models for a more efficient system simulation. 

1 INTRODUCTION 

The growing penetration of renewable sources in the electric grid has boosted the 
development of new technologies for stationary energy storage. All-Vanadium Redox Flow 
Batteries exhibit a very high potential for both medium and large scale applications. This is 
due to power/energy independent sizing, high round-trip efficiency, room temperature 
operation, and long charge/discharge cycle life. A number of challenges need to be tackled in 
order to gain full commercial success, regarding single cell and stack design, highly efficient 
energy-conversion materials, and optimal power management and control operations [1]. 

Numerical models are powerful tools in designing control and monitoring systems, which 
are needed for interfacing the stack to the electric grid. Both 1D and 2D finite element models 
have been developed in order to reduce computing cost in comparison with 3D models and 
allow for a real-time simulation of VRFB operations. A considerably complete and 
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comprehensive 2D distributed model, able of capturing time variations of current density and 
species concentrations inside the cell, was first developed by Shah et al. [2]. Vanadium 
crossover and related losses were accounted for in [3]. A 2D steady-state model, showing 
good agreement with experiments despite its simplicity, was later proposed by You et al. [4]. 
To simulate a VRFB stack rather than a single cell, Vynnycky proposed an asymptotic 
reduction approach to obtain a 1D multiphysics model for a single electrochemical cell. An 
enhanced version of this model, with concentration dependent kinetics, was presented in [5].  

Starting from this work, a novel 1D steady-state finite-element model of an all-vanadium 
redox flow battery is here proposed. A typical VRFB cell (Fig.1) consists of: the positive and 
the negative porous layers where chemical half-reactions occur, the separation polymer 
membrane for proton conduction, and the current collectors which convey the electrons 
to/from the external circuit. The FEM model incorporates the following multiphysics 
equations: momentum, charge and species conservation, mass transport (Nernst-Plank 
equation), electric conduction, charge generation (Butler-Volmer equation) inside the porous 
electrodes, and the proton conduction inside the membrane. In particular, the effect of mass 
transport on the charge generation is taken into account by considering the electrode surface 
concentrations, which differ from bulk concentrations. Differently from [5], the 1D model is 
implemented within a commercial software package (COMSOL) and takes into account the 
behaviour of the current collectors in order to achieve a more accurate representation of the 
device. The independent variables of the model are the electrode and electrolyte potentials 
and the ionic species concentrations in the electrodes. The cell voltage is obtained from the 
electrode potential as a function of the State of Charge (SoC).  

Figure 1: Schematic diagram of a VRFB (collectors + porous electrodes + polymeric membrane) interfaced to 
the electrical grid by a DC/AC converter. Electrolytes, stored in separated tanks, are pumped to the VRFB.     
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2 MULTIPHYSICS MODEL  
Fig. 1 shows a schematic diagram of a VRFB cell interfaced to the electrical grid. Energy 

conversion occurring inside VRFBs is based on the following electrochemical reduction and 
oxidation reactions at the electrode-electrolyte interface:  

 +  ⇄  + 2 +  (positive half-cell)   (1) 
               

        +  ⇄                                 (negative half-cell)    

The electrolytes are vanadium oxides dissolved in a sulphuric acid water solution (1−5 M 
concentration). Arrows in (1) indicate the charge/discharge operations, e.g. the rightward 
arrows indicate the charging phase when  and  are generated at the positive and 
negative electrode, respectively. During the charging operation the reduction half-reaction at 
the negative electrode extracts electrons from the collector and ions from the electrolyte, 
while the oxidation half-reaction at the other electrode provides electrons to the collector. 
Protons 	migrate from one electrode to the other (from anode to cathode) through a 
polymer electrolyte (membrane) that is impermeable to electrons, which are thus forced 
through the external circuit producing an electrical energy exchange.  

2.1 Porous electrode equations  
The electric charge is generated or consumed at the electrolyte-solid phase interfaces by 

chemical half-reactions. The reaction kinetics are modeled by using general expressions, 
derived from the classical Bulter-Volmer equation, which does not take into account the 
difference between surface and bulk concentrations. Following [5], charge generation rates at 
positive (1) and negative (2) electrodes are:  

 =  ,
 exp 

	  − ,
 exp − 

	 
 =  ,

 exp 
	  − ,

 exp − 
	     (1)    

where ,  are (concentration dependent) exchange current densities, , are electrolyte 
surface concentrations at the interface (which generally differ from bulk ones, ), ,, ,	
and ,, , are the anodic and cathodic charge transfer coefficients, and , ,  are 
constants (ideal gas and Faraday constants and temperature). Overpotentials in (1) are:  

 =  −  −  =  −  −      (2) 

where ,  are the electric potential in the solid phase and the electrolyte. The open circuit 
voltage (OCV) of each half-cell is calculated according to the Nernst equation as follows:  

	 = , + 	
 log	

 
 = , + 	

 log	
		      (3) 

where ,, , are the equilibrium cell potentials in standard conditions.       
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The electrochemical energy conversion occurs inside porous electrodes, where reactants 
and products are delivered. Ion species migration in porous electrodes is governed with a 
mass concentration equation, which is steady-state conditions becomes:  

∇ ∙  =       (4) 

where  is the molar flux of the  ion species in the porous medium and  is the source 
term of  electrochemical half-reactions. For the positive electrode  ∈ {, , , } and 
for the negative electrode  ∈ {, , , }. Source terms for these species are:  =−	/,  = 	/,  = 2	/,  = −	/,  = 	/,  = 0. 

The flow density is then composed of three source terms: molecular diffusion, migration 
due to electric field, and advection. By assuming dilute electrolyte concentrations, this can be 
modeled by using the Nernst-Plank equation:  

     = −∇	 − 
 	∇ + 	   (5) 

where ,  are the valence and molar concentration of the  species, and  is the velocity.   
The effective diffusivity is given by Bruggeman correction to molecular diffusivity, i.e. 

 = /, where  is the electrode porosity. The electrolyte velocity in porous media is 
governed by Darcy’s law, in which a Kozeny-Carmen law is used for the hydraulic 
conductivity in the porous felt 

 = − 
	


 ∇	      (6) 

where  is the porous felt fiber diameter,  is the Kozeny-Carman constant,  is the  
dynamic viscosity of the fluid, and  is the pressure. The velocity field can be derived from 
(6) by using the continuity condition for an incompressible liquid, i.e. ∇ ⋅  = 0, and the 
assumption of dilute solutions. The continuity condition is useful to obtain advection-
diffusion equations by combining (4) and (5). Neglecting the electro-migration term produced 
by the potential gradient, the following equation is obtained:  

−∇	 + 	∇ =      (7) 

which can be simplified, under the 1D assumption proposed in [5], as:  

− 	 
 +  

 =     (8) 

where  becomes the average bulk concentrations (depending only on ),  = 
 is the 

(equivalent) electrolyte velocity along the flow direction ,  is the volumetric flow rate,  is 
the electrode width, and ℎ is the electrode thickness.      

The charge transfer from the electrolyte to the carbon felt occurs at the interface between 
solid and liquid phases. Charge balance equations are written for an equivalent volume 
element, considering thus an averaged volumetric current density:  

∇ ⋅  = −∇ ⋅  =      (9) 
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where  and  are the current density in the electrolyte and in the solid phase, respectively. 
The volumetric current density is  = −	 (in the positive electrode) or  = 	 (in 
the negative electrode), where  is the specific surface area (/) which denotes the 
electrochemical active area for unit volume of electrode. The current density inside the 
electrolyte is only given by the ion migration so that:  

 = ∑ 		      (10) 

which, by letting expression (5) for the species molar flux, gives:  

 = −	∇ −  ∑ 	∇	      (11) 

where  = 
 	∑   is the effective ionic conductivity. In the solid phase, the 

current density is only given by the electronic conduction, and, by applying the Bruggeman 
correction on the felt conductivity σ = 1 − ϵ/	, this becomes: 

 = −       (12) 

Electrical conduction equations, needed to obtain the electric potential distributions, are 
finally obtained by letting (11) and (12) in charge balance equations.  

The independent variables of the model in the porous electrodes are the electrolyte and the 
solid phase potential , , and the species concentrations , , , ,  . The 
sulphate ion concentration  is finally obtained from the electro-neutrality condition:  

∑  = 0     (13) 

Homogeneous Neumann boundary conditions are applied for , while homogeneous 
Dirichlet boundary conditions are applied at the positive electrode for . The current density , which can be positive (charge) or negative (discharge), is applied at the positive 
electrode. Inlet concentrations for all ionic species are related to the SoC of the electrolyte: 

, = , + ,	
, = , + ,	


 = 
 + ,1 − 


 = 

 + ,	


 = 
 + ,	


 = 

 + ,	1 − 

     (14) 

where  = 
, = 

, is the State of Charge ( = 0 when the redox flow cell is fully 

charged,  = 1 when it is fully discharged) and , =  + , , =  +  are the 
total vanadium concentrations at the positive and negative electrodes, respectively.    

2.2 Membrane and current collector equations     
Electric charges generated and consumed at porous electrodes are drawn by the current 

collectors according to Ohm’s law for electronic conductors, i.e.  = −	∇, where  is 
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the (uniform) electronic conductivity. This relationship, combined with the charge 
conservation equation, provides:      

−∇ ⋅ 	 = 0     (15) 

The polymer membrane provides the protonic exchange and only a ionic current occurs in 
it, so that electrons are forced to the external circuit. The electrical behavior of the membrane, 
which can be regarded as a solid electrolyte, is characterized by the conduction equation:  

−∇ ⋅ 	 = 0     (16) 

where  =  			
	  is the effective conductivity of the membrane, with   proton 

valence,  concentration of fixed charge sites, and   the proton diffusion coefficient.  

2.2 Dynamic model equations      
During VRFB operations the species concentrations in the reservoirs vary due to the 
processes occurring in the half-cells. Having assumed the conservation of volumes [2], the 
volumetric flow rate at the outlet of the electrodes is  = 		. The outlet concentrations 
are calculated by averaging along the outlet surfaces. The changes in species concentrations at 
the inlet of the electrodes due to recirculation can be calculated from the following material 
balance, which assumes perfect mixing and negligible reaction in the reservoir of volume : 


 = 	 

  − ,       0 =    (17) 

The reservoir volume is obtained by subtracting the electrode volume 	
(ε Lwhe) from the volume of electrolyte on each side of cell, VT . The electrolyte volume can 
be estimated from Faraday law once the electrical current  and the charge time Δ have 
been fixed, as: 

 = 	
	       (18) 

where   and   are the initial and the final (estimated) concentrations of . The volume 
of electrolyte in the pipes and pump is assumed to be negligible. To account for the evolution 
in species concentration, the conservation equation (7) is modified as follows: 

		
	 =  + ∇	 − 	∇     (19) 

and a similar expression, corresponding to (8), is obtained under the 1D assumption: 

		
	 =  +  	 

 −  
      (20) 
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3 NUMERICAL RESULTS 
The 1D redox flow battery model is constructed from the previous non-linear equations: 

momentum, charge and species conservation, mass transport (Nernst-Plank equation), electric 
conduction, charge generation (Butler-Volmer equation) inside the porous electrodes, and the 
proton conduction inside the membrane. The basic assumption of the model regards the 
derivation of equation (8), and consists in approximating the concentration gradient inside the 
porous electrode with a finite difference. The partial differential equations (PDEs) for the 1D 
model are then simply expressed by substituting the gradient operator with  (derivative 
along the horizontal −axis in Fig. 2) where electrical conduction and species diffusion occur. 
The numerical model is implemented in COMSOL®, which provides a robust simulation 
environment for multiphysics problems. This software, based on the finite element method 
(FEM) for the discretization of 1D, 2D, 3D PDEs, provides different non-linear solvers.  

In order to assess the validity and the accuracy of the dimensional reduction numerical 
results of the 1D model are compared with those of a 2D model based on the same physical 
parameters. The meaning of the geometrical parameters of the 2D model is reported in the 
schematic of Fig. 2. The 1D model geometry consists in the union of intervals [Xi, Xi+1].   

Figure 2: Geometrical parameters in the schematic diagram of 2D VRFB model (C+, C−: collectors; E+, E−: 
porous electrodes; PEM: polymer membrane) implemented in COMSOL Multiphysics®.     

Due to the generality of PDEs defined in the fully coupled model, “General Form PDE” 
study nodes were used to implement both conduction and advection-diffusion equations in 
COMSOL. In particular, (8) was implemented as a diffusion-adsorption equation in order to 
account for the concentration gradient approximation. The degrees of freedom (DoF) of the 
discrete algebraic system are concentrations , , 

 (positive electrode) , , 


(negative electrode), the electrolyte potential  (membrane and electrodes), and solid phase 
potential  (electrodes and collectors). These equations, discretized with quadratic finite 
elements (for both 1D and 2D) defined on structured meshes, were solved by the Newton-
Raphson method with a fixed tolerance of 10.  
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The following computing performances were observed in both FEM steady-state models 
(1D vs. 2D) run on a Intel® Core™@2.70 GHz Processor, 64 bit system, 4 GB RAM: 7.235 
vs. 127.361 (number of DoF); 26 s vs. 899 s (solution time); 890 MB vs. 1.89 GB (physical 
memory); 1.094 MB vs. 2.16 GB (virtual memory). Steady-state solutions of the fully coupled 
problem were obtained by a parametric sweep (for  values ranging from 0.1 to 0.9), after 
imposing the electric current density  at the positive electrode and the inlet species 
concentrations (14). Geometrical and physical parameters in Tables I and II, used for both 1D 
and 2D models, were taken from [5] except for the thickness of collectors, which is here 
presumed. The electrical behavior of the redox flow battery was investigated by computing 
the electrical cell voltage between the positive and negative current collectors.  

Fig. 3 shows that charge and discharge curves of 1D and 2D models are in very good 
agreement, also with experimental data presented in [5]. The electrolyte and the electrode 
current density (for the 2D model, in particular, the -component is considered) in Fig. 4 
show a similar behavior. Product and reactant species concentrations at positive and negative 
electrodes are compared by considering, for the 2D model, the concentration profiles at the 
electrode outlets ( = ). Also in the case of non-electrical variables it can be observed that 
the reduced model provides high accuracy, even though its complexity is much smaller. The 
concentration variation inside the device is captured by the 2D model, i.e. Fig. 7 and 8 show 
that for reactants the concentration is higher near the inlet, whereas for products the 
concentration is higher near the outlet.    

Dynamic 1D and 2D models are constructed by adding the reservoir equation and by 
enforcing time-varying boundary conditions at the electrode inlets. Time profiles of model 
variables were obtained by an adaptive time-stepping backward Euler solver. Computing time 
and memory requirements, with the same computer as above, were 710 s and 1.86 GB for the 
2D model, and 232 s and 1.91 GB for the 1D model. Fig. 9 and 10 show that the reduced 
model again provides an accurate information about multiphysics problem variables.         

4 CONCLUSIONS 
A one-dimensional steady-state multiphysics model of a single VRFB, encompassing mass, 
charge, and momentum transport and conservation has been proposed. Compared to previous 
model in literature current collector have been included aiming at simulating real VRFB 
stacks. Comparisons with 2D steady-state multiphysics model show that the 1D assumption is 
reliable to properly simulate both electrical and chemical quantities. Starting from these 
models, reservoir equations and mass balance equations have been included in order to 
simulate charge-discharge operations and, in particular, to estimate the battery run-time.  
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Figure 3: VRFB cell voltage vs. State of Charge. Figure 4: Electrolyte (Je) and electrode (Js) current 
density in electrode + membrane region.

Figure 5: Positive electrode species concentrations , 	during charge phase (  0.5).
Figure 6: Negative electrode species concentrations 

, 	during charge phase (  0.5).
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Figure 7: Reactant concentration , 	distributions 
during the charge phase (2D model,   0.5).

Figure 8: Product concentration , 	distributions 
during the charge phase (2D model,   0.5).

Figure 9: Cell voltage time profile during charge 
(Δ 	2200 s) and discharge phases.

Figure 10:	State of charge time profile during charge 
(Δ 	2200 s) and discharge phases.
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Table 1: Geometrical parameters of the 1D−2D VRFB model 

ℎ 1.25 ⋅ 10	m PEM thickness ℎ 3.00 ⋅ 10	m electrode thickness  ℎ 1.25 ⋅ 10	m collector thickness   2.00 ⋅ 10	m cell length   2.50 ⋅ 10	m cell width   3 ⋅ 10	m reservoir volumes 

Table 2: Physical parameters of the 1D−2D VRFB model 

 0.929 electrode porosity  9.3 ⋅ 10.	m/s H+ diffusivity 
 3.9 ⋅ 10.	m/s V4 diffusivity 
 3.9 ⋅ 10.	m/s V5 diffusivity 
 2.4 ⋅ 10.	m/s V2 diffusivity 
 2.4 ⋅ 10.	m/s V3 diffusivity 
 1.1 ⋅ 10.	m/s SO4 diffusivity 

 60	ml/min molar flow rate   /ℎ electrolyte velocity 
 300	K cell temperature  

 1000 ⋅ 1 − ϵ.	 S/m solid phase 
conductivity , 1.004	V std  potential (+)  

, −0.255	V std  potential (−)  6.8⋅10	m/s rate constant (+) 
 1.7⋅10	m/s rate constant (−)  1.62⋅10	m2/ m3 specific area  0.5	 transfer coefficient   0.5	 transfer coefficient  

 ±	400	A/m2 collector current 
density (+: charge)  1000 S/m collector conductivity , 1500	mol/m3 tot concentration (+) 

, 1500	mol/m3 tot concentration (−) 
, 6000	mol/m3 H+ concentration (+) 
, 4500	mol/m3 H+ concentration (−) 

 1200	mol/m3 fixed charge 
concentration (PEM) , 3.5 ⋅ 10	m/s H+ diffusivity (PEM) 

 1 H+ valence  2 V2 valence  3 V3 valence  2 V4 valence  1 V5 valence 

, 1.6 ⋅ 10 1⁄ . mass transfer 
coefficient (+) 

, 1.6 ⋅ 10 1⁄ . mass transfer 
coefficient (−) 
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