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Abstract. In the last two decades, the increasing complexity of engineering systems boosted 
the development of very efficient simulation methods based on partitioning. In view of coupling 
dynamic parts of hybrid systems, the finite element tearing and interconnecting approach 
emerged as the most promising technique. Nonetheless, there is still a lack of a comprehensive 
study of algorithmic performances from the experimental perspective. In this view, the present 
paper sheds light on the application of two well-known parallel partitioning methods for the 
purpose of the simulation of hybrid models. Thus, an existent reinforced concrete bridge is 
chosen as a benchmark case study. In order to perform hybrid simulations, a novel coupling 
software was devised. It allowed for combining two physical piers to the numerical model of 
the remaining part of the bridge. As a result, successful tests were conducted at the ELSA 
laboratory of the Joint Research Centre of Ispra (Italy). 

1 INTRODUCTION 
In view of coupling dynamic parts of hybrid systems, partitioning methods are more than ever 
appealing and arouse a lot of interest in the context of hybrid experimental/numerical simulation 
techniques [1]. In fact, they are prone to combine a Physical Substructure (PS), which is the 
key region of interest of the emulated heterogeneous system, and a Numerical Substructure 
(NS) collecting all well-known subparts. During a heterogeneous simulation, a compliant time 
integrator calculates the interaction between NS and PS by solving the equation of motion of 
the entire system. Since Finite Element Tearing and Interconnecting (FETI) approaches allow 
for the concurrent solution of involved subdomains with large time step ratios, they guarantiee 
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a smooth stream of displacement commands on the PS, regardless the coarser time grid on the 
NS. In this context, [2] proved that velocity continuity on interface DoFs is the key solution to 
obtain unconditionally stable algorithms as long as all individual subdomains satisfy their own 
stability requirements. Along this line, Pegon and Magonette developed the PM method [3], 
which paved the way for parallel implementations of the FETI tailored to hybrid models. 
Interface energy dissipation and one order of accuracy loss in the subcycling case were stressed 
as major drawbacks. Moreover, the PM method needs for a starting procedure. Brun et al. 
proposed an improved variant of the PH algorithm [4], namely the modified PH method [5], 
which allows for computations in subdomains in a completely concurrent manner with no need 
for initialization and energy conserving. 
Mixed implicit/explicit multi-time partitioning methods tailored to Newmark schemes are ripe 
for a profitable application to hybrid simulations. Nevertheless, there is still a lack of a 
comprehensive study of algorithmic performances from an experimental perspective. Along 
this line, this paper presents algorithmic implementations of both the PM and modified PH 
methods tailored to both numerical/physical nonlinear systems. A twelve-pier reinforced 
concrete bridge is introduced as reference case study. Then, numerical simulations of the 
dynamic response of the bridge emphasize pros and cons of both algorithms. Finally, the 
experimental implementation of the PM method, which allows for conducting hybrid 
simulations of aforementioned bridge at the ELSA Laboratory of the Joint Research Centre of 
Ispra (Italy) is presented. 

2 PARTITIONED INTEGRATORS FOR SUBDOMAIN COUPLING IN HYBRID 
SIMULATIONS 

Both the PM and the modified PH algorithms are presented in this section. In detail, all 
implementations refer to the following set of coupled of nonlinear dynamic equations, 
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where, with regard to the generic subdomain	,  is the mass matrix; ,  	and	 	are
displacement, velocity and acceleration vectors,  is the restoring force and  represents 
the external time-varying load. 	is a Boolean matrix that collocates interface DoFs on the 
related subdomain. According to [2], in order to obtain unconditionally stable algorithms as 
long as all individual subdomains satisfy their own stability requirements, velocity continuity 
on interface DoFs is pursued. For the sake of clarity, zero tangent stiffness	 and damping 
	matrices read, 
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(3) 

Both coupling method are supposed to handle a pair of arbitrary Newmark schemes with their 
own characteristic parameters, i.e. 	,	, and ,	, for subdomains A and B, respectively 
[6]. 
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2.1 The PM method 
The task sequence of the PM method, analyzed in depth in [7] is sketched in Figure 1. It clearly 
recalls the GC method [2].However, a time step equal to 2tA is exploited in subdomain A in 
order to anticipate information on the subdomain B at the beginning of a new time step	. 

 
Fig. 1 - Task sequence of the PM method algorithm. 

The dashed line describes the ongoing parallel process in the two subdomains. Note that the 
synchronized exchange of information enables the parallel computation of both subdomains. 
The PM method is briefly summarized hereinafter. 
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Since the PM method needs to be initialized,  is equal to 1 when		is	equal	to	0, and the PM 
method is equivalent to the GC method, which is a staggered procedure. After the initialization 
step, i.e. n > 0,  is equal to 2 and the two-step forward prediction allows for parallel 
implementations. For the purpose of HS, the restoring force of the PS is measured on 
physical specimens, after applying the trial displacement	

 


,. Moreover, based on previous 

equations, the Steklov-Poincare' operator	, can be quantified as follows: 
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So, the  


 can be explicitly evaluated to cope with the synchronization requirements of HS. 
It is evident that the proposed method nicely suites the requirements of HS. 
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2.2 The modified PH method 
The task sequence of the modified PH method [5] is sketched in Figure 2. As for the PM 
method, it clearly recalls the PH method [4]. However, the evaluation of the Lagrange multiplier 
vector   is done at the end of each macro time step	Δ . 

Fig. 2 - Task sequence of the modified PH method algorithm. 
The red line describes the ongoing parallel process in the two subdomains. Note that the 
synchronized exchange of information enables the parallel computation of both subdomains. 
The modified PH method is briefly summarized herein. 
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Derivation of both coupling operators H and Y are briefly summarized. They can be easily 
derived on the linearized system of coupled equations (1-2) rearranged in matrix form. To this 
end, the Newmark algorithm is condensed to the following matrix equation, 

1 1
k k k k k

n n n+ += −      (10) 

where, 

2

k k

k k k

k k

t

t

γ

β

 
 

= − ∆ 
 − ∆ 

M 0 K
I I 0

I 0 I



 

( )
( ) 2

1

1 2

k k k

k k k

t

t t

γ

β

 
 
 = − − ∆ −
 
 − − ∆ −∆ − 

0 0 0

I I 0

I I I

  (11) 

1

1

k
n

k
n

+

+

 
 =  
  

F
0
0



 

1

1 1

1

k
n

k k
n n

k
n

+

+ +

+

 
 =  
  

u
u
u

ɺɺ
ɺ

 

(12) 

Accordingly, for a linearized system, the modified PH method can be expressed as, 
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Boolean matrices k  and k localize Lagrange multipliers and coupling DoFs, respectively. 
Since the coupling of velocities was proved to favor the stability of the global scheme, they 
read, 

T T
k k =  L 0 0

,
k k =  0 L 0 (14) 

The linear system (13) can be solved using a bordered system approach. Subdomain matrix 
blocks can be gathered together and the system expressed as: 
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Since the global solution is the sum of free and link quantities, 
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The second block row of (24) can be split as follows,

1 1 1BU BV BW 0n n n+ + += + =  (19) 

Accordingly, Lagrange multipliers  can be easily expressed through the Steklov-Poincaré 
operator	H, which is the dual Shur complement of the block matrix reported in (15), 

( ) 111
1 1 1BM L BV =H VAB

n n n

−−−
+ + +Λ = −  (20) 

In this way, the relevant energy at the interface is preserved. 

3 THE RIO TORTO BRIDGE CASE STUDY 
The Rio Torto viaduct is a RC structure built during the sixties and located between Florence 
and Bologna in Italy. Twelve portal piers support the thirteen-span bay deck of each 
independent roadway as shown in Figure 3. End spans measure 29 m, whilst internal spans 33 
m. Six Gerber saddles are present in the middle of the bridge and close to both abutments. 
Additional details can be found in [8, 9]. 
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Fig. 3. Lateral view of the Rio Torto viaduct. 
Solid and hollow circular cross section columns characterize short and tall piers, respectively. 
Relevant diameters measure 1200 mm and 1600 mm. The taller Pier #7 measured 41.34 m, 
whilst the shorter Pier #12 measured 13.80 m. Gerber saddles were removed in the isolated 
configuration where a pair of Concave Sliding Bearing (CSB) isolator were interposed between 
the deck and each pier. A comprehensive set of time history analyses of a refined FE model of 
the bridge was conducted in the OpenSees environment at both the SLS and ULS. With 
reference to the as built configuration, all piers showed hysteretic dissipation already at SLS. 
Conversely, time history analyses conducted in the isolated case proved that isolator pairs 
dissipated the most of hysteretic energy whilst piers remained in the linear range. A linear 
response of the deck was observed for both conditions. Moreover, numerical simulations 
highlighted that frame piers experienced in-plane deformations. In order to comply with the 
computational and control performance of the experimental facility for complex HSs, a reduced 
88-DoFs substructured model of the viaduct was assembled for the as built and the isolated
case [8, 9].In greater detail, the internal constraint setting was simplified and out-of-plane 
displacements of piers were fixed, whilst relative rotations among the deck and piers were 
released. Figure 4 depicts schematics of bridge configuration with node numbering, dimensions 
and frequencies of the four lowest eigenmodes. Nonlinear reduced S-DoF piers, provided 
transversal stiffness to the deck, whose cross sectional characteristics were	 = 4.63	,  =
51.90	,  = 3.45	,  = 0.10	. 

Mode Freq. [Hz] 
1 0.3674 
2 0.3771 
3 0.3922 
4 0.4607 

 

a 

Mode Freq. [Hz] 
1 0.5010 
2 0.6606 
3 0.9392 
4 1.3642 

 

b 

Fig. 4. Plan view of the reduced nonlinear models of the Rio Torto viaduct in: a) as built configuration; b) 
Isolated configuration. Dimensions in m; 

As can be appreciated from Figure 4, Pier #9 and #11 were substructured in the laboratory 
together with related pairs of CSB isolators. The deck, remaining piers and related isolators 
were simulated numerically by means of reduced state space models. In greater detail, nonlinear 
S-DoF reduced models of piers were based on a modified version of the well-known Bouc-Wen 
mode. They were capable of reproducing the softening behavior predicted by the 
aforementioned refined OpenSees FE model. To this end, the factor 1/1 + α was added to 
modify the linear component of the tangent stiffness and a ρ parameter was introduced to 
simulate the degradation of the linear stiffness . The resulting formulation reads, 
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( ) ( )
( )2/ 1 ( ( ) ) | |

g

n

r c x m x f u t p t

r k x sgn x r r xρ α β γ

+ ⋅ + ⋅ = − ⋅ +
  = ⋅ + ⋅ − ⋅ ⋅ + ⋅  

ɺ ɺɺ ɺɺ

ɺ ɺ ɺ
(21) 

where β, γ and n are parameters of the Bouc-Wen model.  In order to decrease the number of 
nonlinear parameters, γ and n were set to zero and to one, respectively [10]. Because, reduced 
nonlinear springs were not capable of reproducing piers' behavior at their full operating range, 
a set of parameters was identified for each different limit state. In order to force a linear response 
of piers without damage, β and ρ were set to zero, respectively, in the isolated case. Single 
Friction Pendulum Bearing OpenSees elements embed a physical model that is able to replicates 
the slip mechanism of CSB devices. Because bilinear shapes characterize inherent hysteretic 
loops, the state space model proposed by [11] was selected to reproduce the NS of isolator 
elements. Although the effect of variable vertical loads was neglected in the NSs, simplified 
bilinear hysteretic models well reproduced the response of all OpenSees isolators. Identified 
values of all nonlinear parameters of both reduced isolators and piers can be found in [8, 9]. 

4 NUMERICAL COMPARISON OF PROPOSED METHODS 
In the following, the algorithmic performance of the aforementioned algorithm are compared 
in a pure numerical setting. From the HS perspective, the behavior of link solutions is crucial. 
In fact, their magnitude directly reflects on smoothness of actuators trajectories. Along this line, 
the following analyses try to shed light on both link quantities, which force velocity continuity 
at the interface between the NS and PS. Figure 5 depicts a schematic of the isolated bridge 
model with particular emphasis to the substructuring scheme. 

Fig. 5. Close up view on the substructuring scheme of the reduced nonlinear models of the Rio Torto viaduct 
in the Isolated configuration. 

As can be appreciated from Figure 5, both interface Nodes #468 and #564 gather mass from 
both the deck and the related CSB isolator element. The last contributions is very small and 
entails high frequency eigenmodes on each 2-DoFs PS when detached from the overall bridge, 
i.e. in the decoupled configuration, hereinafter. In principle, resulting faster dynamics increase 
free displacements  on the physical side, and therefore, that link displacements  	must 
compensate for within the subcycling time. As a consequence, actuators, which span free 
solutions, can potentially experience sharp trajectories that reduce the quality of the test. In 
order to mitigate such effect, part of the mass on the deck side -NS- is moved on the isolator 
side -PS-. Since both contributions share the same nodes, the overall dynamics remains 
unchanged and eigenfrequencies of the decoupled PS are pleasantly reduced. As a result, the 
PS benefits of smaller link displacements	 , and therefore, actuators experience smoother 

408 468 520 564 618 662

609 616
604 612

YZ

X
NONLINEAR
S-DOF ISOLATORS

LINEAR
S-DOF PIERS

PS

PS
_1

_U
X

PIER  #11

ISO #11

PIER  #9

ISO #9

PS
_3

_U
X

PS
_2

_U
X

PS
_4

_U
X

274



Giuseppe Abbiati, Enrico Cazzador, Oreste S. Bursi, Pierre Pegon, Francisco Javier Molina and Fabrizio 
Paolacci 

10

trajectories. The mass fraction parameters  was introduced to modulate the mass transfer 
among NSs and PSs as follows, 

( )' '

, 1B B A A A
i i f i i f im m= + ⋅ = − ⋅M M M M M (22)

where the subscript  stands for interface; accordingly, mass matrices of (22) must be intended 
confined to interface DoFs. Therefore,  and  matrices characterize the interface DoFs 
masses of the PS and the NS, respectively, during HS. For the sake of clarity, Table 2 
summarizes the eigenfrequencies of the decoupled 4-DoFs PS for different values of the mass 
fraction parameter. 

Table 2 - Eigenfrequency of the decoupled PS 
Mass fraction 

Mode 0.001 0.005 0.05 0.95 
1 2.36 2.32 1.96 0.76 
2 3.56 3.50 2.98 1.15 
3 135.82 61.81 23.03 13.69 
4 174.67 79.45 29.53 17.51 

As can be appreciated from Table 2, a very small contribution of 0.005 already halves isolator 
eigenfrequencies. Clearly, such high frequency modes are not present in the PS of the as built 
configuration. Therefore, the isolated bridge is considered to compare algorithmic performance. 
In this preliminary study, coarse time step quantities are analyzed. Future investigations will 
shed light also on subcycling solutions. The same coarse time step was considered for both 
algorithms, i.e. Δt = 1/1024. Moreover, a Newmark implicit scheme -  = 0.5	and	 =
0.25 - was applied to both subdomains. In order to estimate errors, a reference solution was 
calculated considering a monolithic implementation of the Newmark implicit scheme with a 
time integration step	Δt = Δt 100⁄ . All reported results refer to the transversal displacement 
DoF of Node #468, which connects Pier #9 and related isolator to the deck. In detail, Figures 8 
and 10 compares link displacement histories obtained from both the PM and the modified PH 
methods for different subcycling and mass fraction setting.  

a) b) c) 
Fig.6 - PM method: link displacement solutions in the case of: a)  = , = . ; b)  = , =

. ; and c)  = , = . . 

   
a) b) c) 
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Fig. 7 - Modified PH method: link displacement solutions in the case of: a)  = , = . ; b)  =
, = . ; and c)  = , = . . 

As can be appreciated from Figures 6a, 6b, 7a and 7b, given the same subcycling  the mass 
fraction parameter affects  displacements that prevail where the mass is smaller, and both 
the PM and the modified PH algorithms show the same behavior. Conversely, as can be 
observed in Figures 6c and 7c, only the PM method can benefit of subcycling for reducing 
displacements on the PS. 

5 THE EXPERIMENTAL FRAMEWORK FOR HYBRID SIMULATION 
A comprehensive set of HSs of the viaduct was conceived. The PM method was selected as 
parallel partitioned time integrator. Its inherent subcycling capabilities permit the 
synchronization of the two separated integration processes that involve both NSs and PSs with 
a coarse time step tA  and a fine tB and, respectively. As a result, smooth actuator trajectories 
were achieved. In this particular case, an extended time scale λ = 200 was assumed together 
with a subcycling parameter  equal to 250. As result, tA = 2.5 ms was applied to NSs, whilst 
tB = 0.01 ms was selected for PSs. Thus, actuator displacement commands were generated on 
the PS at the controller rate of 500 Hz. An additional computational driver ran the Cast3m FE 
model of the NS. 2.5 scale mock-up models of Piers #9 and #11 were experimentally 
substructured in the ELSA laboratory. Since gravity loads did not play an important role on 
piers, Procedure #2 proposed by [12] was selected for specimen scaling. Therefore, scale factors 
S and S2 were applied to displacements and forces, respectively. Hence, both stress and strain 
quantities were preserved. Several HSs were carried out. Figure 8 depicts the experimental 
setup and the hysteretic response of Pier #9 during Test k09 and Test l02, which correspond to 
the as built and the isolated configuration at ULS, respectively. 

a) b) c) 
Fig. 8. a) 1:2.5 mock-up scale specimens of Piers #9 and #11; b) vertical loading system of frame piers. c) 

Comparison of hysteretic loops of HS k09 and l02, i.e. as-built and isolated configurations at ULS, respectively, 
for Pier #9 

As can be appreciated from Figure 8c, HSs proved the effectiveness of the retrofitting scheme 
based on CSB isolators.  

6 CONCLUSIONS 
Mixed implicit/explicit multi-time partitioning methods are ripe for a profitable application to 
HS. From this perspective, the present paper presents a preliminary study on the performance 
of the PM and modified PH methods tailored to hybrid systems. A twelve-pier reinforced 
concrete was introduced as reference case study. Comparisons were done in term of link 
displacement quantities, which must entail smooth actuator trajectories. During HS umerical 
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simulations and experimental tests proved that both algorithms are suitable to HS. In this respect 
particular care must be devoted to the partitioning of mass between PS and NS. Future 
investigation will be addressed in the frequency domain, where spectral distributions of errors, 
kinematic quantities and Lagrange multipliers can be compared to eigenfrequencies of both 
coupled and decoupled substructures. 
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