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Supersolid stripes enhanced by correlations in a Raman spin-orbit-coupled system
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A Bose gas under the effect of Raman spin-orbit coupling (SOC) is analyzed using the discrete spin T-moves
diffusion Monte Carlo method. Upon computing the energy as well as the static structure factor and the superfluid
fraction of the system, the emergence of an energetically favorable supersolid stripe state is observed, which
is in agreement with recent observations. A significant enhancement of the stability of the stripe phase with
respect to the mean-field prediction is observed when the strength of the interatomic correlations is increased.
We also quantify and characterize the degree of superfluidity of the stripes and show that this quantity is mostly
determined by the ratio between the Raman coupling and the square of the momentum difference between the
pair of SOC-inducing laser beams.
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I. INTRODUCTION

Spin-orbit coupling (SOC), which denotes the interplay be-
tween a particle’s momentum and its spin, has been a subject
of interest in recent years, both theoretically and experimen-
tally. This is due to the wide variety of exotic quantum states
induced by this kind of interaction, which include topological
insulators [1], topological superconductors [2], and Majorana
fermions [3]. SOC is a relativistic effect that emerges naturally
in electronic systems and that is also synthetically engineered
[4] in ultracold atomic gases. These recent realizations in
dilute gases represent an important achievement in the study
of the physics of SOC due to the high controllability and
tunability of these systems. In the particular case of Raman
SOC, its implementation was first achieved experimentally
by inducing a Raman coupling via two laser beams on an
atomic �-type configuration. SOC is then generated by the
simultaneous driving of a spin-flip transition and transferring
of momentum [5–9]. Under this scheme, Raman SOC has
been realized with 87Rb bosons, both in the continuum [5] and
in a lattice [10,11], and also with other species: 6Li [8], 40K
[7], 87Sr [12], 173Yb [13,14], and 161Dy [15]. In this context,
two hyperfine states of the atom are labeled spin states.

In this paper, we focus on Raman SOC, which couples the
linear momentum of an atom with its spin according to

Ŵ SOC = h̄k0

m
P̂xσ̂z + h̄2k2

0

2m
− �

2
σ̂x, (1)

with m the mass of the particle, P̂x the x component of the mo-
mentum, σ̂x and σ̂z the Pauli matrices, � the Raman coupling,
and k0 the magnitude of the wave-vector difference between
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the two laser beams. Some striking features induced by the
SOC interaction can be observed already at the single-particle
level. The coupling between momentum and spin implies that
the minimum of the energy dispersion relation is in a nonzero-
momentum, degenerate state for a given range of values of
the Raman coupling [16]. This degeneracy involves states
of equal magnitude but opposite sign in momentum space,
enabling the possibility of a stripe-phase ground state. The
inclusion of interactions changes this behavior, and depending
on the parameters of the Hamiltonian a single momentum
state or a stripe state is favored, each one with a different
momentum.

Supersolid stripes arise from the breaking of two sym-
metries: gauge symmetry, giving rise to off-diagonal long-
range order; and spatial symmetry, seen as a periodic density
modulation in space [17]. The emergence and characterization
of stripes in SOC systems have been a subject of major
relevance in the field, from both the theoretical [17,18] and the
experimental sides [19]. Despite being predicted by theory,
the stripe phase was not detected in the first experimental
realization of Raman SOC by Spielman’s group [5], mainly
due to the extremely low spin dependence of the interatomic
interactions between 87Rb atoms. Later, Ketterle’s group [19]
provided evidence of its existence through Bragg scattering,
using a new Raman SOC setup with 23Na that allowed for
better control of the spin interactions. Recently, they have
also been detected in another experiment with 87Rb atoms
[20], where the contrast of the stripes is enhanced by rapidly
increasing the Raman coupling before probing the density
modulations by optical Bragg scattering.

In previous theoretical works, the phase diagram of an
interacting system of atoms under Raman SOC has been
reported [16,21]. However, the diagram is restricted to the
mean-field regime, valid only for very low gas parameter
values, �10−4. In order to extend these results to the stronger
interacting regime and to deal with the nonlocal character
of the SOC interaction, we use the discrete spin T-moves
diffusion Monte Carlo (DTDMC) method [22–24] to study
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the system from a microscopic point of view. Starting from
a variational ansatz, we propagate the initial wave function
in imaginary time keeping its phase constant, leading to a
statistical representation of the best possible wave function
given a phase constraint (fixed-phase approximation). The
DTDMC is then used to sample relevant observables, some
of which may not be easily calculated at the mean-field level.
An exact form of the imaginary time propagator up to first
order in the time step is employed.

This paper is organized as follows. In Sec. II we discuss the
Hamiltonian of the system and the relevant parameters used
in the elaboration of the phase diagram. In Sec. III we show
and discuss the phase diagram of the system, as well as the
static structure factor, the pair distribution function, and the
superfluid fraction, focusing on the stripe phase. Finally, in
Sec. IV we summarize the main conclusions of our work.

II. HAMILTONIAN

We study a three-dimensional system of N bosons of
mass m under periodic boundary conditions described by the
Hamiltonian

Ĥ =
∑

i

[
P̂2

i

2m
+ Ŵ SOC

i

]
+

∑
i< j

V̂i j , (2)

where V̂i j is a short-range, two-body, spin-dependent in-
teraction. We use two model interactions: a soft-sphere
(SS) potential of strength V0(si, s j ) and range R0(si, s j )

and a Lennard-Jones (LJ) force Vi j (ri j, si, s j ) = ( σ12(si,s j )
ri j

)
12 −

( σ6(si,s j )
ri j

)
6
. Here, ri j is the distance between the ith and

the jth particles, and si, s j = ±1 are their spins. The trial
wave function used for importance sampling in the DTDMC
method, which also fixes the phase, is chosen as the product
of one-body and two-body (Jastrow) terms. For the former,
we use the expression reported in Ref. [16], with the sign
of the spin-down component changed due to the different sign
of the � term in the Hamiltonian. The Jastrow factor depends
on the interaction V̂i j . For the SS potentials we use the zero-
energy solution of the averaged interaction along the different
spin channels, which provides a lower variational energy than
a spin-dependent two-body Jastrow factor. In the case of the
LJ interaction a McMillan factor of the form e−(b/r)5

is used,
with b a constant that is variationally optimized. The choice
of the parameters of the two-body interaction V̂i j determines
the different channel scattering lengths as,s′ , as according to
Ref. [25] the inclusion or omission of the SOC term does
not appreciably change them. The values used in this work
fulfill the condition a+1,+1 = a−1,−1 > a+1,−1 = a−1,+1, as in
the experiments in Ref. [19]. Finally, we express all quantities
in dimensionless form, introducing characteristic length (a0 =
1/k0) and energy (E0 = h̄2k2

0/2m) scales.
In order to characterize the phase diagram of the model,

we use the standard gas parameter na3, with a = a+1,+1 the
scattering length of the interaction in the (+1,+1) channel.
It should be noted that, for this system, na3 is not a scaling
parameter. However, we use it to characterize the combined
effect of the density and the interaction. We have checked,
though, that for very low values of na3 one recovers the

mean-field results, while for larger values, the DTDMC simu-
lations reveal that the extension of the stripe-phase domain is
increased with respect to the mean-field prediction. This may
be a relevant issue for experiments aiming to detect and/or
characterize the stripe phase. In order to illustrate this, we set
the density to n = 3.7 × 10−3, with the number of particles
N ∈ [50, 120] and the size of the simulation box changing
as a function of the momentum of the trial wave function.
We tune the spin-dependent scattering lengths such that na3 ∈
(10−4, 10−1) by changing the two-body potential parameters.
In this sense, increasing the gas parameter is equivalent to
increasing the range and strength of the interactions, which
enhances the effect of correlations in the medium. We set the
interaction contrast γ = (a − a+1,−1)/(a + a+1,−1) to γ =
0.4, since nonzero values of this quantity are necessary for
the existence of a stripe ground state [16]. The quantitative
characterization of the superfluidity in the stripe phase is
performed with the contrast used in Ref. [19], γ = 0.904. It
must be remarked that the quantity γ is a tunable property in
the experimental setup in Ref. [19].

III. PHASE DIAGRAM AND OTHER OBSERVABLES

The phase diagram of the SOC system is reported in
Fig. 1 for a fixed density and varying scattering length. The
upper and middle plots correspond to the DTDMC results
for the SS and LJ interactions, respectively, while the lower
plot shows the mean-field phase diagram. The points indicate
the computed transition lines between the different phases.
Error bars in the DTDMC results account for the statistical
variance of the energy estimations. Looking at the DTDMC
phase diagrams it can be seen that, as the two-body scattering
length increases, the value of the reduced Raman coupling
at which the plane-wave–stripe-phase transition takes place
also increases. Remarkably, this effect is absent at the mean-
field level and is also robust with respect to the interaction
employed. Based on this, we conclude that the enhancement
of the stripe phase in the DTDMC phase diagrams is produced
by the increase in interatomic correlations. This enhancement
takes place because the DTDMC correction to the energy of
the stripe (�EDMC,S) and plane-wave (�EDMC,PW) phases and
the energy difference between these phases at the mean-field
level (�EMF) fulfill |�EDMC,S

�EMF
| � |�EDMC,PW

�EMF
| � 1 over a wide

region of the phase diagram. The stripe phase is favored over
the plane-wave phase in the DTDMC diagram because of the
different polarization between phases: while the stripe phase
is always unpolarized, the plane-wave phase has nonzero po-
larization. Since the potentials employed in this work are less
repulsive in the (+1,−1) and (−1,+1) channels in accor-
dance with the experiment in Ref. [19], the beyond-mean-field
corrections favor an unpolarized state over a polarized one. In
this sense, the DTDMC corrections drastically determine the
transition line. In contrast, the single-minimum region of the
diagram is only slightly changed by the DTDMC with respect
to the mean-field prediction. This is because the energy gap in
the mean field between this phase and the stripe and plane-
wave phases is larger in absolute value than the DTDMC
corrections over the majority of the phase diagram.

In the mean field, the stripe–plane-wave and the
stripe–single-minimum transitions are of first order, while
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FIG. 1. Phase diagram of the many-body system with Raman
spin-orbit coupling. The upper plot corresponds to the DTDMC
diagram using the SS potential and the middle one to the LJ potential.
In the lower plot, we report the mean-field phase diagram.

the plane-wave–single-minimum transition is of second order
[4,21]. This is directly reflected in the value of the momentum
that minimizes the energy in each phase at the mean-field
level: while there is a discontinuity in this parameter between
the stripe and the other two phases at the transition, the
optimal momentum changes continuously from the plane-
wave to the single-minimum phases [4,21]. We believe that
the inclusion of correlations in the DTDMC calculation does
not change the nature of any of these phase transitions.

The presence of interatomic correlations can be seen in
the pair distribution function, g(�ri − �r j ), which yields the
probability of finding two particles with relative position
vector �ri − �r j . For an isotropic system, g(�r) depends on |�r|,
while for a nonisotropic system, as in the case of the stripe
phase, an expansion in partial waves of the form g(�ri − �r j ) =∑

l,m gl,m(ri j )Y m
l (θ, φ) yields nonzero contributions for l > 0.

Note that, in this expression, θ is the angle formed by �r and
the x axis, and stripes are formed along planes perpendicular
to that direction. In Fig. 2, we show the leading correction
to the isotropic mode, for two points in the phase diagrams
corresponding to the stripe and plane-wave phases. Only the
(+1,+1) component is reported since the results for the rest

FIG. 2. Leading correction to the isotropic contribution to the
pair distribution function in the (+1, +1) channel, corresponding to
l = 2, m = 0 for the SS interaction.

of the two-body channels are analogous. The figure depicts
the l = 2, m = 0 modes for the SS interaction. It should be
pointed out that, for the specific type of interactions used in
this work, only the m = 0 contributions survive. As one can
see, g2,0(ri j ) is 0 in the plane-wave phase, while it yields a
non-vanishing contribution in the stripe phase. This reflects
the different spatial symmetries associated with each phase
[16]. This quantity also vanishes for the single-minimum
phase. Very similar results hold for the LJ interaction.

Since in the stripe phase the x axis is transverse to the
stripe planes, the static structure factor along the x direction,
S(kx ), develops a peak at a momentum proportional to the
inverse of the characteristic distance separating the stripes, a
feature also present at the Bogoliubov level [17]. We show
in the upper panel in Fig. 3 the static structure factor S(�k)

FIG. 3. Static structure factors for the SS interaction, for two
different points with na3 = 5 × 10−5 and γ = 0.904, both corre-
sponding to the stripe phase. Upper panel, � = 0.3131; lower panel,
� = 2.8.
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FIG. 4. Superfluid fraction for the transverse direction to the
stripe planes as a function of the reduced Raman coupling for na3 =
5 × 10−5, γ = 0.904.

for conditions similar to those in the experiment in Ref. [19]
(γ = 0.904, � = 0.3131, and na3 = 5 × 10−5). The lower
panel shows the same quantities for � = 2.8, where the stripe
modulation is much more important due to the higher value of
� compared to E0. In accordance with that experiment, where
reduced Raman coupling values lie in the interval �exp ∈
[0, 0.4], we recover the stripe phase as the lowest-energy
state. The periodicity of the stripes has been quantitatively
characterized before both in the mean-field regime [16,17]
and in experiments [19]. The static structure factor does not
show any peak in the plane-wave and single-minimum phases,
a consequence of the lack of density modulations in these
phases [16].

Finally, we characterize the superfluidity of the system in
the stripe phase, where other systems have shown a nontrivial
dependence along different directions [26]. In order to recre-
ate the conditions of contrast and diluteness from Ref. [19],
we set γ = 0.904 and use gas parameters spanning the range
na3 ∈ [5 × 10−5, 2 × 10−4]. We measure the superfluid den-
sity using the zero-temperature limit of the winding number
estimator [27], which is extracted from the mean squared
displacement of the center of mass of the particles during
imaginary time evolution. We show in Fig. 4 results for the
superfluid fraction ρx

s in the stripe phase along the x direction,
obtained from the generalization of the expression reported in
Ref. [26], as a function of �, and for three values of the gas
parameter, na3 = 5 × 10−5, 1 × 10−4, and 2 × 10−4. The re-
ported values are close to those reported in Ref. [28], obtained
at the mean-field level using the twisted-phase method. We
see from the plot that the main parameter governing changes
in ρx

s is �, while little dependence on the specific value of the
gas parameter is found. As � increases, the system becomes
less superfluid in the x direction. This is a direct consequence
of the fact that the amplitude of the density modulation in-
creases with �, as already seen in mean-field theory. For large
values of �, exchanges of particles between different stripe
planes are less favored, and thus localization along the x axis
is enhanced. In the other two directions, parallel to the stripe
planes, the system remains fully superfluid (ρy

s = ρz
s = 1).

Note also that, for the values of � employed in the experiment
in Ref. [19], the superfluid fraction ρx

s equals 1. This, together
with the periodic density modulations in the static structure
factor reported in Fig. 3, yields a quantitative indication
of simultaneous spatial periodicity and superfluidity in the
system.

The superfluid fraction for the plane-wave and single-
minimum phases has been obtained at the mean-field level us-
ing the phase twist method [28] and in the Bogoliubov model
through the evaluation of the transverse current operator [29].
In this case, the superfluidity along the y and z axes in these
phases is equal to unity, while ρs

x shows a dependence on the
Raman coupling. We recover these results with the DTDMC
for the gas parameters mentioned previously by using the
expression for the normal density from Ref. [29], replacing
the mean-field value of 〈σx〉 with the one provided by the
DTDMC.

IV. CONCLUSIONS

In summary, we have shown, using the DTDMC method
[22,23], that by increasing the strength of interatomic cor-
relations in a system under Raman SOC, the region of the
phase diagram covered by the stripe phase is enlarged in
comparison to the prediction of mean-field theory. We have
shown that this effect holds for different two-body model
interactions (soft spheres and Lennard-Jones), which provide
very similar results. The breaking of continuous translational
symmetry in the stripe phase has been characterized by the
presence of a Bragg peak in the static structure factor and
by a nonzero contribution to partial waves other than the
l = 0 to the pair distribution function. We have also performed
DTDMC calculations under the same conditions of interaction
contrast and reduced Raman coupling as for the experiments
in Ref. [19]. Our results confirm the observed stripes as the
most energetically favorable state and quantitatively show the
supersolid behavior of the stripes. We have also studied the
superfluid fraction of the stripe phase as a function of the
reduced Raman coupling and the gas parameter by changing
the scattering length of the interatomic interaction. We have
shown that superfluidity in the stripe phase decreases mainly
as a function of the reduced Raman coupling, with little de-
pendence on the gas parameter in the range analyzed. We hope
that our work can encourage possible experimental studies
of Raman SOC systems near the transition lines between
the stripe and the plane-wave phases, since the effects of
correlations beyond the mean-field approximation can be seen
even at relatively low gas parameter values like na3 = 10−4.
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