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Abstract. Technology of the object-oriented implementation for the multibody dynam-
ics models is the key feature when developing the corresponding computer structures.
We are based on an approach originating from concepts explained earlier. Following the
guidelines outlined there one can develop the family of the constraint abstractions being
adapted to any type of the machinery applications and relatively easily implement cor-
responding family of Modelica models. One also can reorder these classes hierarchically
using sequences of the behaviour inheritance. Solutions concerning contact problems and
corresponding examples are under consideration.

1 INTRODUCTION

Development of a computer model for the multibody system (MBS) dynamics is con-
nected usually with use of a unified technology of any type for constructing models in an
efficient way. Object-oriented languages [1] are known to resolve such a problem succes-
sively step by step using their natural features. On the other hand one of the natural
way for representing the MBS dynamics is the so-called multiport representation of the
models initially based on the bond graph application [2]. This latter approach is based
on the idea of energy interchange, and substantially on energy conservation for physically
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interconnected subsystems of any engineering type. Consider in the sequel a technology
for constructing a model of MBS dynamics with constraints of any specific type in a uni-
fied way. Note that the unilateral constraints, like ones of mechanical contact may also
be included in the further consideration process.

A lot of methods to describe the structure of the MBS using different graph approaches
is known, see for instance [3]. Consider the MBS consisting of m + 1 bodies B0, . . . , Bm.
Represent it as a set B = {B0, . . . , Bm}. Here B0 is assumed to be a base body. We
suppose B0 to be connected with an inertial frame of reference, or to have a known motion
with respect to (w. r. t.) the inertial frame of reference. For example one can imagine
the base body as a rotating platform, or as a vehicle performing its motion according to
a given law. For definiteness and simplicity we suppose in the sequel all state variables
describing the rigid bodies motion always refer to one fixed inertial coordinate system
connected to the base body by default.

Some bodies are considered as connected by mechanical constraints. Suppose all con-
straints compose the set C = {C1, . . . , Cn}. We include in our considerations constraints
of the following types: holonomic/nonholonomic, scleronomic/rheonomic.

Thus one can uniquely represent a structure of the MBS via a undirected graph G =
(B, C, I). Here I ⊂ C × B is an incidence relation setting in a correspondence the vertex
incident to every edge Ci ∈ C of the graph. According to physical reasons it is easy to see
that for any mechanical constraint Ci there exist exactly two bodies Bk, Bl ∈ B connected
by this constraint.

2 BASE CLASSES FOR THE MULTIBODY DYNAMICS MODELS

It is clear that consideration of the graph G provides only a simplest structural infor-
mation insufficient for the MBS dynamical description. Indeed, in addition to the force
interaction represented usually by wrenches between bodies Bk, Bl through the constraint
Ci there exist kinematic conditions specific for different kinds of constraints. Wrenches
themselves can be represented in turn by constraint forces, reactions, and constraint
torques couples. These forces and couples are connected by virtue of Newton’s third law
of dynamics.

Thus if the system of ODEs for translatory-rotary motion can be associated with
the object of a model corresponding to rigid body, then the system of the algebraic
equations in a natural way can be associated with the object of a model corresponding
to constraint. Note that according to above consideration the set of algebraic equations
comprises relations for constraint wrenches, and kinematic relations depending on the
certain type of constraints.

Thus all the “population” of any MBS model is reduced to objects of two classes: Rigid-
Body (objects B0, . . . , Bm), Constraint (objects C1, . . . , Cn). According to this approach
simulation of the whole system behavior reduces to permanent information interaction be-
tween the objects of two considered types. Within the frame of Newton’s laws of dynamics
one can construct the MBS as a communicative network for this interaction. In this case
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the objects of bodies “feel” the action of other ones through corresponding objects of
constraints.

Physical interactions are conducted in models due to objects splitted also in two classes
of ports: WrenchPort, KinematicPort. The first one is to be used to transfer wrench.
In addition, WrenchPort has to be used for transferring the information about current
location of the point reaction acts upon.

In our idealized model the force interaction between bodies supposed exactly at a
geometric point. Its coordinates are fed outside constraint object through WrenchPort
permanently in time.

Now it is possible to describe an architecture of information interactions within the
particular constraint Ci corresponding to an individual edge of graph G, see Fig. 1. Thus
computer model of the particular constraint is represented by the communication network.

Figure 1: Architecture of constraint

KinematicPort is to be used to transfer the data of rigid body kinematics: configuration
(position of center of mass, orientation), velocity (velocity of the center of mass, angular
rate), and acceleration (acceleration of the center of mass, angular acceleration) contain-
ing in particular information about twist. When getting force information through ports
W1, . . . , Ws from the incident objects of class Constraint the object of class RigidBody
simultaneously generates, due to an integrator, kinematic information being fed outside
through the port K. On the other hand every object of class Constraint gets kinematic
data from the objects corresponding to bodies connected by the constraint under con-
sideration through its two “input” ports KA, KB. Simultaneously using the system of
algebraic equations this object generates information concerning wrenches, and transmits
the data to “output” ports WA, WB for the further transfer to objects of bodies under
constraint.

For simplicity and clearness we apply now base classes from above for simulating the
dynamics of MBSs with bilateral constraints [4]. Application of the components for the
unilateral constraints [5, 6] we will see later.
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In superclass RigidBody dynamics of rigid body is described here by means of Newton’s
differential equations for the body mass center, and by Euler’s differential equations for
the rotary motion. Note that to be able to have an invariant description of the rotary
motion one can use an excellent tool: quaternion algebra H. In this case we “lift” the
configuration manifold from SO(3) to S3 ⊂ H and then implement dynamics of rotation
in flat space H ∼= R4 taking into account that S3 is an invariant manifold of the rotary
dynamics redefined on H. In this way we have only one flat chart H for the underlying
due to double covering configuration manifold SO(3), and need not in any special choices
of the configuration angles or anything like that.

The double covering S3 → SO(3), q �→ T mentioned is implemented inside the Rigid-
Body class by the known formula. The rotation matrix T is fed outside the object through
the KinematicPort permanently in time. The Euler equations are constructed using
quaternion algebra in a way described in [4].

Remind that according to our technology of the constraint construction [4] two con-
nected bodies are identified by convention with the letters A and B fixed for each body.
All kinematic and dynamic variables and parameters concerned one of the bodies are
equipped with the corresponding letter as a subscript.

All objects of the class Constraint must have classes-inheritors as subtypes of a corre-
sponding superclass. According to Newton’s third law this superclass must contain the
equations of the form FA + FB = 0, MA + MB = 0 in its behavioral section. Here arrays
FA, MA and FB, MB represent constraint forces and torques “acting in directions” of
bodies A and B correspondingly. Kinematic equations for different types of constraints
are to be added to the last equations in different classes-inheritors corresponding to these
particular types of constraints.

3 JOINT MODEL AS ONE OF A BILATERAL CONSTRAINT

Class Joint plays a key role in the future model of a vehicle we will build. Joint is
a model derived from the base class Constraint. Remind [5] that in order to make a
complete definition of the constraint object behavior for the case of rigid bodies one has
to compose a system of twelve algebraic equations w. r. t. twelve coordinates of vectors
FA, MA, FB, MB constituting the wrenches acting upon the connected bodies.

First six (??) always present in the base model Constraint due to Newton’s third law.
For definiteness suppose these six equations are used to express six components of FB,
MB depending on FA, MA. Thus six components of FA, MA remain as unknowns. To
determine them each constraint of rigid bodies need in six additional independent algebraic
equations. These equations may include components of force and torque directly, or be
derived from the kinematic relations corresponding to specific type of the constraint.

In the case of the joint constraint being under construction here let us represent the
motion of the body B as a compound one including the body A convective motion w. r. t.
an inertial frame of reference, and a relative motion w. r. t. the body A. An absolute
motion is one of the body B w. r. t. the inertial system.

4

194



Ivan I. Kosenko, Kirill V. Gerasimov and Mikhail E. Stavrovskiy

Define the joint constraint with help of the following parameters: (a) a unit vector
nA defining an axis of the joint in the body A; (b) a vector rA fixed in the body A and
defining a point which constantly stays on the axis of the joint; (c) a vector rB fixed in
the body B and defining a point which also constantly stays on the axis of the joint. The
main task of the base joint class is always to keep geometric axes fixed in each of the
bodies in coincidence.

First of all one has to compute the radii vectors of the points fixed in the bodies w. r. t.
inertial system Rα = rOα + Tαrα (α = A,B), where [5] rOα is the position of the α-th
body center of mass, Tα is its current matrix of rotation. The joint axis has the following
components nAi = TAnA in the inertial frame of reference. According to the equation for
relative velocity for the marked point of the body B defined by the position RB we have
vBa = vBe +vBr, vBa = vOB

+ [ωB, TBrB], vBe = vOA
+ [ωA,RB − rOA

], where vBa, vBe,
vBr are an absolute, convective, and relative velocities of the body B marked point, ωA,
ωB are the bodies angular velocities.

Furthermore, according to the computational experience of the dynamical problems
simulation the precompiler work is more regular if the kinematic equations are expressed
directly through accelerations. Indeed, otherwise the compiler tries to perform the formal
differentiation of equations for the velocities when reducing an index of the total DAE
system. Frequently this leads to the problems either in time of translation or when running
the model.

Thus using the known Euler formulae for the rigid body kinematics and the Coriolis
theorem we obtain an equations for the relative linear acceleration in the form

aBa = aOB
+ [εB, TBrB] + [ωB, [ωB, TBrB]] , aBa = aBe + 2 [ωA,vBr] + aBr,

aBe = aOA
+ [εA,RB − rOA

] + [ωA, [ωA,RB − rOA
]] , aBr = µnAi,

where aBa, aBe, aBr are an absolute, convective, and relative accelerations of the body
B marked point, εA, εB are the bodies angular accelerations, vBr is a relative velocity of
the body B marked point, ωA, ωB are the bodies angular velocities.

We also need in an analytic representation of conditions that the only projections of
the bodies angular velocities and accelerations having a differences are ones onto the joint
axis. Corresponding equations have the form ωB = ωA + ωr, εB = εA + [ωA,ωr] + εr,
εr = λnAi, where ωr, εr are the relative angular velocities and accelerations.

Besides the kinematic scalars µ, λ we will need in their reciprocal values F = (FA,nAi),
M = (MA,nAi) correspondingly. Note that the class described above is a partial one
(doesn’t yet complete the constraint definition) and can be used to produce any imaginable
model of the joint type constraint. To obtain a complete description of the joint model
one has to add to the behavioral section exactly two equations. One of them is to define
one of the values µ, F (translatory case). Other equation is intended to compute one of
the values λ, M (rotary case).
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4 CONTACT AS A PARTICULAR CASE OF MECHANICAL
INTERCONNECTION

For simplicity we suppose here objects of unilateral constraint implement model of me-
chanical contact without impacts. Though in general according to the nature of unilateral
constraint one can describe it using fundamental state variable which at any time instant
can have one of three values: “Flight”, “Sliding”, “Rolling”. Values enumerated have a
sense transparent enough. State “Flight” means the constraint at a current time instant
is in a disconnected condition i. e. bodies in fact are not connected and can perform free
relative flying. As state variable has one of values “Sliding” or “Rolling” then bodies
supposed to be in a contact. The difference is that the first state permits the relative
slipping of the bodies but the second one does not.

The dynamics of a rigid body translatory–rotary motion was outlined above. However
the mechanical constraint model representation undergoes an essential changes in compare
with the bilateral case. We use the so called complementarity rules [7] as a base for the
unified description of the unilateral constraint. Taking into account complementarity rules
one can see easily that any constraint always is defined by the three scalar equations. To
derive these equations first consider local geometry of the problem, see Figure 2.

Figure 2: Area of Constraint

Outer surfaces supposed to be defined with respect to principal central axes of cor-
responding bodies by the equations fα (rα) = 0 (α = A,B). Then in inertial frame of
reference for the whole multibody system these equations will take the form gα (r0) =
fα [T ∗

α (r0 − rOα)] = 0 (α = A,B), with rOA
, rOB

being a vectors of masscenters positions
OA, OB for the bodies A and B, and TA, TB mean an orthogonal matrices for current
bodies orientations. An asterisk denotes conjugating what equivalent to inverting of ma-
trix for the case of orthogonality. Thus the functions gA(r0), gB(r0) depend upon the time
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indirectly through the variables rA, rB, TA, TB.
Constraint object of our model is to compute at each current instant positions of the

points PA and PB which are the nearest ones for interacting bodies A and B. By virtue
of above assumptions such points are to be evaluated in a unique way. Denote the radii
vectors of these points with respect to inertial frame of reference by rPA

, rPB
. Then using

simple geometric considerations for the coordinates of the cited vectors one can derive the
following system of algebraic equations

grad gA (rPA
) = λ · grad gB (rPB

) ,
rPA

− rPB
= µ · grad gB (rPB

) ,
gA (rPA

) = 0,
gB (rPB

) = 0.
(1)

One can verify easily that the gradients can be computed by formulae grad gα (rPα) =
Tα grad fα [T ∗

α (rPα − rOα)], where α = A,B. It easy to see the system (1) consists of
eight scalar equations and has eight scalar unknowns: xPA

, yPA
, zPA

, xPB
, yPB

, zPB
, λ, µ.

Variables λ, µ are an auxiliary ones. The equations (1) are in use either without or with
a presence of the contact of bodies A, B. In a latter case the equation µ = 0 instead of
one of the surfaces equations is in use.

According to computational experience it is more reliable and convenient to use the
equations of constraints in a differential form instead of those ones in the algebraic
form (1). Such an approach is used frequently also when analyzing the properties of
mechanical systems.

Normal vector nA = grad gA /|grad gA| will play an important role in the further course.
Normal for an outer surface of the body A is chosen here for definiteness. One can use
the vector nB as well.

Let us perform now a unified description of the unilateral constraint using kinematic
and/or force equations. Denote by FA the force acting on the body A from the body B.
And by FB denote the force acting on the body B from one of A vice versa. Each force
mentioned acts at the point Pα, α = A, B. In addition, let us introduce auxiliary notations
FAn = (FA,nA), FAτ = FA − FAnnA, vr = vPA

− vPB
, vrn = (vr,nA), vrτ = vr − vrnnA.

If the bodies are disconnected and the constraint is in a state “Flight” then the force of
reaction is equal to zero. Thus we have three scalar equations. For unifying the system of
constraint equations further and for taking into account arbitrary directions of the normal
nA let us introduce auxiliary scalar variable κ in a way such that

FAn = 0, FAτ − κnA = 0.

Actually one has obtained the system of four equation with four unknown variables FAx,
FAy, FAz, κ.

In case of bodies contact the condition FAn = 0 is substituted by the kinematic one
vAn = 0. States “Sliding” and “Rolling” differ one from another using conditions in a
tangent plane. Implementation of the Coulomb friction model supposed for the simplicity.
Then one can obtain the vector force equation in the tangent plane

FAτ − d · FAnvrτ /|vrτ | − κnA = 0, (2)
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where d is the coeffitient of friction.
For rolling the tangent velocity has to be zero

vAτ − κnA = 0.

In the case of sliding the model equation (2) “works” properly if the relative velocity
isn’t very small. However the problem of regularization for the equation of constraint (2)
arises at the instance of transition from “Rolling” to “Sliding”. It turns out that one can
apply here the known approximation for Coulomb’s friction using regularized expression
for the tangent force

FAτ − κnA = d

{
FAnvrτ /|vrτ | as |vrτ | > δ,
FAnvrτ/δ as |vrτ | ≤ δ,

where one supposes that δ � 1.
It is known [8] that in this case the solution of the regularized problem remains close

to the solution of the original one on asymptotically large time intervals. Implementation
and further simulation show this closeness holds with the very high degree of accuracy.
Such an approach resolves completely the problem of modeling for accurate transitions
between states of “Sliding” and “Rolling”.

Thus properties of the frictional contact as: (a) contact tracking algorithm; (b) contact
velocities computation; (c) contact forces computation; (d) contact surfaces particular
properties are combined in an object-oriented manner forming lines of inheritance in a
natural way.

5 CLASS PARAMETRIZATION IN CASE OF COMPLIANT CONTACT

Implementation of the mechanical contact model with compliance assumes much more
possibilities for the contact properties than in the rigid case. According to experience while
developing the models for elastic contacting of rigid bodies interactions in the multibody
dynamics a flexibility provided by an object-oriented approach can be used to utilize a
wide variety of different properties concerning a contact of solids. The properties are
mainly of the following categories:

(a) geometric properties for surfaces in vicinity of the contact patch (gradients of the
functions defining surfaces, their Hesse matrices);

(b) a model to compute the contact area dimensions and normal elastic force;
(c) model for the normal viscous force of resistance;
(d) model for the tangent forces along the plane of the contact area.
A submodel of the geometry properties is to describe analytically algebraic surfaces

of the structure complex enough. To implement the normal force computation one can
choose from at least two approaches: the Hertz model and its volumetric modification.
Force of viscous resistance also can be modeled in several different ways: linear, non-linear,
etc. In the models for tangent forces one can adopt either “simplest” approaches based
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Figure 3: The model of mechanical contact by stages of inheritance.

on the Amontons–Coulomb friction or more complex ones represented by the Contensou–
Erismann, and other models.

While developing a mechanical contact model architecture we used the base class Con-
straint described above as a starting point to construct its inheritor ContactConstraint-
Template being simultaneously a base class of new family of models to simulate mechanical
contacts. Really this class is a base template represented as a container having four “sock-
ets” to instantiate there the specific parameter classes of four types enumerated above,
see its visual model in Figure 3 at a top left corner.

To develop complete model one can move along different ways. Class parametrization
implemented in Modelica language for example is the facility in line to apply to the
problem under description. In our case we have four class parameters corresponding to
the submodel categories enumerated above. An example to construct specific contact
interaction model see in Figure 3. The example includes two stages of inheritance:

1. to derive a template with the forces models, namely: the Hertz model for normal
force, non-linear viscous force, the Contensou–Erismann model for the dry friction forces
(to “fill in” three sockets in the middle of the base template visual model, see the derived
template visual model at a central position of the Figure 3);

2. to complete the whole construct one should define a specific geometry submodel
for the surfaces in contact (to “seal” the socket for geometry properties, see the complete
visual model at a bottom right corner of the Figure 3).
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On all the stages of inheritance the templates considered have an internal information
interconnections between the submodels to be instantiated. These interconnections are
implemented via the set of equations hidden behind the visual models and can vary for
different models requiring different variables for the algorithms to compute normal and
tangent forces of the complete model. So the whole picture remind us known construct
of a card with the sockets and the interconnection wiring in its internal layers as a base
template, and a chips to be instantiated in the sockets as a models of four types from
above. With one exclusion: we have the derived template playing a role of additional
card with its own additional wiring servicing already instantiated models “covering the
card” of the base template.

One can remark finally an approach under presentation allows us to create and to
change fast enough different types of an elastic contact models while developing the multi-
body dynamics systems simulators.

6 EXAMPLE OF THE OMNI VEHICLE DYNAMICAL MODEL

Investigation of omni vehicle dynamical properties is sufficiently popular topic in field
of the multibody dynamics [9, 10, 11, 12]. The omni vehicle is one having omni wheels,
wheels equipped by rollers along the rim. Simplified, idealized models having contacting
rollers as an infinitely small discrete elements are known. Thus one has a resulting non-
holonomic constraint being “uniformly distributed” over the wheel rim.

Our goal here is to develop a technique for building up a dynamical prototype for the
“real” model of the omni vehicle explicitly involving dynamics of physical rollers. Here
we rely upon the “simple” 3D multibody dynamics library classes from above which was
utilized previously in several examples of the multibody systems dynamics [13]. Simulta-
neously this library enables us to create complex dynamical models including unilateral
constraints of different nature.

We will pay here main attention to the process of the omni vehicle dynamical model
development. Once again for simplicity we apply for the mechanical contact model the
rigid point-contact one. This model has three structural levels of complexity: level of the
roller; level of the omni-wheel; one of the whole vehicle, see Figure 4).

All the classes used in the vehicle model were mentioned above. In addition, one has
to note that the contact tracking algoritm is possible to be arranged extremely simple
and effective for the case of the wheel vertically aligned.

In the model of Figure 4 one has a vehicle with three omni-wheels. Each wheel has four
rollers. Computational experiments were performed for different numbers of rollers. In
addition, computational comparisons were performed for almost limit cases of simplified
models with rollers inertial properties almost vanishing. The verification process was
completed successfully.
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Figure 4: Left: The omni wheel visual model. Right: The omni vehicle visual model.

7 CONCLUSIONS

-The process of the models development and debugging becomes fairly easy and simple
if one uses physically-oriented approach for the MBS dynamics simulation.

-An acausal modeling accelerates the model development releasing an engineer from
the problem of causality assignment if s/he takes into account some requirements like
complementarity rules.

-An object-oriented representation makes it possible to develop the constraints models
adopted to the specific types of the bodies interconnections in a fast and effective manner.

-The bond graph theory guidelines are useful for the MBS model building process to
create consistent resulting DAE system.

-Introducing the compliance into the model may be useful and effective preserving the
principal properties of the MBS like anholonomity etc.

-The most natural and effective way to implement computer model of the mechanical
contact is use of the templates with the object-oriented class parametrization.

-There exist a possibility for smooth impactless switching between rollers at contact
upon rolling of omni wheel.

-Efficient and simplified contact tracking algorithm was implemented.
-Influence of friction model on dynamics of the omni vehicle was analyzed.
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Sweden, November 3–4. (2003) 299309.

[5] Kossenko, I. I. Implementation of unilateral multibody dynamics on Modelica. Pro-
ceedings of the 4th International Modelica Conference, Hamburg University of Tech-
nology, Hamburg–Harburg, Germany, March 7–8. (2005) 1323.

[6] Kosenko, I. Implementation of unilateral constraint model for multibody systems
dynamics on Modelica language. Proceedings of ACMD2006, The Third Asian Con-
ference on Multibody Dynamics 2006, Institute of Industrial Science, The University
of Tokyo, Tokyo, Japan, August 1–4. (2006) 8pp.

[7] Pfeiffer, F. Unilateral multibody dynamics. Meccanica. (1999) 34:437–451.

[8] Novozhilov, I. V. Fractional Analysis : Methods of Motion Decomposition,
Birkhauser. (1997).
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