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Dilute dipolar quantum droplets beyond the extended Gross-Pitaevskii equation
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Dipolar quantum droplets are exotic quantum objects that are self-bound due to the subtle balance of attraction,
repulsion, and quantum correlations. Here we present a systematic study of the critical atom number of these
self-bound droplets, comparing the experimental results with extended mean-field Gross-Pitaevskii equation and
quantum Monte Carlo simulations of the dilute system. The respective theoretical predictions differ, questioning
the validity of the current theoretical state-of-the-art description of quantum droplets within the extended Gross-
Pitaevskii equation framework and indicating that correlations in the system are significant. Furthermore, we
show that our system can serve as a sensitive testing ground for many-body theories in the near future.
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I. INTRODUCTION

For systems with competing interactions, quantum fluctu-
ations can stabilize an otherwise collapsing system [1]. The
balance of attraction and repulsion in these systems means
that they share properties with liquids, despite being orders
of magnitude more dilute. These quantum droplets were ex-
perimentally discovered by driving a dipolar Bose-Einstein
condensate (BEC) into the strongly dipolar regime. However,
instead of collapsing, the system formed stable droplets [2].
Since their discovery, many properties of dipolar quantum
droplets have been observed and compared to the predictions
of their current state-of-the-art theoretical description, the ex-
tended Gross-Pitaevskii equation (EGPE). These predictions
include the stabilization of the droplets typically explained
by the Lee-Huang-Yang (LHY) correction of the mean-field
energy [3,4], their self-bound nature [5], collective modes
[4,6], the emergence of striped states in confined geometries
[7], and the existence of arrays of phase coherent droplets
with transient supersolid properties [8–10]. In addition to
dipolar systems, quantum droplets have also been observed
in Bose-Bose mixtures [11–14].

Here we systematically study the critical atom number that
is necessary to form the liquidlike droplet state, extending
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previous results with 164Dy [5] to an order of magnitude
higher atom number. Comparing the measured critical atom
number to results obtained from numerical simulations of the
EGPE seems to indicate a systematic shift to lower values. Ex-
perimental discrepancies compared to the EGPE predictions
have also been observed in other related systems [10,11,15].

Motivated by this observation, we present a theoretical
approach that goes beyond the framework of the EGPE. We
solve the dilute many-body system using quantum Monte
Carlo (QMC) calculations, in particular the path-integral
ground-state (PIGS) method [16,17]. With this we can extract
the critical atom number of self-bound droplets, in good
agreement with the experimental measurements. As a mean-
field theory, the EGPE framework is limited to the usage of
the local density approximation, as well as to the perturbative
regime at small gas parameters [18]. In contrast, our PIGS
calculations intrinsically include effects due to the finite sys-
tem size and of the finite interaction range, as well as particle
correlations and quantum fluctuations. With our method we
directly have access to the correlations in the system, which
we use to extract the spatial pair correlation function, as well
as the condensate depletion, which is increased compared to
the prediction of Bogoliubov theory. These results suggest
that in the density regime relevant for quantum droplets, the
state-of-the-art EGPE framework is not able to reproduce all
observable properties of these quantum droplets.

II. EXPERIMENT

For the experiments we use 162Dy with a magnetic dipole
moment μ = 9.93μB, where μB is the Bohr magneton. To
quantify the relative strength of the dipole-dipole interaction
compared to the contact interaction, we define the relative
dipolar strength εdd = add/as in terms of the scattering length
as and the dipolar length add = μ0μ

2m/12π h̄2. Here h̄ is
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the reduced Planck constant, μ0 is the vacuum permeability,
and m is the atomic mass. The dipolar length is different
for the two studied isotopes and has a value of 129a0 for
162Dy and 131a0 for 164Dy, with the Bohr radius a0. Like all
lanthanide atoms, 162Dy exhibits a rich spectrum of Feshbach
resonances that can be used to control the strength of the
short-range contact interaction [19–23]. Here we use a specific
double resonance at around 5.1 G [20] that, together with the
high background scattering length abg = 140(20)a0 of 162Dy
[24–26], allows us to tune the scattering length as from a
contact-dominated sample (away from the resonances), to a
dipolar-dominated sample closer to the zero crossing of the
scattering length. Since the background scattering length of
162Dy has so far not been determined to high precision, all
calculated scattering lengths exhibit a systematic uncertainty
of 15%.

While a BEC is a gaseous state, which means that it freely
expands in the absence of an external trap, the droplet state
is self-bound due to its intrinsic interactions [5,27–29]. This
self-bound character has been experimentally observed for
164Dy [5], as well as for the related quantum droplets in
Bose-Bose mixtures [11,12]. In order to probe this feature
experimentally, we initially prepare a quasipure BEC with
4.5(3) × 104 162Dy atoms and then closely follow the pro-
cedure presented in [5] to create a single self-bound droplet.
After a variable evolution time we intentionally evaporate the
droplet and subsequently image it after an expansion of either
8 or 30 ms, depending on the atom number. With this approach
we observe atom number decay curves that settle at a con-
stant atom number, the critical atom number of a self-bound
droplet [5].

We want to compare our results to numerical EGPE and
QMC simulations, as well as previous measurements with
164Dy published in [5]. The two bosonic isotopes of dys-
prosium, 162Dy and 164Dy, only differ in their mass, which
manifests in a shift of (m164 − m162)/m162 = 1.2% of the
dipolar length, and thus on the scattering length axis. This
effect is smaller than our uncertainty in this quantity, and
we can thus safely neglect it. For the comparison with the
164Dy measurements we use the Feshbach resonances dis-
cussed in [2,5] together with the latest measurement of the
background scattering length in the droplet state abg,164 =
69(4)a0 [6]. With this we observe systematically lower critical
atom numbers compared to the EGPE simulations, which
could be accounted for by the uncertainty of the scattering
length calibration. For our 162Dy results, we first use the
literature value of the background scattering length abg,162 =
140(20)a0 [24–26], together with our measured parameters of
the Feshbach resonances, leading to a similar systematic shift
to lower atom numbers as in the 164Dy data. Again, this shift
could be explained by the even larger uncertainty in the 162Dy
scattering length.

Next we use the sensitive scaling of the critical atom num-
ber with respect to the scattering length in order to extract the
ratio of the two background scattering lengths abg,162/abg,164,
free of the systematic uncertainties of their respective mea-
surements. To put this scaling into context, we note that
the current uncertainty of the background scattering length
of 162Dy is about 20a0. The critical atom number changes
by an order of magnitude over a comparable range of the

FIG. 1. Critical atom number of a self-bound dipolar quantum
droplet for 162Dy (blue circles) and 164Dy [5] (black squares). We
extract the critical atom number by analyzing the atom number decay
curves. The theoretical boundary of the phases is obtained from
numerical EGPE simulations. The red dashed and dash-dotted lines
show the corresponding boundary as expected from an increased ef-
fective dipolar length due to a finite collision energy of 30–50 nK and
100 nK [30,31]. The red triangles show the results obtained by QMC
simulations, with the error bars chosen to cover the uncertainties of
both the statistical error and the nonuniversality. See the text for more
information.

scattering length, showing that our measurement constitutes a
very sensitive probe of the scattering length. Here we use the
critical atom numbers derived from our EGPE simulations to
extract the ratio abg,162/abg,164. Naturally, the same procedure
can be done using any quantum many-body theory able to
predict critical atom numbers for a self-bound droplet.

Starting from the latest measurement of the background
scattering length of 164Dy [6], we first shift the EGPE critical
number curve1 in order to minimize the difference from the
experimental data for 164Dy. From this point on we optimize
the background scattering length abg,162 to minimize the resid-
ual of our measurements with respect to this shifted theory
curve. Taking into account the residual systematic uncertainty
of the background scattering length of 164Dy [6], we end
up with abg,162 = 140(7)a0, in agreement with the literature
value [24–26], but with a significantly reduced uncertainty.
More importantly, since it is independent of this residual
systematic uncertainty, we can extract the ratio of the two
background scattering lengths. Comparing the two isotopes,
we find a ratio of abg,162/abg,164 = 2.03(6) of their respective
background scattering lengths.

This way we calibrate the scattering length of 162Dy and
show a summary of all measured critical atom numbers in
Fig. 1. The experimental atom number uncertainties are cho-
sen to cover the determination of Ncrit, with an additional 10%
uncertainty of the imaging. The uncertainty of the scattering

1Note that this procedure assumes that the critical atom number
depends only on the scattering length and not on other parameters,
e.g., the actual density distribution of the droplet, as well as the
scaling extracted with the EGPE framework.
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lengths is based on our experimental magnetic field stability
of ∼2 mG, the knowledge of the used Feshbach resonances,
and the uncertainty of the respective background scattering
length.

Experimentally, we seem to find systematically lower
critical atom numbers compared to EGPE predictions. The
straightforward experimental source would be a shift of ap-
proximately 6a0 in the scattering length axis. This is at the
edge of the error bars for 164Dy and within the error bars of the
independent calibration for 162Dy. Note that our calibration
of the 162Dy scattering length is consistent with our recent
experimental observation of supersolid properties in an array
of 162Dy quantum droplets [8], which agrees with theoretical
calculations in a narrow window of the scattering length.
In order to make the presented measurements a sensitive
benchmark for quantum many-body theories, an independent
and precise measurement of the scattering length as would be
required for the two isotopes. Another possible experimental
explanation would be a systematic uncertainty in the atom
number determination, which we rule out by performing mea-
surements with independent imaging techniques, all resulting
in similar values within the quoted error bars.

III. THEORY

We now focus on possible theoretical explanations of
systematically lower critical atom numbers of the self-bound
state. Within the EGPE framework, it was shown in [30] that it
is possible to account for finite-temperature effects in the two-
body scattering problem by effectively enhancing the dipolar
length add. In Fig. 1 we also show two theoretical curves
for an enhanced dipolar length corresponding to a collision
energy of 30–50 nK [31] (dashed red line), and 100 nK
(dash-dotted red line). The resulting shift for the critical atom
number is in good agreement with the experimental results,
suggesting that such an effective enhancement of the dipolar
length might play an important role in dipolar scattering at
finite collision energies. In the future, one may resort to
spectroscopic measurements on embedded impurities [32] in
order to directly measure the temperature of these quantum
droplets and therefore determine the actual strengths of this
proposed correction.

Next we present an approach that goes beyond the current
state-of-the-art EGPE framework. For this we solve the dilute
many-body system at zero temperature using QMC simula-
tions. For weakly interacting systems, the results obtained
in QMC are in good agreement with mean-field predictions
[33–36]. However, for strongly correlated systems, e.g., liquid
helium [37,38], mean-field fails, while QMC still provides
reliable predictions. To see whether correlations influence
the properties of quantum droplets, we now focus on QMC
simulations [34,39,40]. In particular, we use the PIGS method
to determine the ground-state properties of ensembles of
162Dy atoms at zero temperature. Although computationally
extensive, this method intrinsically includes finite-range ef-
fects present in a more realistic description of the atom-atom
interaction, the finite system size, and a correct description of
correlations and quantum fluctuations. Compared to this, the
EGPE approach relies on the local density approximation for
the quantum fluctuations described by the LHY term [41,42].

FIG. 2. (a) Pair distribution function g(r) for the bulk system at a
density of n = 5.88 × 1021 m−3, corresponding to the central density
of a saturated quantum droplet at as = 60a0. The red (blue) symbols
correspond to a scattering length of as = 60a0 (as = 90a0), while
the squares (circles) indicates the direction along (perpendicular to)
the polarization direction. The solid lines act as a guide to the eye.
(b) Condensate depletion as predicted by the PIGS calculations and
the Bogoliubov theory, without and with dipolar interaction, for a
scattering length of as = 60a0.

Our approach is however limited to the usage of an effective
Hamiltonian without bound states to describe the interaction
between particles. This effective Hamiltonian includes the
dipolar interaction and a central two-body interaction, with
a repulsive core and a realistic C6 coefficient [43]. In order
to study whether the system is universal, we use different
model potentials, with the respective parameters fixed to
adjust the zero-energy s-wave scattering length to the range
of the experimentally measured values. This is accomplished
by solving the Lippmann-Schwinger equation associated with
the T matrix of the full interaction.

First, we study the influence of correlations compared
to the Bogoliubov prediction used to derive the LHY term
[41,42] in the EGPE framework. Therefore, we simulate the
equivalent homogeneous bulk system with a density of n =
5.88 × 1021 m−3 for two different scattering lengths as =
60a0 and 90a0 and extract the pair correlation function g(r).
The density is chosen to correspond to the equilibrium density
of a saturated droplet at as = 60a0. Due to the anisotropy of
the dipolar interaction, the correlation function g(r) shown
in Fig. 2(a) depends on the direction with respect to the
polarization axis. Perpendicular to the polarization axis, the
pair correlation function is a monotonic function of the dis-
tance that resembles the one of a weakly interacting system.
On the other hand, along the polarization direction it shows
signatures of local ordering, as highlighted by a broad peak
at short distances. In both directions, the length scale of the
repulsion at short distances is caused by the repulsive core of
the used two-body model potential.
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Another property that directly measures the strength of
correlations is the quantum depletion 1 − nc/n, with the con-
densate fraction nc/n. The condensate fraction equals one
for an ideal Bose gas at zero temperature and decreases
when correlations are enhanced. In strongly interacting liquid
helium the condensate fraction is typically below 10% [44].
For typical weakly interacting ultracold-atom experiments it
is around 99%, while by largely increasing the scattering
length, condensate fractions as low as about 90% [45] have
been realized. In Fig. 2(b) we show the comparison between
the PIGS prediction and the derived quantum depletion 1 −
nc/n within the Bogoliubov theory for the weakly interacting
Bose gas with no dipolar interaction, as well as with dipolar
interaction [41,42], for the corresponding parameters of our
quantum droplets. As it can be seen, the dipolar interaction
leads to stronger correlations, as well as to a larger overall
depletion of the condensate in the range of densities relevant
for saturated quantum droplets. Compared to this, the PIGS
results show that the effect of correlations is even stronger.

Now we turn to the study of the full finite system. We
analyze realizations of the system with a different number of
particles for a given s-wave scattering length and compute the
ground-state energy in each case. Like for the EGPE simula-
tions, we identify a self-bound droplet as a system with nega-
tive energy in the absence of an external trapping confinement.
The self-bound droplets predicted by our PIGS calculations
differ from those obtained in the EGPE approximation in the
overall density profiles. This difference can be attributed to the
presence of correlations, which can be quantified by looking
at the two-body properties shown in Fig. 2. Distinguishing the
two proposed theories experimentally may be possible in the
future by looking at the density distributions of self-bound
droplets. As in the experiments and the EGPE simulations,
we find that there is a critical atom number below which the
system ceases to be self-bound. Close to the critical atom
number our PIGS calculations result in a lower peak density
than predicted within the EGPE framework. Note that there
is a non-negligible dependence of the critical atom number
on the exact model of the two-body potential we employ,
which indicates that the problem is nonuniversal in terms
of the scattering length. The resulting critical atom numbers
for several values of the scattering length are shown with
red triangles in Fig. 1, with the error bars chosen to take
into account the effect of the nonuniversality according to
the analyzed model potentials, as well as the statistical errors
of the simulations. The obtained critical atom numbers are
always below the EGPE predictions and in good agreement
with the experimental measurements. The improvement of the
PIGS predictions with respect to the EGPE results points to
the relevance of finite-range effects which enhance quantum
correlations, similar to dilute Bose mixtures [46].

IV. CONCLUSION

We have systematically studied the critical atom num-
ber for a self-bound dipolar quantum droplet experimentally
and have used these measurements to establish a compar-
ison between the current state-of-the-art EGPE description
and QMC simulations. Compared to EGPE results, we ob-
serve indications of a systematic shift of the experimentally

measured critical atom numbers to lower values. Those values
are nevertheless well reproduced by a zero-temperature QMC
simulation based on the PIGS algorithm. In contrast to the
EGPE, our PIGS calculations include finite-range effects in
the interaction as well as finite-size effects, together with
correlations and quantum fluctuations. This is used to ex-
tract the spatial pair correlation function and the condensate
depletion, showing that in the relevant density regime of
quantum droplets, correlations are enhanced and need to be
included in a realistic description of the problem. In this way,
our PIGS results indicate that correlations are beyond what
a zero-temperature modified mean-field theory can capture.
Alternatively, the inclusion of finite-temperature effects in the
EGPE framework (through an effective renormalization of the
dipolar interaction strength associated to finite collision ener-
gies in the two-body scattering problem) can also reproduce
the critical number data, although the prediction is strongly
dependent on the temperature used in the calculation. All in
all, our results call into question the validity of the EGPE
framework to fully describe the quantum droplets.
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APPENDIX A: EXPERIMENT

Our experimental setup creates Bose-Einstein condensates
of either 164Dy or 162Dy in a crossed optical dipole trap
(CODT) (along the x̂ and ŷ axes, λCODT = 1064 nm). For
the experiments with 162Dy we typically create a quasipure
BEC consisting of 4.5(3) × 104 atoms at a temperature below
T ≈ 16(3) nK in a slightly oblate trap. For 162Dy, this is done
by forced evaporation in the CODT away from the Feshbach
resonances with BBEC = 5.875 G corresponding to as ≈ abg.
After this we typically change the trap and/or the magnetic
field for the actual experiments, as described in further detail
for the performed experiments below.

Along the ẑ axis we have a microscope objective allowing
for in situ imaging with 1-μm resolution. We can use this
microscope for far-detuned phase-contrast imaging as well
as resonant absorption imaging. Both techniques, as well as
an independent time-of-flight imaging along the ŷ direction,
result in similar atom numbers. The microscope can also be
used to focus an additional optical dipole trap (λ = 532 nm)
that has a calculated beam waist of ∼22 μm, to change the
trap aspect ratio from the oblate CODT to a spherical or even
prolate trap.
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1. Self-bound droplet measurements

To measure the critical atom number for self-bound
droplets shown in Fig. 1 of the main text, as well as the
measurement of the expansion velocity in Fig. 5, we ap-
ply a magnetic field gradient along the ẑ direction after
the preparation of the BEC. This applied gradient exactly
compensates gravitational forces and leads to a shift of
the magnetic field by −428 mG, which we compensate by
ramping up the amplitude of the constant magnetic off-
set field at the same time. After this we reshape the trap
within 20 ms into a spherical trap with a mean trap fre-
quency of ω̄ = 96(4) Hz. To do this we change the trap
aspect ratio from λ = ωz/ωr = 96(2) Hz/25(2) Hz = 3.8 to
λ = 98(2) Hz/94(4) Hz = 1.05, by applying an additional
optical dipole trap along the ẑ direction. Here ωz (ωr) is the
trapping frequency along (perpendicular to) the magnetic field
direction. For such a spherical trap geometry the regular BEC
at large scattering lengths and droplet phase at low scattering
lengths are connected by a continuous crossover [3,28,47], as
can also be seen in the phase diagram shown in Fig. 4. To
reach the droplet state we ramp the magnetic field amplitude
within 20 ms closer to the zero-crossing Feshbach resonance
to reduce the scattering length. Subsequently, we let the atoms
evolve for 10 ms to allow the droplets to form. Then we slowly
switch off the trap by ramping down the intensities of the
laser beams to ∼5% of their initial values, keeping a nearly
constant trap aspect ratio. We then suddenly turn off the trap
and levitate the cloud for various times before subsequently
imaging the density distribution.

For the measurements of the expansion velocity shown in
Fig. 5, we follow the expansion up to tTOF = 20 ms and sub-
sequently image the atoms using far-detuned phase-contrast
imaging.

For the measurements of the critical atom number, as
shown in Fig. 1, we levitate the atomic cloud for a variable
evolution time and then intentionally evaporate the droplets
[5] by ramping up the magnetic field within 100 μs to B ≈ 6.0
G. At this field the ground state of the system is an expanding
BEC and therefore the droplet evaporates back to the gaseous
phase and expands freely. After an expansion of either 8 or
30 ms, depending on the atom number, we image the atomic
cloud with resonant absorption imaging. With this we can
observe atom number decay curves, which settle to a constant
value, the critical atom number of the self-bound droplet. The
shown scattering length range in Fig. 1 for 162Dy corresponds
to magnetic fields in the range from B = 5.293 G to B =
5.249 G.

APPENDIX B: FESHBACH RESONANCES AND
THREE-BODY LOSS COEFFICIENT

The complicated spectrum of Feshbach resonances for
lanthanide atoms allows one to control the short-range contact
interaction by tuning the amplitude of the magnetic field close
to one of the many resonances. In this work we use a specific
double resonance (see Fig. 3) at a field of B1 = 5.126(1) G
and B2 = 5.209(1) G with widths of �B1 = 35(1) mG and
�B2 = 12(1) mG, respectively. In order to calibrate the mag-
netic field amplitude we use radio-frequency spectroscopy to
get the absolute value of the magnetic field amplitude from the

FIG. 3. Combination of Feshbach resonances used to tune the
scattering length. We measure (a) the atom number and (b) the tem-
perature of a thermal cloud after forced evaporation at different mag-
netic fields. The extracted positions are B1 = 5.126(1) G and B2 =
5.209(1) G with widths of �B1 = 35(1) mG and �B2 = 12(1) mG,
respectively. (c) Together with another resonance at B3 = 21.95(5) G
with a width of �B3 = 2.4(8) G, we can calculate the dependence of
the scattering length on the magnetic field. The dashed, vertical gray
lines represent the positions of the zero crossing of the scattering
length, while the blue area corresponds to the region where we
observe self-bound quantum droplets. (d) Measured three-body loss
coefficient L3 in a thermal cloud, which increases the closer we
get to the resonance, explaining the shorter lifetime of the observed
self-bound droplets.

Zeeman shift with an uncertainty of ∼1 mG. To measure the
position and the width of the Feshbach resonances we prepare
a thermal cloud with N ≈ 3.5 × 105 and T ≈ 850 nK using
forced evaporation at a fixed evaporation field (B = 5.875 G)
and subsequently change the magnetic field within 1 ms to its
final value and further ramp down the intensity of our crossed
optical dipole trap in 2 s. After a 100-ms hold time at the
final values we record the atom number [Fig. 3(a)] as well
as the temperature [Fig. 3(b)] of the cloud after the time of
flight. From this we can extract the position of the Feshbach
resonances as well as the position of the zero crossings of the
scattering length. The two mentioned resonances, as well as
a third resonance, can be seen in Fig. 3. The third resonance
at 5.273 G has a width of only ∼1 mG. This resonance seems
to vanish at even lower temperatures and therefore does not
influence the atoms in a BEC. Because of this we do not
include this narrow resonance in our consideration of the
scattering length. Additionally, there is a broader resonance
at B3 = 21.95(5) G with a width of �B3 = 2.4(8) G [48],
which still has a small effect on the scattering length in
the magnetic field range considered in this work. Using the
mentioned resonances, we can calculate the scattering length
as a function of the magnetic field, with only the background
scattering length as a free parameter [Fig. 3(c)].

In addition to the atom-loss spectroscopy used to extract
the position and the width of the Feshbach resonances, we also
need to measure the three-body loss rate L3 and check whether
the observed shorter lifetimes of the 162Dy droplets can be

033088-5



FABIAN BÖTTCHER et al. PHYSICAL REVIEW RESEARCH 1, 033088 (2019)

understood from the theory. To measure L3 we prepare a
thermal cloud at about 200 nK and then ramp up the magnetic
gradient and again compensate the magnetic field shift by
ramping up the offset field at the same time. After this we
compress the atomic cloud by ramping up the powers in the
CODT within 25 ms such that we reach a trap with trap
frequencies of 83(4), 299(3), and 434(2) Hz. Then we change
the magnetic field to its variable final value within 3 ms and
subsequently let the atoms evolve for up to 1 s. We then image
the atoms after a 10-ms time of flight and fit the atom number
N and the temperature T in order to extract the three-body
loss rate to the differential equations, similarly to the methods
described in [49],

dN

dt
= −αN − γ

N3

T 3
,

dT

dt
= γ

N2(T + Th)

3T 3
. (B1)

In these equations α is the two-body loss rate, which we
measured in a dilute thermal cloud to be ∼20 s, and γ is
connected to the three-body coefficient L3 via

γ = L3√
27

(
mω̄2

2πkB

)3

. (B2)

Here ω̄ is the mean trap frequency, m is the mass of the
atoms, and kB is the Boltzmann constant. The temperature of
the sample increases due to the losses, because two of the
colliding atoms can form a molecule and the third can gain
the binding energy.

What we see in Fig. 3(d) is a three-body loss coefficient
L3 = 8 × 10−41 m6/s away from the Feshbach resonances,
which increases the closer we get to the resonance. Compared
to the thermal cloud, the three-body loss coefficient in the
BEC is decreased by a factor of 6 [50], leading to L3 =
1.33 × 10−41 m6/s away from the resonances. In the droplet
region (indicated by the blue area in Fig. 3) we have an L3

that is a factor of 4 (as ∼ 105a0) or even 15 (as ∼ 80a0) times
larger than the value far away from the resonance. In this range
we also see a small peak due to the very narrow Feshbach
resonance located there, which however we do not observe
anymore for lower temperatures. The observed large increase
of L3 explains the shorter lifetime that we observe for the
self-bound droplets for lower scattering lengths.

For the comparison to the 164Dy data from [5], we con-
vert the given magnetic field amplitudes using the Feshbach
resonances at B164,1 = 7.117(3) G with a width of �B164,1 =
51(15) mG and a second resonance at B164,2 = 5.1(1) G with
a width of �B164,2 = 0.1(1) G.

APPENDIX C: EXTENDED GROSS-PITAEVSKII
SIMULATIONS

We compare our experimental results to theory [27,28],
by performing numerical simulations of the extended Gross-
Pitaevskii equation

ih̄∂t
(�r, t ) =
[

− h̄2∇2

2m
+ Vext + g|
|2 − i

h̄L3

2
|
|4

+
∫

Vdd(�r − �r′)|
(�r′)|2d �r′

+ 32g
√

a3
s

3
√

π

(
1 + 3

2
ε2

dd

)
|
|3

]

(�r, t ), (C1)

using a simple interaction potential and taking the quantum
fluctuations and three-body losses into account within a local
density approximation. In this equation g = 4π h̄2as/m is the
contact interaction parameter and

Vdd(�r) = μ0μ
2

4π

1 − 3 cos2(θ )

|�r|3 (C2)

is the dipole-dipole interaction of polarized particles, with θ

the angle between the polarization direction and the relative
orientation of the dipoles, and μ = 9.93μB the magnetic
dipole moment of 162Dy. We change the scattering length as in
the range of 60a0–115a0. Furthermore, we use the measured
L3 parameter for the respective scattering lengths. The EGPE
(C1) uses two assumptions: the Born approximation for the
interaction potential and the local density approximation. The
second approximation is supported by QMC simulations [34]
and a comparison of theory and experiment with erbium [4].
The first assumption was studied in [30] and needs to be
adjusted at finite temperature. The departure from the Born
approximation can be taken into account by an effective
dipolar length add that is shifted by a few percent compared
to the dipolar length within the Born approximation.

In order to get the theory curve in Fig. 1 we used two
different methods leading to the same result. For both methods
we choose Vext = 0 and start with an atom number N >

Ncrit, initially prepared with an elongated Gaussian density
distribution. Then we find the ground state by imaginary-time
evolution of the EGPE. Next we can either simulate atom
losses like in the experiment or repeat this process of finding
the ground state with ever lower atom number to start with
until we do not find a stable solution anymore. In the second
method we get an uncertainty due to the step size that we
choose for the atom number. For the first method we do real-
time evolution of the EGPE in order to simulate the dynamics
of three-body losses. Due to the losses, the density and the
effective two-body attraction reduces with time, until we reach
N = Ncrit, where the contributions of the effective two-body
attraction and the quantum pressure cancel each other. This
leads to the evaporation of the droplet into the gaseous phase,
which leads to a steep decrease of the density by more than
an order of magnitude. This suppresses further losses and the
atom number stays almost constant as soon as the droplet has
evaporated, validating the interpretation of the experimentally
observed loss curves.

APPENDIX D: DROPLET PHASE DIAGRAM

We can calculate the phase diagram [28,47] of trapped
dipolar atoms as a function of the trap aspect ratio λ and the
scattering length as using the EGPE and then either apply
a Gaussian ansatz to solve it analytically or resort to full
numerical simulations. Here we are only interested in a quali-
tative discussion and therefore restrict ourself to the Gaussian
ansatz; the full simulations together with a measurement of
the critical point λc can be found in [51]. The calculated
phase diagram for a cylindrically trapped BEC, with mean
trap frequency ω̄ = √

ωxωyωz = 30 Hz and containing 20 000
162Dy atoms, is shown in Fig. 4.

The phase diagram contains three different regions. For
large scattering lengths only a single repulsive BEC solution
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FIG. 4. Phase diagram and schematic steps of the experiment.
The phase diagram is calculated using the Gaussian ansatz to solve
the EGPE for a cylindrically trapped 162Dy BEC, with mean trap
frequency ω̄ = √

ωxωyωz = 30 Hz and containing 2 × 104 atoms.
For the trap aspect ratio λ below the critical point λ < λc, the stable
BEC solution and the single quantum droplet state are connected
through a continuous crossover. Above the critical point λc there is a
multistable region where both solutions are stable (shown in gray).

of the EGPE exists (white region in Fig. 4), which has a cloud
aspect ratio close to that of the trap only weakly altered by
magnetostriction [52]. At low scattering lengths, also only a
single solution exists, with a cloud aspect ratio much less than
1 that is more or less independent of λ. This is the quantum
droplet solution (blue region) that is only stable due to beyond
mean-field corrections [3,4,28,47]. This solution has a peak
density that is a factor of �10 higher than that of the BEC. For
trap aspect ratios larger than λc there exists a bistable region
(gray region) where both solutions can be stable. Crossing
the boundary leads to a modulational instability and therefore
higher number of droplets than what is expected for the
ground state of the system. In the case of λ < λc the two
phases are connected through a continuous crossover instead
of the phase transition in the bistable region.

In Fig. 4 we also show the way in which we prepare the
single droplet ground state in the experiment (indicated by the
red circles and the black arrows). We start with the atoms in
our CODT with a trap aspect ratio λ = 3.8 and a scattering
length as ≈ 140a0, deep in the BEC regime. We then change
the trap aspect ratio to λ ≈ 1 and then change the magnetic
field amplitude to probe the crossover to the droplet phase. In
the droplet regime we can then turn off the trap completely
and observe the self-bound state in free space.

APPENDIX E: EXPANSION VELOCITY

While a BEC is a gaseous state, which means that it freely
expands in the absence of an external trap, the droplet state
is self-bound due to its intrinsic interactions [5,27,28] and
therefore does not expand. To map out the range of self-bound
droplets, we determine the expansion velocity vexp [4] by

FIG. 5. Expansion velocity across the crossover from a BEC to
a quantum droplet. We extract the expansion velocity vexp from the
evolution of the widths of the atomic cloud in time of flight for up to
20 ms, averaged over five realizations. This procedure can be applied
in both the x and y directions, for which we find comparable results.
We thus plot here the average over both directions. As error bars
we show the quadratic sum of the uncertainty of the determination
of vexp along the two directions and for the scattering length the
uncertainty due to the experimental field stability, the knowledge of
the Feshbach resonances, and the background scattering length. The
two insets show example single-shot images for a self-bound droplet
(top) and an expanding BEC (bottom) after a 20-ms time of flight.

fitting the evolution of the observed widths of the atomic cloud
σTOF up to tTOF = 20 ms to σTOF =

√
σ 2

0 + v2
expt2

TOF . In this σ0

corresponds to the size at zero time of flight. The extracted
expansion velocity across the complete crossover from stable
BEC to single droplet state is shown in Fig. 5. Entering the
regime with εdd > 1, we observe a small decrease of the
expansion velocity with higher relative dipolar strength, until
at around as ≈ 110a0, where we observe a sharp decrease.
For as � 107a0 we enter the self-bound regime, where we do
not observe an increase in the size within our 1-μm imaging
resolution. In this regime we also observe aberrations in the
images (see the top inset in Fig. 5) due to the small radial
size compared to our imaging resolution. After some time,
depending on the magnetic field and on the initial atom num-
ber, we find that the cloud has expanded even in the droplet
state. This is understood in terms of three-body decay until
it reaches the critical number below which the droplet is not
self-bound anymore. The short lifetime due to enhanced three-
body losses closer to the resonances leads to the observed
increase of the expansion velocity for lower scattering lengths.

APPENDIX F: EXPERIMENTAL DETERMINATION
OF THE CRITICAL ATOM NUMBER

In order to measure the critical atom number of a self-
bound droplet we look at atom number decay curves [5],
as exemplarily shown in Fig. 6 for a scattering length of
as = 99(7)a0. We use a sequence of intentional evaporation
and subsequent expansion that allows us to determine the
atom number precisely without being limited by the finite
resolution of our imaging system or by the high density of
the droplets. This intentional evaporation is done by ramping
up the magnetic field within 100 μs to Bevap ≈ 6.0 G. We
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FIG. 6. Exemplary atom number decay curve of a self-bound
droplet. The measured decay of the atom number is plotted as a
function of the levitation time, averaged over ten realizations, and
the error bars denote the respective standard deviations. After a
fast decay for short times (gray circles), we observe a constant
atom number (blue circles). To extract the critical atom number
Ncrit (horizontal blue line) we analyze the atom number distribution
(histogram on the right-hand side) and fit our convolution model to
the blue data (black line).

know that the ground state of the system is a BEC for this
magnetic field. Therefore, by quickly ramping up the field,
we force the droplet back into a gaseous state, where it then
expands freely. We let the atomic cloud expand for either 8
or 30 ms, depending on the atom number, and then we image
the atomic cloud with resonant absorption imaging. We use
this sequence for different magnetic fields in the range from
B = 5.293 G to B = 5.249 G, corresponding to as = 107a0

and 78a0, respectively.
With this sequence we observe that the atom number

decays very fast in the beginning, but then settles to a constant
value. This behavior results from an initial fast three-body
decay of the high-density droplet state, followed by a quick
expansion of the droplet as it crosses the phase boundary to
the gaseous state. The crossing of the phase boundary leads
to a fast drop in density and thus suppresses further loss. To
extract the critical number we employ a statistical evaluation
procedure, because the critical atom number is reached at dif-
ferent times during these ten realizations due to the stochastic
preparation of the initial conditions in our experiment. We
show histograms of the atom number distribution on the right
side of Fig. 6. The first histogram includes all data points (gray
bars), while the second histogram only includes the points
for which the atom number has settled to its final value (blue
bars).

We use a phenomenological model (black line in the
histogram of Fig. 6) in order to extract the critical atom
number of a self-bound droplet [5]. This model consists of
a convolution of a Gaussian and a Maxwell-Boltzmann distri-
bution. We use a symmetric Gaussian distribution in order to
represent broadening effects that result from statistical errors,
e.g., noise in the imaging of the atomic cloud. To cover the
possibility that residual collective excitations in the droplet
lead to an early evaporation at atom numbers higher than the
critical number, we use an asymmetric Maxwell-Boltzmann
distribution. By fitting this phenomenological model we ex-
tract the critical atom number and two different widths, one
for each distribution. As an error bar of the critical atom

FIG. 7. Determination of the background scattering length of
162Dy. (a) Difference res164 between measured critical atom numbers
for 164Dy and the results obtained from numerical simulations shifted
along the atom number axis. The vertical red line indicates the shift
with the lowest residual from the shifted theory and the lighter red
area marks the range of uncertainty in which the residual doubles.
(b) Residual difference between the observed critical atom numbers
of 162Dy and the shifted theory curve (black) with the minimum value
shown by the vertical red line. The two dashed lines represent the
residual using the boundaries of the uncertainty of the shifted theory.
(c) Summary of measured critical atom number versus scattering
length. The red line shows the shifted theory curve for a shift along
the atom number axis and the green line similarly for a shift along
the scattering length axis. The lighter areas show the respective
uncertainty of the shift.

numbers in Fig. 1 we use the quadratic mean of these two
widths, together with an overall 10% uncertainty due to the
uncertainty in calibration of the imaging system.

APPENDIX G: EXPERIMENTAL DETERMINATION
OF THE BACKGROUND SCATTERING LENGTH

Using the latest measurement of the background scattering
length of 164Dy [6] as a starting point, we use the sensitive
scaling of the critical atom number to extract the background
scattering length of 162Dy. This procedure, which is described
in detail below, assumes that the critical atom number does
not depend on other parameters, e.g., the actual density distri-
bution of the droplet.

Since we observe a systematic shift of our measured criti-
cal numbers compared to the results obtained from numerical
simulations, we first shift the theoretical curve in order to min-
imize the difference (res164) between the experimental data for
164Dy [5] and the shifted theory. This shift of the simulated
boundary between self-bound droplet and expanding BEC can
be done along the atom number axis or along the scattering
length axis, resulting in slightly different results. In Fig. 7(a)
we show the obtained residual for a shift along the atom
number axis. The curve presents a clear minimum for a shift of
30% of the corresponding simulated critical atom numbers to
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lower values (marked by the vertical red line). As uncertainty
we use the range where this residual from the shifted theory
has doubled (shown as light red).

From this point on, we then optimize the background
scattering length abg,162 such that we get the smallest residual
of the measured critical atom numbers for 162Dy with respect
to the shifted theory curve. This can be done since with our
knowledge of the parameters of the used Feshbach resonances
the background scattering length is the only free parameter
not known precisely. In Fig. 7(b) we show the residual res162

for the case of a shifted theory along the atom number axis.
From this we get two uncertainties, one again extracted from
a doubling of the corresponding residual (light red area) and
the second from the propagation of the uncertainty from the
shifted theory curve (darker red area). With this procedure
with the shift along the atom number axis we get a value
of abg,162 = 139(135, 141)a0 for the background scattering
length of 162Dy.

Similarly, this can be done for a shift along the scattering
length axis resulting in abg,162 = 141(136, 145)a0. Taking the
average of these two procedures, we end up with abg,162 =
140(4)a0, in good agreement with the quoted literature value
[24–26]. Note, however, that the systematic uncertainties for
the measurement of the background scattering length of 164Dy
[6] apply here as well, leading to a final value with the
respective uncertainty of abg,162 = 140(7)a0.

Free from the systematic shift of the measurement, we
can extract the ratio of the respective background scattering
lengths of the two isotopes 162Dy and 164Dy. With this we
find a ratio of abg,162/abg,164 = 2.03(6).

APPENDIX H: EFFECTIVE RENORMALIZATION
OF THE DIPOLAR LENGTH

One possible explanation of lower critical atom numbers
of a self-bound droplet arises due to the complexity of the
scattering problem for dipolar lanthanide atoms such as dys-
prosium. As it was pointed out in [30], taking into account
the full scattering amplitude leads to alterations compared to
the Born approximation. This can be accounted for within the
EGPE framework by an effective shift in the dipolar length
add that depends on the collision energy. This effective shift
is on the order of 2% for a temperature of 10 nK and 10%
for 100 nK. As our BEC has an initial temperature of about
15 nK and the preparation process likely leads to additional
heating, it may seem reasonable to include this effect in
our considerations. Since the droplets are self-bound, we
cannot use standard time-of-flight expansion to measure the
temperature of these states. Future methods may measure the
temperature inside the droplets, e.g. with embedded impurities
[32] similar to liquid helium droplets [53]. With this, we can
also clarify the role played by thermal fluctuations at larger
atom numbers [54].

In Fig. 1 we also show two theory curves for an enhanced
dipolar length: add + 5% enhancement (dashed red line) cor-
responding to a temperature of 30-50 nK [31] and add + 10%
enhancement (dash-dotted red line) corresponding to 100 nK.
The observed theoretical shifts are in good agreement with
the experimental shifts, suggesting that such an effective

enhancement of the dipolar length might play an important
role in dipolar scattering at finite temperature.

APPENDIX I: PATH-INTEGRAL GROUND STATE

Given a Hamiltonian, the PIGS method can be used to
evaluate exactly many-body properties of a correlated Bose
system, beyond the mean-field plus Lee-Huang-Yang approx-
imation. Designed as a reduction of the Feynman path-integral
formalism to zero temperature, particle coordinates at differ-
ent (but close) imaginary times are sampled in chains, starting
from a variational wave function 
T (R) that is located at the
end points. Since propagation in imaginary time removes any
component that is orthogonal to the true ground-state wave
function φ0(R) in the asymptotic limit, samples of φ0(R) are
realized at the center of the chains when the total propagation
time is long enough

φ0(RM ) = lim
δτ→0
M→∞

∫
dRM−1 · · · dR1

×
M−1∏
i=1

G(Ri+1, Ri, δτ )
T (R1). (I1)

In this expression, G(Ri+1, Ri ) is the imaginary-time propa-
gator between positions Ri+1 and Ri in a time step δτ , which
is related to the action Ŝ through the expression Ĝ = e−Ŝ . In
general, the action Ŝ is not known, but since δτ is small, a
low-order series expansion in powers of δτ can be success-
fully employed. In this work we use one of the fourth-order
propagators of Ref. [55], which improves convergence when
compared with other, simpler schemes based on a second-
order Trotter expansion.

The main ingredient required to perform a PIGS simulation
is the Hamiltonian. Here we use a model that includes both
the dipolar interaction and an effective potential VHC with
a repulsive core that prevents the system from collapsing.
Assuming that all the dipoles are polarized along the Z axis,
the Hamiltonian reads

Ĥ = − h̄2

2m

N∑
i=1

∇2
i + Cdd

4π

∑
i< j

1 − 3 cos2 θi, j

r3
i, j

+ VHC + Vtrap,

(I2)
where �ri, j and θi, j are the relative polar coordinates between
the atoms, m is the atomic mass, and Cdd sets the strength
of the dipolar interaction. In order to study whether there are
universality properties in the system at the given conditions,
we solve the Hamiltonian for three different VHC models

V (1)
HC =

(σ12

r

)12
− C6

r6
, V (2)

HC =
(σ9

r

)9
− C6

r6
,

V (3)
HC =

(σ12

r

)12
. (I3)

The coefficient C6 in these equations is known for dysprosium
[43]. The other coefficients, σ9 and σ12, are fixed such that the
complete interaction (VHC plus dipolar) has the experimental
s-wave scattering lengths. This is accomplished by solving
the low-momentum limit of the scattering T matrix, as briefly
described in Appendix J.
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FIG. 8. Energy per particle in units of h̄2/ma2
dd for the dipolar

system with the three interactions of Eq. (I3) for the s-wave scattering
length as = 60a0. The lines represent a fit to the data and the
intersection with the E = 0 axis defines the critical number of the
model at this scattering length value.

One of the fundamental quantities that can be obtained
from the PIGS simulations is the ground-state energy, which is
negative for a self-bound droplet state. As in the experiments
and for a given scattering length, we find that there is a
critical number Nc below which the system ceases to be
self-bound. Figure 8 shows, for as = 60a0, the ground-state
energy obtained from the Hamiltonian in Eq. (I2) for the three
VHC models, as a function of the total number of particles,
together with a linear fit that determines the point Nc where
the energy is zero. As it can be seen, different models lead to
slightly different predictions, and that defines, together with
the statistical noise in the simulation, the error bar in the
critical number Nc. As the scattering length increases, higher
values of both Nc and its error are found, but they are all
compatible with the experimental error bars. Unfortunately,
the computational cost of the simulation grows very fast with
the number of particles and we cannot reliably determine Nc

for scattering lengths larger than as = 90a0, approximately.
The droplets predicted by PIGS differ from those obtained

in the EGPE approximation not only in the critical number,
but also in the overall density profiles. Figure 9 shows the
integrated density profiles along the axial directions of the
droplet, obtained from both methods, for 1000 [Fig. 9(a)] and
2000 [Fig. 9(b)] atoms and for a scattering length of 60a0. As
it can be seen, for these (low) particle numbers, the profiles
are different, the PIGS one being more spread but with a lower
central density. Still, the difference reduces when the number
of atoms is increased from 1000 to 2000. Increasing the atom
number even more, we expect the differences in the density
profile to decrease.

APPENDIX J: CALCULATION OF THE s-WAVE
SCATTERING LENGTH FOR A TWO-BODY POTENTIAL

The s-wave scattering length of the combined two-body
plus dipole-dipole interaction is obtained from the on-shell
T matrix, in the limit of vanishing momentum transfer. The
T matrix can be obtained solving the Lippmann-Schwinger

FIG. 9. Density profiles along the z direction in the EGPE (red
solid line) and PIGS (blue circles) approximations for a scattering
length a = 60a0. The left and right panels show the EGPE results for
N = 1000 and N = 2000 atoms, compared with the PIGS results for
N = 1024 and N = 2048 atoms, respectively. Each profile has been
properly normalized to its corresponding particle number.

equation projected on a basis of free-particle eigenstates of
definite angular momentum, according to

T l,m
l ′,m′ (k′, k) = V l,m

l ′,m′ (k′, k)

+ h̄2

M

∑
l2,m2

∫ V l2,m2
l ′,m′ (k′, q)T l,m

l2,m2
(q, k)(

h̄2k2

2M − h̄2q2

2M + iε
) qdq,

(J1)

with V l,m
l ′,m′ the matrix elements of the complete interaction and

M the reduced mass of two atoms. Due to the anisotropy of
the dipolar potential, the matrix elements of T , for different
values of the quantum number l and l ′, are coupled. Moreover,
the long-range character of the combined potential makes all
partial waves contribute significantly, even at low scattering
energies [56]. Due to the nature of the dipolar interaction, dif-
ferent scattering lengths corresponding to different (coupled)
channels appear and read

al,m
l ′,m ≡ lim

k→0

πT l,m
l ′,m (k, k)

k
, (J2)

with l ′ = |l ± 2|. Still, the dominant one is the s-wave
scattering length, corresponding to l = l ′ = m = 0. In prac-
tice, the low-momentum matrix elements T l,m

l ′,m (k, k) can be
efficiently determined using the Johnson algorithm [57],
which solves the Schrödinger equation and finds the log-
arithmic derivative of the wave function. Table I shows

TABLE I. Values for the parameter σα of the potentials in
Eq. (I3), in dipolar units, for different scattering lengths.

a0,0
0,0 V (1)

HC V (2)
HC V (3)

HC

60a0 1.32 1.36 1.23
70a0 1.36 1.39 1.27
80a0 1.41 1.43 1.34
90a0 1.46 1.48 1.40

033088-10



DILUTE DIPOLAR QUANTUM DROPLETS BEYOND THE … PHYSICAL REVIEW RESEARCH 1, 033088 (2019)

the σα parameter of the hard-core potentials used in
this work. These values have been chosen such that the

resulting interactions do not have any two-body bound
state.
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