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Abstract. The boundary integral equation for elasticity is valid for a single domain
consisting of homogeneous material properties. In the case of heterogeneity the consid-
eration of different material properties is possible with a coupling of boundary element
regions. Of course each region is again homogeneous. Another simulation application of
multiple regions is the simulation of an industrial process, where different subdomains of
a homogenous domain are treated differently due to a mechanical process. For instance,
this is the case in tunnelling, where excavation is performed in a staged procedure. In
the simulation of such an excavation process regions are deactivated step by step. As
the material behaviour can be nonlinear an accurate simulation of such a staged pro-
cess is a necessary requirement. Thus, the domain is decomposed into subregions which
are coupled to neighbouring regions. There are different coupling strategies existing. In
some of them stiffness matrices of subdomains are worked out which are the basis for
the coupling and solution of the problem. A traditional method is the coupling of in-
terface surfaces only [1]. In this method the stiffness matrix of a region is computed on
the basis of the coupling surfaces (interfaces), whereas the coupling surface may be not
identical to the complete surface of a subdomain and the size of the stiffness matrix is
determined by the degrees of freedom of the coupling surface. In an application where
the boundary conditions change (e.g. from interface to Neumann condition) from one
calculation step to the other, the stiffness matrix has to be calculated new. A modern
coupling technique is the Boundary Element Tearing and Interconnecting (BETI) method
[2], similar to the method of Finite Element Tearing and Interconnecting (FETI) [3]. In
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this method the region stiffness matrix is worked out for the entire boundary of the re-
gion. The stiffness matrices of all regions remain the same during the whole analysis,
even if the boundary conditions change during the simulation process. In setting up the
equation system each subdomain is treated completely separated and independent from
the others. Thus, a parallelisation of the computational work is ideally suited and im-
plemented in the present computer code. In this work the theory of both mentioned
coupling techniques are introduced briefly. The differences of both methods are worked
out and advantages/disadvantages are shown and will be demonstrated. The accuracy of
the results as well as the computational performance will be shown and compared based
on a realistic simulation example.

1 INTRODUCTION

Within a tunnel excavation according the New Austrian Tunneling Method (NATM)
parts of the tunnel volume are excavated in a staged procedure. Due to this process
the tunnel construction is dependent on spatial and temporal development. In order to
provide certain predictions or in the case of verification of ongoing tunnel constructions
a numerical simulation has to consider those requirements. A typical tunnel construction
is shown in Figure 1. The tunnel cross section is divided into a top heading and a bench
part. In longitudinal direction the excavation of the top heading is more advanced then
the bench. The excavation is done in a way where volumes of rock with specified thickness
are removed.

top heading

bench

Figure 1: Sequential tunnel excavation
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As a tunnel construction typicaly occurs in an infinite or semi-infinite domain the
Boundary Element Method (BEM) is ideally suited for the numerical simulation of this
type of problems [4]. The fundamental solution used in BEM [5] are special solutions
for infinite domains, they allready fullfill the radiation conditons. There is no need to
truncate a mesh and therefore no artificial boundary conditions have to be applied. With
the BEM only the surface of the regions has to be discretised, thus the effort of mesh
generation is drastically reduced for such simulation problems. As shown in Figure 1 the
domain is subdivided into several regions. For the excavation volumes top heading and
bench finite regions are used. These regions are embedded in an infinite region which
represents the infinite extend of the domain. For the numerical solution of such problems
there is a need to couple these regions. In chapter 2 the displacement boundary integral
equation, its discretisation and solution is shown. In chapter 3 the development of two
multiple region BEM (MRBEM) coupling methods will be addressed. In chapter 4 the
coupling methods are demonstrated on a practical tunnel excavation example in 3D.

2 BOUNDARY INTEGRAL EQUATION

The displacement boundary integral equation [5] shown in Equation (1) is the basis of
the BEM:

C(y)u(y) + C

∫

Γ

T(y,x)u(x) dΓ =

∫

Γ

U(y,x)t(x) dΓ (1)

T(y,x) and U(y,x) are the fundamental solutions and u(x) and t(x) are the boundary
displacements and tractions, respectively. The boundary integral equation (1) is valid
for a single region whose boundary is discretised by boundary elements. Due to the
discretisation of the integral equation the boundary Γ is divided into a sum of elements
E and nodes N . Introducing the discretisation the integral equation (1) is transformed
into the following form:

Cui +
E∑

e=1

N∑
n=1

∆Te
niu

e
n =

E∑
e=1

N∑
n=1

∆Ue
nit

e
n (2)

∆Te
ni and ∆Ue

ni are integrated kernel coefficients with respect to the collocation node
i and element n. C is the integral free term which depends on the geometrical conditions
at node i. Equation (2) is evaluated for all collocation points i and the coefficients ∆Te

ni

and ∆Ue
ni are assembled into matrices [∆T ] and [∆U ], whereas the following equation

arise:

[∆T ]{u} = [∆U ]{t} (3)

With equation (3) a single boundary element region can be solved. At the nodes of the
boundary either displacements or tractions are known. The unknown boundary conditions
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(BC’s) are solved by rearranging equation (3). The unknown BC’s with its corresponding
columns of matrices [∆T ] and [∆U ] are shifted to the left side and the known BC’s are
multiplied with the columns of the matrices [∆T ] or [∆U ] and form the right hand side
vector {f} of the following equation:

[A]{x} = {f} (4)

In case of a mixed boundary value problem the content of the solution vector {x} are
either displacements or tractions, matrix [A] is filled up either with columns of matrix
[∆T ] or [∆U ].

3 MULTIPLE REGION BEM (MRBEM)

Ω1

Ω2

ΓN

ΓN

ΓN

ΓD
ΓI

ΓI

Figure 2: Multiple region system

If there is a system with more then one region present (as shown in Figure 2) a multiple
region boundary element method (MRBEM) is a possibility to solve such a problem.
In comparison to the single region BEM the boundary of a region is extended by the
interface boundary. The whole boundary of a region may be devided into a Neumann
(ΓN), Dirichlet (ΓD) and Interface (ΓI) part. At the interface displacements and tractions
are unknown. Thus additional conditions are necessary to solve this problem. These
conditions are equilibrium and compatability at the interface of adjacent regions. For the
solution of such a coupled system of regions different method formulations are available.
Two of them are discussed next. For both methods stiffness matrices are worked out. In
the first method (Interface Coupling (IC) method) the stiffness matrix of each region is
based on the degrees of freedom (DOFs) at the interface, in the second (BETI method)
the stiffness matrix is based on the DOFs of the whole region.
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3.1 IC method

For the derivation of the equation system of a multiple region system Equation (3) is
shown again as following:

[∆U ]{t} = [∆T ]{u} (5)

Due to the three different boundary types (Neumann, Dirichlet and Interface) Equation
(5) is expanded to:

[
[UI ] [UN ] [UD]

]


{tI}
{tN}
{tD}



 =

[
[TI ] [TN ] [TD]

]


{uI}
{uN}
{uD}



 (6)

The tractions {tN} are known BC’s and they will be shifted to the right side of the
equation system together with the associated kernel matrix [UN ]. {uN} are unknown
displacements at the Neumann boundary and they will be moved to the left side together
with matrix [TN ] as shown next:

[
[UI ] − [TN ] [UD]

]


{tI}
{uN}
{tD}


 =

[
[TI ] − [UN ] [TD]

]


{uI}
{tN}
{uD}


 (7)

The matrix on the left side of Equation (7) is renamed by [A] and on the right hand
side the interface displacements {uI} are seperated as following:

[
A

]


{tI}
{uN}
{tD}


 = [TI ] {uI}+

[
− [UN ] [TD]

]{
{tN}
{uD}

}
(8)

Solving Equation (8) for the vector on the left will result in:




{tI}
{uN}
{tD}


 = [A]−1[TI ] {uI}+ [A]−1

[
− [UN ] [TD]

]{ {tN}
{uD}

}
(9)

This equation can be simplified to:




{tI}
{uN}
{tD}


 =

[
[K]∗

[D]

]
{uI}+




{tI0}
{uN0}
{tD0}


 (10)

Taking the first equation from (10), which is:

{tI} = [K]∗{uI}+ {tI0} (11)

and multiplying it with the mass matrix [M ] the tractions of Equation (11) are trans-
formed to work equivalent nodal point forces. Because of this a coupling to the Finite
Element Method (FEM) is possible. As a result Equation (11) is transformed to:
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{fI}r = [K]r{uI}r + {fI0}r (12)

whereas {fI}r = [M ]r{tI}r, [K]r = [M ]r[K]∗r and {fI0}r = [M ]r{tI0}r. The final forces
at the interface of region r are the forces due to the interface displacements plus the
forces at the interface due to the loading (given tractions {tN}r and applied displacements
{uD}r). The final interface forces {fI}r and the interface displacements {uI}r are unknown
at the present state. Thus Equation (12) has to be applied to every region of the coupled
system and the final system of equation can be assembled under the following conditions:

• Equilibrium of forces at the interface:

{fI}1 + {fI}2 = 0 (13)

Equation (13) states that the forces at the interface of region 1 are in equilibrium
with those of the neighbouring region 2.

• Compatability of displacements at the interface:

{uI}1 = {uI}2 (14)

Equation (14) states that the displacements at the interface of region 1 are equal
with those of the neighbouring region 2.

Considering these conditions Equation (12) for every region is assembled into a global
equation system which is shown as following:

{fI}r = [K]sys{uI}+ {fI0} = 0 (15)

where [K]sys is the assembled stiffness matrix related to all coupling interfaces of the
system. {fI0} is the right hand side vector related to the loading of the system and {uI}
is the vector of interface displacements. This equation is solved for the interface dis-
placements. Once {uI} is known all remaining unknowns (tractions at the interface {tI},
displacements at the Neumann boundary {uN} and tractions at the Dirichlet boundary
{tD}) can be evaluated using Equation (10).

3.2 BETI method

The Boundary Element Tearing and Interconnecting Method (BETI) is a domain de-
composition method for the Symmetric Galerkin BEM [2] similar to the Finite Element
Tearing and Interconnecting Method (FETI) for the FEM introduced by [3]. Using simi-
lar concepts the BETI method will be applied in this work to the collocation BEM. For
each region this method works out a stiffness matrix which is based on the DOFs of the
whole region surface in contrast to the method applied in chapter 3.1 where the stiffness
matrix is based on the coupled DOFs only. From Equation (3) the boundary tractions of
a region can be calculated as following:
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[∆U ]−1[∆T ]{u} = {t} (16)

To make possible a coupling to the FEM, Equation (16) is multiplied with the mass ma-
trix [M ]. Using this procedure the boundary tractions are transformed to work equivalent
nodal point forces acting at the nodes of the boundary:

[M ][∆U ]−1[∆T ]{u} = [M ]{t} = {f} (17)

where the stiffness matrix [K] is:

[K] = [M ][∆U ]−1[∆T ] (18)

Inserting this into Equation (17) will result in the well known relation between dis-
placements and forces:

[K]{u} = {f} (19)

In order to formulate a coupled system of R boundary element regions two conditions
have to be satisfied:

• Equilibrium

• Compatability

3.2.1 Equilibrium of a boundary element region

The equilibrium state of a region can be described by using Equation (19):

[K]{u} = {fN}+ [B]T{λ} (20)

whereas the force vector on the right hand side of Equation (19) is splitted into:

{f} = {fN}+ [B]T{λ} (21)

and inserted into Equation (20). [K]{u} are the forces at the boundary of the region
due to deformation, {fN} is the force vector of the given loading (Neumann boundary
conditions) and [B]T{λ} are the coupling forces (Lagrange multipliers) to the neighbouring
regions.
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3.2.2 Compatability of interface displacements

The compatability of a system of R regions can be written in following form:

[B]1{u}1 + [B]2{u}2 + · · ·+ [B]R{u}R = {b} (22)

Equation (22) either guaranties that the displacements at the interface of adjacent
regions are equal or that the displacements at the Dirichlet boundary are equal to the
applied Dirichlet boundary conditions which are entries of vector {b}.

3.2.3 System of equation

The final system of equation of a coupled system of R boundary element regions is
shown as following:




[K]1 0 −[B]T1
[K]2 −[B]T2

0
. . .

...
[K]R −[B]TR

[B]1 [B]2 · · · [B]R 0



·




{u}1
{u}2
...

{u}R
{λ}




=




{fN}1
{fN}2

...
{fN}R
{b}




(23)

Equations 1 to R of Equation (23) are representing the equilibrium of each region and
the last equation of (23) guaranties compatability of displacements at every node at the
interface of adjacent regions and at the nodes of the Dirichlet boundary.

In the implementation of the BETI method Equation (23) is not assembled to an
equation system. The equation system (23) is condensed to the solution of the coupling
forces λ (Lagrange multipliers). This is done by inserting equations 1 to R into the
last equation of (23). From this equation λ is solved either directly or iteratively with
a BiCGSTAB iterative solver. As the stiffness matrix [K]r of a finite region (floating
region) is singular special treatment of rigid body motions have to be considered. The
whole solution formulation is shown in detail by [2].

3.3 Comparison of coupling methods

The main advantage of the BETI method is that the stiffness matrix of each region
has to be calculated only once and in the case of a sequential tunnel excavation these
matrices can be used for each load step of excavation. Using the BETI method for this
application type the stiffness matrices are independent on the changing boundary condi-
tions. Changing boundary conditions due to sequential excavation are considered by the
coupling matrix [B]r of Equation (23). The coupling matrices have to be computed again
for each calculation step. As those matrices are sparsely populated they are implemented
as sparse matrices. The effort to set up those matrices is small and it is insignificant
compared to the overall computing time. The way how the equation system is formulated
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makes the treatment of operations at the region independently from the other regions.
Thus, the BETI method is ideally suited for parallelisation.

The advantage of the IC method is that the size of the stiffness matrix is related to
the number of DOFs at the interface of the coupled system of regions. In the case of a
sequential excavation the coupling surfaces are reduced from one excavation step to the
other. In each load step one or more regions are deactivated from the simulation model.
Due to the deactivation the boundary condition of surfaces adjacent to the deactivated
regions change from Interface condition to Neumann condition. Thus, the size of the as-
sembled system stiffness matrix reduces from one load step to the other and the solution
of the equation system gets faster. For regions for which a change of boundary condi-
tions happens the stiffness matrix has to be calculated again. Compared to the BETI
method stiffness matrices do not remain constant throughout the entire analysis of such
an excavation simulation.

4 EXAMPLE - 3D TUNNEL EXCAVATION

In this example a 3D tunnel excavation is investigated. In Figure 3 the boundary
discretisation is shown. The tunnel geometry is subdivided into top heading and bench
regions (finite regions). These regions are embedded in an infinite region which represent
the infinite extend of the domain. The mesh is discretised with quadratic boundary
elements. At the starting of the tunnel quadratic plane strain infinite boundary elements
are used to simulate the infinite extend of the tunnel behind the tunnel face. Two different
meshes are investigated, a coarse mesh and a refined mesh as shown in Figure (3).

top heading

bench

infinite region

finite region

finite region

coarse mesh fine mesh

Figure 3: Discretisation

A constant primary stress field with σxx = −1.375, σyy = −1.375, σzz = −2.75 and
σxy = σyz = σzx = 0.0 is assumed. From this stress field the excavation tractions are
computed by t = σ · n, where n is the unit vector normal to the surface of the tunnel.

9

366



Christian Duenser, Bernhard Lindner and Gernot Beer

This traction is applied at the free surface, this is the surface of the tunnel just excavated
in load step 1. The loading for every subsequent step is the traction applied at the parts
of the tunnel surface which changed from coupled interface conditions to free surfaces,
these are surfaces at adjacent regions to the deactivated regions. The tractions which
are applied in the current load step are taken from the result tractions at the coupled
interfaces from the previous laod step. From step 2 to 15 top heading and bench regions
are excavated alternately. The sequence of excavation is shown in Figure 4, where regions
are marked by the number of load step they are excavated. The excavation of the top
heading part takes place further ahead then the bench, which can be observed in Figure
4, too. Within an excavation step one or several regions might be excavated. In the first
step from the beginning top heading and bench regions are excavated to reach a typical
staged excavation configuration in the longitudinal direction.

1
2 4 6 8 10 12 14

3 5 7 9 11 13 15

Figure 4: Sequence of excavation load steps

In Figure 5 results for the displacements uz are shown at the infinite region and at
finite regions (embedded in the infinite region) for the refined discretisation.

Figure 5: Displacements uz for excavation load step 8

In the diagram of Figure 6 the deformation curves along a line (parallel to the longi-
tudinal tunnel axis) at the crown of the tunnel for the displacements uz are shown . The
curves are shown for the coarse and fine discretisation and for all load cases. Results are
shown only for the interpolation type Discontinuous. As can be seen the solutions for the
coarse mesh are almost of the same quality as the solution of the fine mesh.
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Figure 6: Displacements uz at the crown of the tunnel

In Table 1 the number of DOFs for the infinite region and for the size of the global
system of equation are shown for the coarse and fine discretisation. Three types of inter-
polation are choosen for the evaluation of this example - Continuous, Mixed and Discon-
tinuous. For the Continuous type continuous interpolation is applied for the displacement
and traction field, the Mixed type uses continuous interpolation for the displacement field
and discontinuos for the traction field. Within the Discontinuous type both fields are
interpolated discontinuous. The order of interpolation is choosen quadratic for all types
of interpolation.

Table 1: Degrees of Freedom

infinite Region Global
Dirichlet DOFs Neumann DOFs DOFs
Coarse Fine Coarse Fine Coarse Fine

Continous 3459 13755 3459 13755 5403 19785
Mixed 3459 13755 9192 36624 5403 19785

Discontinous 9192 36624 9192 36624 12048 48192

In relation to the numbers of DOFs of Table 1 in Table 2 the calculation times are shown
for the methods IC and BETI. The calculations are done with the parallised version of
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the code using 24 CPUs. As can be seen for all discretisations and interpolation types the
BETI method is faster then the IC method. According to our experiences the difference in
computing time of both methods is getting greater if the number of load cases is increased.
The reason for this is the repeated calculation of region stiffness matrices due to changing
boundary conditions for the method IC.

Table 2: Calculation Time

Calculation Time
IC BETI

Coarse Fine Coarse Fine
Continous 140 2027 59 524

Mixed 241 3613 136 1116
Discontinous 394 8706 215 3034

5 CONCLUSIONS

In the present work two coupling methods are investigated, the IC method and the
BETI method. Due to the formulation of stiffness matrices based on work equivalent
nodal point forces both methods are able to couple BE regions (BEM/BEM coupling)
and BE regions to FE regions (BEM/FEM coupling). The main differences of both
methods are worked out and on a practical 3D tunnel excavation example results are
shown. Particular attention has been paid to the computational performance of both
coupling techniques.
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