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Abstract. Coupled problems of the multi-degree-of-freedom-system (MDOF) or Soil-
Structure Interaction (SSI) are usually translated to a series of the single-degree-of-freedom 
(SDOF) equations. In this paper, the predominant periods of MDOF analysis are analyzed 
without SDOF and the dynamic amplification factors for a sample data of a model building 
are shown. The analysis method is the assumption that, as well as SDOF analysis, the MDOF 
analysis is applied to the predominant periods by inelastic analysis. That can give the dynamic 
amplification factors of the MDOF. At the results, it is cleared that the predominant period of 
the MDOF is close to be the period by the eigenvalues and in the short period or in the high 
level modes, the dynamic amplification factors are high which should not be neglected.  

Moreover, soil-structure interaction with SDOF are also analyzed by elastic analysis for 
the model building. Some effects to the building structure model by the rocking on the ground 
are discussed in the sway-rocking models. 

 
1 INTRODUCTION

In the single-degree-of-freedom (SDOF) analysis, the mass, the damping coefficient and 
the stiffness can give the predominant periods and the response values. In the multi-degree-of-
freedom-system (MDOF) analysis, after the mass matrix [M] , the damping coefficient matrix 
[C] and the stiffness matrix [K] without any external forces can give the eigenvalues, the 
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modes and others, the MDOF model is usually translated to a series of the SDOF models and 
the response values are analyzed. In the MDOF analysis, the predominant periods of the 
MDOF system with external forces are not usually discussed. 

Therefore, in this paper, the predominant periods of the MDOF of the shear system of 3 
mass with external forces of the periodic motions are analyzed. This analysis can give the 
response values of each mass in any periods of external forces, the predominant periods of 
each mass, by elastic and inelastic analysis. The dynamic amplification matrix is proposed. 

Moreover, soil-structure interaction (SSI) with the SDOF is also analyzed by elastic 
analysis for the model building. Some effects of SSI to the building structure model are 
discussed in the sway-rocking model. The external force vector including moment is proposed. 

 
2 PREDOMINANT PERIOD OF MDOF ANALYSIS 

The predominant periods of the MDOF analysis are analyzed and the dynamic 
amplification ratios are shown. In this analysis, as well as the periodic motion y  (=psint) in 
the external force of SDOF analysis in equation (1), the periodic motion in the external force 
of MDOF analysis is applied in equation (2). 

 
tmpxkxcxm sin   (1) 

 
           yMxKxCxM    (2) 

 
Where 
[M], [C], [K] : n-by-n square matrix 
{ x },{ x },{ x } : n-by-1 column matrix of response values of acceleration, 

velocity or displacement of MDOF 
{ y }  : n-by-1 column matrix for external force ( y =psint) (cm/sec2) 

p  : constant value (cm/sec2) 
  : angular frequency of the periodic motion (rad./sec) 

 
The system of the response values is also applied to be the periodic motion in equation 

(3). Equation (3) is the particular solution of equation (2) by the method of undetermined 
coefficient which has the assumption that { x } on i-th storey is linear combinations of shaking 
functions <{ ix }= { ic1 sint+ ic2  cost} > (equation (3)), in which { ic1 } and { ic2 } are the 
undetermined coefficients. Equation (3) is substituted for equation (2) to make eqaution (4). 
Equation (4) is an identity in any time and can be solved to equation (5), (6), (7) or (8) which 
give the solution { ix } for the reponse displacement of MDOF.  

The each element of { ix }in equation (6) includes the periodic motion in { iy } 
calculated by the shaking functions with the angular frequency  and the phase lag i on i-th 
storey. The dynamic amplification matrix [A], which doesn’t include any shaking function, is 
calculated by [M], [C], [K] and . The multiple of [A] and [M] can be amplitudes of the 
periodic motion { iy }. Therefore, equation (6) gives the predominant periods of the MDOF 
by the spectral analysis of . 
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      ii yMAx   (6) 

 
where 
[A] : n-by-n square matrix. [A] is a part of the particular solution and also the dynamic 
amplification matrix, which is calculated by [M], [C], [K] and  
[ 1A ], [ 2A ]: n-by-n square matrix. A part of [A] 
{ iy } : n-by-1 column matrix for a periodic motion part of the particular solution with the 
phase lag i on i-th storey, { iy =psin(t+i)} (cm/sec2) 
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In the analysis of SDOF, the complementary solution of equation (1), by the assumption 

that the external force is zero, can give the predominant period sgl = mk  and the particular 
solution by the method of undetermined coefficient of equation (1) can give the dynamic 
amplification ratio { S } explicitly by the ratio of the dynamic amplification to the static one 
in equation (9). The spectral relationship between /sgl and S  of equation (9) is well 
known as a curve line with one peak. 

 
 

222 )()( 


cmk

k
S


  (9) 

 
However, in the analysis of MDOF, the dynamic amplification matrix [A] of equation 

(6) doesn’t explicitly show the dynamic amplification ratio, likely equation (9) of SDOF. 
Moreover, the complementary solution of equation (2), can give the eigenvalues and the 
eigenvectors. These eigenvalues are considered to be the square of the angular frequency in 
the solutions and usually the high level modes are negleted in the analysis. 

280



M. Inukai, T. Kashima, T. Saito and T. Azuhata 

 4

In order to know what the eigenvalues are in the analysis of MDOF, one example of a 
stucture data is as follows.  
 
3 EXAMPLE FOR PREDOMINANT PERIOD OF MDOF ANALYSIS 

3.1 Sant’Agostino in L’Aquila, Italy
The structure is a 2 storeys masonry sotructure heritage with a lantern storey. İt is 

assumed to be the shear system of 3 mass.  
In the 2009 Italy L'Aquila Earthquake, Abruzzo, Italy, many monuments are damaged. 

The complex monument and church of Sant'Agostino in L'Aquila, Italy is one of these 
monuments and the very valuable chance was given to see the damage of it in L'Aquila. The 
typical damage of Sant'Agostino is the lantern fallen down to the roof of the next building in 
the West and severe damages in the ellipse dome or the walls. In this analysis, some structural 
identification was made by the shear system of 3 mass (Figure 1.) [1].  

The inelastic dynamic response analysis needs the weight, the stiffness and the shear 
coefficient of each storey. The size of Sant'Agostino were measured based on the Google 
satellite map and plan or elevation figures in some references of Sant'Agostino. The Guideline 
for the Construction Technical Law [2], Italy is also referred for the material properties. The 
specific gravity is assumed to be 19 (kN/m3) and the shear stiffness is assumed to be 23.0 
(kN/cm2). The period of the 1st storey is assumed to be 1.0 (sec) and the structural 
identification for the appropriate period and shear coefficient of each storey were made to 
follow the collapse of the lantern fallen down in the West. According to the drawings, the 
height is considered to be 41m. The weight of each storey is based on the wall areas of 
planning and the height of each storey to calculate the wall volume of each storey, decreasing 
of the openings, multiplying the specific gravity. The periods of each storey are based on the 
period of the 1st storey and the assumption of the linear relationship between the period T and 
the height of other storeys. The shear coefficients of each storey are decided by the 
assumption that the storey drift angles of the 1st and 2nd storey at the yielding point are 
nearly 1/1,000 (rad.) and the one of the 3rd storey (the lantern storey) is nearly 1/500. These 
storey drift angles, the periods or the stiffness give the shear coefficient. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Cross section transverse in nearly EW direction and analysis model for shear system of 3 mass 
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Table 1: Example values of stiffness and period of each 

storey for shear system of 3 mass 

Storey Stiffness ik  (kN/cm) Period Ti (sec) 

3   234 0.40 

2 2,004 0.80 

1 6,069 1.00 
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The matrix equation of motion in forced shakings with external dampings is shown in 
equation (10). The external forces are the periodic motions. 

Figure 2 shows the analysis model. Table 1 shows the stiffness ik  and the period Ti of 
each 3 storeys. According to the notes of equation (10), the period of i-th storey is calculated 
by the stiffness ik  of i-th storey and the summation of the mass upper than i-th storey. The 
damping coefficient of i-th storey is calculated by the damping factor h , the stiffness ik  and 
the mass im  of i-th storey and the summation of the mass upper than i-th storey. The damping 
factor h is 0.05. 

Equation (10) and (6) can give the dynamic amplification {xDA} and the static 
amplification {xSA} in equation (11-1) and equation (11-2). The ratio { D } of the dynamic 
amplification to the static one in each storey is shown in equation (12). 

Figure 3 shows the spectral analysis results for ( =2/T ) of the relationship between 
the dynamic amplification factor D  and the period T (sec) for the spectral analysis. Figure 3 
also shows the periods calculated by the eigenvalues which are given by equation (13). 
Equation (13) means the matrix equation of damped free motion with external damping. 
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According to Figure 3, the spectra of D  has the curves lines with usually 3 peaks on 

each storey. The periods calculated by the 3 eigenvalues are “0.39(s), 0.64(s) and 1.11(s)”.  
At the results, it is cleared that the predominant periods of MDOF are close to be the 

periods by the eigenvalues and in the short period or in the high level modes, the dynamic 
amplification ratios are at most 10. The dynamic amplification  DAx  at the predominant 
periods are usually different from the eigenvectors (Figure 4). 
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Figure 3: Spectra of dynamic amplification ratio D  

(when the stiffness is the initial stiffness of the hysteresis property.) (Ref. : Section 4.2) 
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Figure 4: Comparison of normalized response displacement (1F) and normalized eigenvectors by the 
value on the 3rd storey, at the initial stiffness of the hysteresis property. (Ref. : Section 4.2) 
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Almost eigenvalues are complex numbers (a bi, where a and b are real numbers, i: is 
imaginary number). But during the stiffness degrading, some of eigenvalues become real 
numbers. When the eigenvalues are real numbers, the motion is called as overdamping motion. 

The number of these eigenvalues is even, the issued frequency f (=1/T )(Hz) is zero and 
the eigenvector of the 1st eigenvalue is similar to the one of the 2nd eigenvalue. All elements 
of the eigenvectors are also similar. 

A part of the inelastic analysis results of Table 3.1 (shear coefficients at the yielding 
points qCyi are 0.07, 0.09 and 0.11), Section 4.2 is as follows. When the stiffness is decreased 
to 1/2,200 of the initial stiffness, the number of the eigenvalues which are real numbers is 2. 
The static amplification { SAx } in equation (11-2) is nearly 2.5x104 (cm) and the dynamic 
amplification { DAx } in equation (11-1) in the period T =0.83 (sec), is from 19 ~ 15 (cm), 
when the eternal force vector is t{1  1  1} (transposed matrix) (g). Therefore the ratio { D } in 
equation (12) is nearly 0.001 (Figure 5). The ratio { D } is less than 1, because the stiffness 
on the 1st storey is decreased in the stiffness matrix [K] and the motion is an overdamping 
motion on the 1st storey.  

Figure 6 shows the comparison of normalized response displacement (3F) and 
normalized eigenvectors by the value on 3rd storey, when the eigenvalue is a real number and 
the qk3 is decreased. Figure 6.(1) shows the response displacement on the 1st storey is larger 
than the one on the upper storeys in the 2nd and 3rd mode. It seems to match the overdamping 
motion on the 1st storey and the higher level modes should not be neglected.  

However, Figure 6.(2) seems to be similar to Figure 4.(2) at the the initial stiffness. 
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Figure 5: Spectra of dynamic amplification ratio D  

( when the eigenvalues are real numbers and qk3 = (1/1000)(qCy/y) (Ref. : Section 4.2) 
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4 RESPONSE VALUES OF MDOF BY ACCELERATION RECORDS 

4.1 Acceleration records 
The earthquake waves are shown in Table 2. Not only [2009 AQV EW, Itaca], but also 

[2009 L'Aquila Parking Entrance (AQK) EW, Itaca] and [2009 L'Aquila Castle (AQU) EW, 
Itaca] are used because the observation point of AQK is closer to Sant'Agostino and AQU is 
closest to it. In order to make the structural identification to clarify the physical phenomenon 
of the lantern fallen down to the West, the EW direction of these earthquake waves were used. 
 

Table 2: Earthquake waves in EW direction of L’Aquila Main shock (Magnitude 5.8) 

Date and Time 
in local time 

Station 
Code 

Address 
(L’Aquila, Abruzzo, Italy)

Peak Acceleration 
in EW (cm/sec2) 

Epicentral 
Distance 

(km) 

Distance to 
Sant'Agostino in 
L'Aquila (km)

06 Apr. 2009 AQV Center of Valley Aterno 662.6 4.9 5.5
03:32:39 AQK L’Aquila Parking Entrance 323.8 5.7 0.4

 AQU*) L’Aquila Castle 258 6.0 1.0
Note) *) The acceleration records of AQU are corrected by subtracting the average of all data. 

 

4.2 Inelastic dynamic analysis 
Figure 7 shows the hysteresis property of Tri-linear Model for the inelastic dynamic 

analysis. In this analysis, Takeda Model is applied which has the oriented point before the 
yielding point is the crack point in the opposite. The stiffness 4q k  of unloading after the  
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(2) qCy : Shear Coefficient at the yielding point of A 
( qCy = 0.07, 0.11, etc.) 

(3) qCmax : Shear Coefficient at the peak of B 
(4)   Q  : Storey Shear Force (kN) ( xk･ ) 

 

(5)
3q2q1q k,k,k : Stiffness Coefficient (1/cm) 





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


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(6) Stiffness Degrading Ratio : 1/1000 







  yk

1000
1k q3q

 

(7) h  : Damping factor (= 0.05) 
(8) g  : Gravity Acceleration (=980 (cm/sec2)) 

Figure 7: Hysteresis property of Tri-linear Model 
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yielding point has some relationship with the stiffness 0q k  between the yielding point and the 

crack point in the opposite side ( 4q k = 0q k ( y/ peak)0.4). 
The other symbols of qCc, 1q k , 2q k  and 3q k  are calculated by equations in Figure 7. 

Equations of qCc=0.4･qCy and (qk2)=(qk1)/3 are referred by the reference [3]. 
Ty is calculated by the mass m and the secant stiffness ky in equation (14). 

 
 

g
y

gky
mTy

･

δ

･ qCy
2

k
22

yq

   (14) 

4.3 Response values of MDOF by inelastic dynamic analysis 
In the structural identification, some cases of the period and the shear coefficient on 

each storey are calculated and the one of these results are shown in Table 3.1 ~ Table 3.3. 
Table 3.1 shows that all of 3 cases (AQV, AQK and AQU) identified the larger displacement 
x3 on the lantern storey to the West. Table 3.2 and Table 3.3 show the results if the lantern 
storey would be retrofitted, when the qCy3 is increased from 0.11 to 0.15 or 0.16. This 
retrofitting method would have valuable effects which would reduce the response 
displacement x3 on the lantern storey less than that before retrofitting. 

This Section shows the analysis results for the effects of the shear coefficient qCy3.  
 

Table 3.1: Structural properties and analysis results before retrofitting 
Structure Properties of each Storey ACC. 

Records 
(EW) 

Analysis Results of each Storey 
Period (s) Shear Coefficient (-) Response Relative Displacement (cm) 

Ty1 Ty2 Ty3 qCy1 qCy2 qCy3 x1 x2 x3 
     AQV -4.15 -4.15  +8.05 

1.00 0.80 0.40 0.07 0.09 0.11 AQK -2.83 -4.79 -10.88 
     AQU 1.84 2.60  +2.75 

Notes)(1) x1, x2, x3 : the positive (+) means the displacement to the East and negative (-) to the West. 
 (2) Hysteresis property is the Tri-Takeda Model. Ref. : Figure 7. 
 (3) Period Tyi is calculated by the secant stiffness and the mass on i-th storey.  
 (Tyi=2 kyimi

) 
 (4) These Notes are also applied to the Table 3.2 and Table 3.3. 
 

Table 3.2: Structural properties and analysis results if retrofitting (qCy3  0.15) 
Structure Properties of each Storey ACC. 

Records 
(EW) 

Analysis Results of each Story 
Period (s) Shear Coefficient (-) Response Relative Displacement (cm) 

Ty1 Ty2 Ty3 qCy1 qCy2 qCy3 x1 x2 x3 
     AQV -4.17 -4.00 +14.23 

1.00 0.80 0.40 0.07 0.09 0.15 AQK -2.89 -3.91 +5.89 
     AQU   1.80  -2.56 +5.73 

 
Table 3.3: Structural properties and analysis results if retrofitting (qCy3  0.16) 

Structure Properties of each Storey ACC. 
Records 

(EW) 

Analysis Results of each Story 
Period (s) Shear Coefficient (-) Response Relative Displacement (cm) 

Ty1 Ty2 Ty3 qCy1 qCy2 qCy3 x1 x2 x3 
     AQV -4.11 -4.27 +1.41 

1.00 0.80 0.40 0.07 0.09 0.16 AQK -2.84 -4.51 - 3.07 
     AQU 1.79 -2.60 +0.81 
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5 PREDOMINANT PERIOD OF SOIL-STRUCTURE INTERACTION  

5.1 Sway Rocking (SR) model 
The predominant period of soil-structure interaction is also analyzed. 
The sway rocking (SR) model is applied. Figure 8 shows overview of sway-rocking 

model for soil-structure interaction with SDOF. 
 

H

m

k

kR

kH

y x

m0

H

y
1

H0

1

0

1

x1

 

0

H0cH cR

 
Figure 8: Overview of sway-rocking model for soil-structure nteraction 

 
Figure 8 shows SDOF, sway and rocking between the foundation and the ground. This 

SR model has a mass of 0m  and 1m (kN/g) for mass of the structure and mass of the 
foundation. Stiffness of the structure and sway stiffness are k , Hk (kN/cm). Rocking stiffness 
is Rk (kN･cm/rad.). Damping coefficient of the structure is c kmh 12 (kN･sec/cm), the one 
of the sway in soil-structure interaction (SSI) is Hc = )(2 010 mmkhm H   (kN･sec/cm) and the 
one of the rocking in SSI is Rc = RkIh2 (kN･cm･sec/rad.). Equivalent height at the center of 
gravity of the structure and the foundation are 1H and 0H (cm). I (= 2

00
2

11 HmHm  ) (kN･cm2/g 
/rad.) is the moment of inertia at the ground surface for the 2 mass of SDOF and the 
foundation. h is damping facor (h = 0.02). g is gravity acceleration ( g = 980 (cm/sec2)). 

When the external force y  (cm/sec2) in acceleration records takes place on the ground 
level, SR model has the horizontal displacement of the ground y (cm), the horizontal sway 
displacement 0x  (cm), the horizontal displacement of SDOF  (cm) and the rotation angle of 
rocking  (rad.). The relative horizontal displacement to the ground of SDOF 1x  (cm) is 
calculated by equation (15). The storey shear force of SDOF is k  k ( 1x - 0x - 1H )) (kN).

 
   101 Hxx  (15) 
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)(

0011

000101000

1101111

HymHymkcI

ymHxkHxxkxcxm
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RR
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
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






 (16) 

 
These displacements have their velocities and accelerations. The motion equation is 

equation (16). In equation (16), the left sides are internal forces or moments and the right 
sides are external forces or moments. The 3rd equation in equation (16) has the external 
moment yHmHm )}({ 0011   (kN･cm) to SR model by the ground acceleration y , which 
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means the equilibrium of moments for the 2 mass around the ground surface and means that 
the 3rd equation includes implicitly the inertia forces, the damping forces and the storey shear 
forces in the 1st and 2nd equation in equation (16). Equation (16) is also described by 
equation (17) in matrix which has forced shakings and external dampings. 
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 (17) 

 
The right side of equation (17) shows the unit external force vector t{ 1  1  11{ Hm  

IHm )}( 00  } (transposed matrix). Similar unit external force vector in equation (10) 
shows that all elements are 1 (t{1  1  1}). But the 3rd equation of equation (17) is described 
for the response angle  (rad.) or the moment by the horizontal force, the mass matrix [M] for 
the response acceleration vector is same as the one for the external force vector and the 
rightest value is y  (cm/sec2). Therefore, this third element of the unit external force vector is 
“ 11{ Hm IHm )}( 00  ”. This unit is “rad./cm” and 1 (rad./cm) is not appropriate for this 
third element. It is understandable when 0m  is 0 and 0H is 0, the moment of inertia I would 
be described to be 2

11Hm  and this third element is calculated to be IHm 11 = 2
1111 HmHm = 

1/ 1H  (rad./cm), which is a reciprocal of an arm length of moment. 

5.2 Example of elastic analysis for SR model 
The predominat periods are also analyzed for SR model by elastic analysis. 
The model building is still Sant'Agostino in L'Aquila and it is modeled to SDOF of 

Figure 8. SR model needs many values in equation (17). All values are listed in Table 4. 
The period 1T  of SDOF of Figure 8 is assumed to be 1.14(sec), according to Figure 4, 

(1). Therefore, the stiffness k  of SDOF is 4.69x103 (kN/cm) ( k =(2/ 1T )2･ 1m ). 
Hk  and Rk  are assumed to be 1.47x106 (kN/cm) and 2.77x1011 (kN･cm/rad.), according 

to the test results in Japan before 1962 [4]. 
The height is modified to the equivalent height at the center of gravity for SDOF 

( 1H =1,130(cm)). Figure 1 doesn’t show the foundation, but it is assumed to have the 
foundation of 100 (cm) depth, the equivalent height ( 0H =50(cm)), the specific gravity (=15 
(kN/m3)) and the mass ( 0m =27.4 (kN/g)). 

Moreover, the period of the sway HT  is 0.0697 (sec) ( HT Hkmm )(2 01  ). 
The period of the rocking RT  is 0.167 (sec) ( RT RkI2 ). 

 
Table 4: Data for SR model 

m
1
 m

0
 I k k

H
 k

R
 c c

H
 c

R
 H

1
 H

0
 h 

154 27.4 1.95x108 4.69x103 1.47x106 2.77x1011 34.0 98.8 2.94x108 1,130 50 0.02
 

Figure 9 shows that the predominat periods of SR model are almost same as the periods 
calculated by the eigenvalues. The reason is predicted probably that the stiffness are far from 
other stiffness ( k << Hk << Rk ). All curves lines of SDOF, Sway and Rocking have the peaks at 
their periods and the curve of Sway has another peak at the same period as SDOF. The new 
period 0.0271 (sec) is very close to the period of only Sway without SDOF (TH’ = 

Hkm02 =0.0271 (sec)). The maximum of D  is nearly 25 in elastic analysis. 
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Figure 9: Spectra of dynamic amplification ratio D  in elastic dynamic analysis. 

 
6 COUCLUSIONS 

In this paper, the predominant periods of MDOF analysis are executed without SDOF 
and the dynamic amplification factors for a sample data of a model building are shown. The 
effects of soil-structure interaction are also analyzed in elastic analysis for the model building. 

The main points of these results are as follows; 
(1) According to the dynamic amplification ratio D  in the sample data of MDOF, the 

predominant periods of the MDOF for a model building are close to be the periods by the 
eigenvalues. The dynamic amplification ratios D  of MDOF are at most 10. 

(2) The normalized response displacement of MDOF at the stiffness degrading shows that the 
higher level modes should not be neglected. 

(3) In MDOF inelastic analysis, when some eigenvalues are real numbers, the motion seems 
to be overdamping. 

(4) For the effects of soil-structure interaction (SSI) with SDOF, the elastic analysis of sway-
rocking (SR) model, the predominant periods are close to the periods by the eigenvalues. 

(5) The maximum of the dynamic amplification ratio D of SR model in elastic analysis is 
nearly 25. 
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