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B. Schrefler, E. Oñate and M. Papadrakakis(Eds)

IMPLEMENTATION OF AN EFFICIENT COUPLED
FEM-SBFEM APPROACH FOR

SOIL-STRUCTURE-INTERACTION ANALYSIS

Marco Schauer∗, Sabine C. Langer†

∗Technische Universität Braunschweig
Institut für Statik

Beethovenstrae 51, 38106 Braunschweig, Germany
e-mail: m.schauer@tu-braunschweig.de, web page: https://www.tu-braunschweig.de/statik

†Technische Universität Braunschweig
Institut für Konstruktionstechnik

Langer Kamp 8, 38106 Braunschweig, Germany
e-mail: s.langer@tu-braunschweig.de, web page: https://www.tu-braunschweig.de/ik

Key words: scaled boundary finite element method, model reduction, soil-structure-
interaktion

Abstract. Buildings are grounded in the surrounding soil, so that soil and structure
interact with each other. Consequently in the soil induced vibrations are transmitted to
the structures. Neighbouring buildings and structures interact with each other, as they
are connected by the soil. Nowadays numerical simulation of soil structure interaction is
of great interest and is applied to very different problems. These include for example the
construction of reliable earthquake-resistant structures in seismic active areas, and also
the increase of comfort of buildings by decouple them form surrounding emissions like
vibrations induced by traffic of machine foundations.

This work shows that the simulation of soil-structure-interaction taking unbounded
domains into account, which fulfils the Sommerfeld radiation condition exactly, is not only
possible for academic examples, but for large scale real life problems as well. Therefore
two numerical methods where coupled to create an efficient coupled method, which can be
used to simulate soil-structure-interaction in time domain. The numerical implementation
of this coupled approach bases on a combination of finite element method [1] and scaled
boundary finite element method [2]. The finite element method is used to discretise the
near-field, containing structures and its surrounding soil. The coupled infinite half-space,
the far-field is realised by the scaled boundary finite element method.

A contemporary parallel implementation of the coupling algorithms is done, since the
simulation of soil structure interaction in time domain is very time and memory consum-
ing [3]. Subsequent the numerical performance of the implemented software is discussed
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in terms of speed-up and efficiency. Different geotechnical applications are illustrated and
the applicability of the coupled method is shown and discussed on chosen examples.

1 INTRODUCTION

Accurate simulations of wave-propagation is essential for soil-structure interaction (SSI)
analysis. Unbounded domains or infinite half-spaces, require careful analysis and call for
efficient methods in order to model wave-propagation to infinity. Whenever vibrations
or impulses are emitted to soil, they induce waves traveling through the ground that can
provoke structures to vibrate and even to fail. It is essential not only to analyze the
structure itself but also to take the surrounding soil into account [4, 5, 6].

Different methods considering the surrounding unbounded domain by a transmitting
boundary, have been developed during the last years. One of the simplest transmitting
boundary conditions is a viscous boundary condition, acting like a dashpot [7]. Other
local, arbitrary order absorbing boundary conditions [8, 8, 9] and several other types of
transmitting boundaries (e.g., infinite elements [10, 11]) have been proposed, but none of
them is able to fulfill the radiation condition exactly.

∞ ∞

Ω

Γ

SBFEM:
Scaling center

Interface

Far-field

FEM:

Structure

Foundation

Soil

Figure 1: Problem definition.

Here a substructuring method is used (see Fig. 1) therefore the soil-structure system is
spit up into a near-field and a far-field. Structure and foundation as well as parts of the
surrounding soil are represent by the near-field Ω. The unbounded domain is represented
by the far-field. The near-field can be easily discretized by finite elements the far-field
is discretized by scaled boundary finite elements. Both methods are coupled at their
common interface Γ. This discretisation assures that the radiation condition to infinity is
fulfilled [2].
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2 COUPLED FEM-SBFEM APPROACH

The equation of motion for the displacement-based FEM is given by

Mü+Cu̇+Ku = p, (1)

where M is the mass matrix, C is the damping matrix and K the stiffness matrix. The
vectors u, its first and second derivative represents displacement, velocity and acceleration.
Supposing that period T can be divided into n time steps of constant size yields to a time
step length ∆t = T

n
. Applying the Newmark scheme [12] to equation (1) leads to

Mün+1 +Cu̇n+1 +Kun = pn+1 , (2)

with the update rules for displacement

un+1 = un +∆tu̇n +

(
1

2
− β

)
∆t2ün + β∆t2ün+1 , (3)

and velocity
u̇n+1 = u̇n + (1− γ)∆tün + γ∆tün+1 . (4)

The parameters β and γ of the time step integration scheme should be set as follows

γ ≥ 1

2
and β ≥ 1

4

(
γ +

1

2

)2

. (5)

In order to couple FEM and SBFEM the entries of the matrices in equation (1) have to
be reordered

[
MΩΩ MΩΓ

MΓΩ MΓΓ

]
ü+

[
CΩΩ CΩΓ

CΓΩ CΓΓ

]
u̇+

[
KΩΩ KΩΓ

KΓΩ KΓΓ

]
u =

[
pΩΩ

pΓΓ

]
−

[
0
pb

]
(6)

so that the block with the subscript “ΩΩ” contains all nodes located in the near-field
while the block with subscript “ΓΓ” contains all nodes at the far-field-interface. The
blocks with the subscripts “ΩΓ” and “ΓΩ” include the coupling information of near-field
and far-field nodes. The vector pb acts on the boundare Γ only. This additional force
describes the response of the infinite half-space and can be applied to the near-field as a
load.

The near-field is described by the FEM the far-field by the SBFEM. The forces acting
at the interface of near-field and far-field are given by the convolution integral

pb(t) =

t∫

0

M∞(t− τ)ü(τ)dτ , (7)

3
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where M∞(t) is the unit-impulse matrix. To solve the convolution integral (7) the unit-
impulse matrices M∞

i are assumed to be constant within the time step ∆t,

M∞(t) =





M∞
0 t ∈ [0;∆t] ,

M∞
1 t ∈ [∆t; 2∆t] ,

...
...

M∞
n t ∈ [(n− 1)∆t;n∆t] .

(8)

Due to this assumption and applying the time step integration scheme, equation (7) can
be rewritten as

pb(tn) = γ∆tM∞
0 ün +

n−1∑
j=1

M∞
n−j (u̇j − u̇j−1) . (9)

The coupling of FEM and SBFEM is realized by simply adding equation (9) to the
presorted FEM (6)

[
MΩΩ MΩΓ

MΓΩ MΓΓ + γ∆tM∞
0

]
ü+

[
CΩΩ CΩΓ

CΓΩ CΓΓ

]
u̇+

[
KΩΩ KΩΓ

KΓΩ KΓΓ

]
u =




pΩΩ

pΓΓ −
n−1∑
j=1

M∞
n−j (u̇j − u̇j−1)


 ,

(10)

so that the coupling is described in equation (10) completely.

3 IMPLEMENTATION

For the SSI analysis two programs are developed. The far-field is computed by ScaBo
the coupled FEM-SBFEM analysis is computed by elPaSo [13, 14]. A more detailed
description about the concept of ScaBo is published in [3]. Different third party libraries
are used to achieve reasonable performance. ScaBo has to handle dense and sparse
matrices as well, that is why ScaLAPACK builds the main core of this program [15].
Additional libraries like LAPACK, BLAS, BLACS, SLICOT, PLICOC (see Fig. 2(left))
are used to gain an optimal performance [16, 17, 18, 19].

The coupling of near-field and far-field is performed using elPaSo, here PETSc [20]
builts the main core, hence sparse matrices are used. The libraries linkt to elPaSo are
shown in Fig. 2 (right). To get access to direct solvers for linear equation systems MUMPS
and SuperLU dist are also liked to elPaSo [21, 22, 23].

The communication is done by using the message passing interface (MPI) [24]. This
allows to run both programs on distributed memory systems like clusters of computers
and shared memory systems like multi core compute servers as well. This implementations
guarantee a high flexibility regarding the utilized compute resources.
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Figure 2: External libraries linked to ScaBo (left) elPaSo (right).

4 SETTLEMENT SIMULATION

In order to validate the implemented algorithms as illustrated in section 2 a settlement
problem is carried out. Therefore two different discretisations of the near-field far-field
interface are analysed. As already discussed in section 1, the problem has to be split
into two separate domains. The near-field is represented by linear finite elements and the
far-field by linear scaled boundary finite elements.

�x

�y

�z

q
r

q

Figure 3: Infinite half space under constant area load q. (left) The computational domain is realized
using a hemisphere. (right) The computational domain is realized using a cuboid.

Isotropic, homogeneous and fully linear elastic material is assumed for near-field and
far-field as well. The material parameter are chosen as follows: Young’s modulus E =
21000 [kNm−2], Poisson ratio ν = 0.15 and density ρ = 2100 [kgm−3]. In this case a
semi-analytical solution is available [25].

The numerical model is implemented for time domain analysis so that the displace-
ments are time-dependent. As the coupled FEM-SBFEM approach fulfills the radiation
condition, the nodal displacements become constant after a certain time, whenever con-
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stant loads are applied. In those cases the numerical results approximate the static semi-
analytical solution. To show the accuracy of the method we use two different meshing
strategies, which are discussed in detail in the following sections.

One interface is discretised by a cubuid shaped mesh (CSM) see Fig. 3(left). The
dimensions of the mesh are set to �x = �y = 457.2 [m] and �z = 190.5 [m]. The second
interface is discretised by a hemisphere shaped mesh (HSM) see Fig. 3(right). The distance
between this centre and all interface nodes at the boundary Γ is exactly r = 190.5 [m].
The scaling centre is located in both cases in the middle of the loaded area, so that the
smallest distance between scaling centre and boundary Γ is 190.5 [m]. On a square region
of 152.4 × 152.4 [m2] an area load q = 70 [kNm−2] is applied. Table 1 summarizes the
degrees of freedom (DoF) for the two discretised meshes.

Table 1: Discretisations with different number of DoF.

DoFFEM DoFSBFEM Θ DoFFEM

DoFSBFEM

CSM 14520 3720 25.6%
HSM 49155 3603 7.3%

The chosen material parameters yield to a longitudinal wave speed cp = 102.001 ms−1.
So that the critical time step length is given by ∆t = r

30cp
≈ 0.06 s [26]. The parameters

of Newmarks time step integration scheme are set to β = 0.3025 and γ = 0.6.
Evaluating the mentioned semi-analytical solution lead to a constant displacement

d(z = 0) = 0.560443138 [m] in the centre of the loaded area directly at the near-fields
surface. This solution is used to normalize the numerical time dependent solution as
shown in Fig. 4.
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Figure 4: Time dependent normalized settlement.
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5 FAR-FIELD MODEL REDUCTION

Computation of the unit-impulse response matrices M∞ and the convolution integral
eq. (7) is very expensive and memory consuming. Hence different model reductions are
used to reduce the computational effort and memory consumption.

Since M∞ increases after a certain time step tm (t0 ≤ tm ≤ tn), with a constant
increment, not all n matrices have to be provided for the numerical simulation. For a
simulation with n time steps, it is necessary to compute at least m matrices. All other
matrices can be computed by a recursive algorithm [27].

Applying this model reduction to the meshes discussed in section 4 lead to the results
as shown is Fig. 5. It is obvious that the used memory as well as the needed computation
time decreases with the reduction of provided M∞ matrices. As long as the number of
M∞ matrices is big enough the simulations relative error stays constant. If the number of
precomputed matrices is too small the relative error increases. With tm = 50 the relative
error and also the solution is the same, compared to the reference solution without matrix
extrapolation, but the memory usage is reduced to 32% and the run time is reduced to
37%.
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Figure 5: Memory usage (left), normalized compute time (mid) and relative error (right) when matrices
M∞

t , t ≤ m are extrapolated.

To make use of matrix extrapolation for model reduction, a recursive algorithm has
to be implemented. Another approach without modifying the calculus is the geometrical
decoupling. Therefore a threshold εz is introduced. This value is used to compare the
entities in the unit-impulse response matrices. If the matrix entry is smaller than εz the
influence of the corresponding nodes is supposed to be very small and so the value is
not used for further computation. The influence of εz is studied within a range 10−8 ≤
εz ≤ 10−2. The influence regarding the time used for computation is rather small, but
the memory consumption is significant (see Fig.6). The fully populated matrices are
computed and only at very end of the far-field computation the model is reduced. This
reduced model is then used for later near-field far-field coupling, regarding the solutions
relative error this model reduction is very robust.
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Figure 6: Memory usage (left), normalized compute time (mid) and relative error (right) when geomet-
rical threshold εz is used.

The next step is consequently to decouple the far-field nodes not at the end of the far-
field computation, but in the beginning. Hence the far-field is separated into an arbitrary
number of substructures. Each substructure is solved separately. When the coupling is
carried out, the substructures are combined with the near-field, so that the the complete
far-field is considered. Memory usage, needed computational time and relative error are
shown in Fig. 7. This reduction is very efficient in terms of memory and time consumption,
but the relative error increases imminently.
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Figure 7: Memory usage (left), normalized compute time (mid) and relative error (right) when far-field
is split up into substructures.

All three model reductions can be combined. The largest relative error of one method
is dominating the other two. If substructuring is done carefully and the parameters tm
and εz are chosen in a valid range a major reduction of memory usage and computational
time can be achieved. Here for instance if HSM is analysed with tm = 50, εz = 10−5

and the far-field is divided into four substructures only 11% of memory is required and
only 16.2% of the computational time. The solution is the same as the one which uses 4
substructures only.
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6 PARALLEL PERFORMANCE

Desktop computer and even compute server are limited in memory and performance,
hence the usage of compute cluster is a way to provide lots of memory and handle large
numbers of unknowns in order to simulate realistic problems. As already mentioned both
presented programs are designed to perform on distributed memory systems. In order
to show the parallel performance a weak scaling is done. According to Amdahl [28] the
time T needed to solve a certain problem can be split into one part which is going to be
performed sequentially αT and another part which can be done in parallel (1− α)T :

T = αT + (1− α)T . (11)

Applying this to p processes lead to

T (p) = αT (1) +
(1− α)T (1)

p
. (12)

Here the parallel performance of the coupled simulation is analysed. A detailed study
of the parallel performance of ScaBo can be found in [3]. The weak scaling is conducted
on a compute cluster of 15 nodes, each of them with 2 AMD Opteron 240 processors at
1.4 GHz and 3 GB of RAM, linked with a Myrinet-2000 interconnect. In all runs, one
MPI rank per CPU is used (for instance, runs with 2 processes use only one node).
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Figure 8: Parallel performence of the coupled simulation. Speedup (left), efficiency (right).

Fig. 8 displays the parallel speedup, which is defined as follows:

Sp =
T (1)

T (p)
(13)

The parallel speedup is equal to the gain factor when the code runs with p processors.
The plot shows an increasing of the speedup, which does not decay until 30 processes are
employed. The speedup is not very close to the theoretical maximum α = 0, but it shows
a significant gain of about 15 with 30 processes. In terms of efficiency

Ep =
Sp

p
=

T (1)

p · T (p)
, (14)
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which gives an indication of how well the code utilizes the available processors, a level of
50% is achieved in the worst case.

7 CONCLUSIONS

It is shown, that different model reductions techniques applied to the far-field can re-
duce the required memory and computational time without a leak of accuracy. Both,
model reduction techniques and parallel computing can provide an answer to the high
computational cost resulting from the application of SBFEM to very large scaled engi-
neering problems. It is demonstrated that, in practice, when run on a moderately-sized
cluster, the coupled FEM-SBFEM approach can yield the solution not only to academic
benchmarks, but also to real problems. More complex, large-scale applications using this
coupling approach will follow.
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