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Abstract.  In this work, the local radial basis function collocation method is applied to the 
thermoelasticity with intention to model the low-frequency electromagnetic direct-chill 
casting process of aluminium billets. The devised thermoelastic model is coupled with the 
heat transport model for the DC casting process and preliminary results on the stress state are 
presented. The effect of the casting speed and the application of the electromagnetic field on 
the principal stresses is presented. 
 
1 INTRODUCTION 

The thermomechanical phenomena that occur during DC casting of aluminium billets can 
have significant impact on the quality of the cast piece. Under specific stress conditions hot 
tearing and cracking of the cast piece can occur [1, 2]. Unwanted large deformations of the 
cast piece  lead to its scrapping.  The deformations also  drastically influence the heat transfer 
efficiency at the contact with the mold, which can lead to unwanted remelting and melt 
outbreaks.  

Modelling of thermomechanical phenomena during this process is not an easy task. In 
addition to elastic deformation, the strain field also has contributions from viscoplastic creep, 
plastic deformation, and thermal expansion. All these phenomena occur in nonhomogeneous 
material with strong dependence of material properties on the temperature. The importance of 
the stresses during the DC casting process results in a large number of papers dealing with its 
predictive modelling. The first simple models were developed quite early [3, 4] and consider 
heat diffusion and thermomechanics by simple constitutive relations. At present, more 
sophisticated models,  involving constitutive relations coupled with heat and fluid flow are 
being developed [1, 5]. 

Recently, the performance of the DC casting process is being upgraded by the application 
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of the oscillating electromagnetic field, with intention of improving the quality of the casting 
by stirring the melt [6]. To better understand the process, the numerical models are developed 
in parallel with industrial applications [7, 8].  

Many models describing the DC casting process already exist [1, 5, 9, 10] and can provide 
accurate results. Existing models mainly employ the Finite Element Method (FEM), which 
may prove inefficient in some circumstances. The local meshless method used in our work 
has several advantages over FEM [11, 12]. There is no need for expensive polygonization of 
the domain, since the only information needed are the positions of the points. The 
computational points can be easily added or removed to achieve optimal accuracy [13] and 
complex geometries can be easily described since irregular node arrangements can be used. 
The local radial basis function collocation method (LRBFCM) has already been successfully 
applied to many physical and engineering problems: heat and fluid flow with [14] and without 
[15] the influence of magnetic field, solidification [16], continuous casting of steel [17], and 
modelling of semiconductors [18] .  

The thermomechanics model that is presented, is intended to complement the meshless 
model of mass and heat transfer, which is developed in our group [4]. In this contribution, 
first the meshless method formulation for solution of boundary value problem is given, 
followed by some method benchmarks on simple thermoelasticity problems. The 
thermoelasticity model is described and the preliminary results for stationary state of DC 
casting are presented. 

 

2 GOVERNING EQUATION 
We consider uncoupled formulation of thermoelasticity with stationary thermal profile 

supplied by the heat and mass transfer model. The stress equilibrium is written in terms of 
deformation field u by employing Hooke’s law for an isotropic solid. Resulting governing 
equation is given as  

      2 ( ) T
refG G G T T              u u u u u f .   (1) 

Here G  stands for the shear modulus,   for Lamé parameter and f  for the body force. The 
coupling with the temperature field is described by the coefficient   defined as 

(3 2 )G    , where   is the coefficient of linear thermal expansion. refT  stands for the 
reference temperature at which the thermal expansion is considered to be zero. All the 
material properties are allowed to vary over the computational domain in a continuous 
manner. 

For the description of the problem setting, the displacement, symmetry, and traction 
boundary conditions are needed. The deformation of the top part of the billet is restricted by 
the mould, while the rest of the outer surface is free.  

In the computational domain, the material undergoes solidification and therefore 
significantly changes the elastic properties. The temperature dependence of alloy properties 
can be obtained from JMatPro database for each alloy considered [19]. 
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3 METHOD FORMULATION 
The aim of our work is to develop a method to model the boundary value problem for 

linear vector partial differential equation (PDE) in two dimensions. The governing equation 
equation (1) can be written in the form D u g   , with unknown solution vector u  and 
index   running over the coordinates of the chosen coordinate system. The formulation of the 
method incorporates the following steps: construction of local influence domains, local 
interpolation, calculation of the differential operators, and the construction of the system of 
linear equations representing the governing PDE. These steps are described in the following 
subsections. 

3.1 Node arrangement and influence domain selection 
The first step is setting up an appropriate node arrangement and determining the domains 

of influence for each node. The determination of influence domains is especially important, 
since the local interpolation of the solution is constructed on them. In general N  nodes are 
put on the boundary   and N  are distributed over the interior   of the computational 
domain. 

The node arrangement used in this work is obtained of by minimizing an energy function 
which is the sum of Lennard-Jones-like potentials among a certain number of nearby nodes as 
described in [20]. The procedure results in a node arrangement that is locally similar to the 
hexagonal grid and is illustrated Figure 1. 

The domain of influence for each node is determined by choosing l N nearest neighbors of 
the node with index , ,1l N  , where N N N    is the number of all discretization nodes. 
In this step we determine mapping ( ) : 'ls i i l   from the index 1,...,l Ni  , which enumerates 
the nodes in the local influence domain, to the global enumeration index 'l .  
 

3.2 Interpolant construction 
Radial basis function (RBF) interpolant is constructed over each domain of influence. 

Modifed multiquadrics (MQ), defined as  

 
2
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augmented by linear and constant monomials are selected. Quantities used in the MQ 
definition have the following meaning: jr  is the position of the node in which the MQ is 
centered, l  is the MQ shape parameter, which is allowed to be different for different 
influence domain, and lh  stands for the influence domain size defined as 
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Formally, the interpolant is given as 
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where a N  is the number of augmentation monomials used (in present work fixed to 3 ) and 
,l i   are the expansion coefficients, which are determined by the collocation. The collocation 

equations, which are used to determine the coefficients  ,l i   are modified so that the 
resulting interpolant satisfies the appropriate boundary conditions, if any of the nodes in the 
considered influence domain lies on the boundary. The system of equations obtained in this 
manner can be compactly written in matrix form as 

 ,
,

, ,l lji
i

i l jA   


    (5) 

with the interpolation matrix l A  and the right-hand side vector l  given as 
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In the expressions (6) and (7) we assume that the boundary conditions are linear and 
specified by appropriate boundary condition operator as ( ) jj

jB u b  r . 

3.3 Discretization of the governing equation 
The interpolation of the field values specified in nodal points can be used to estimate the 

differential operators. Since the expansion coefficients are assumed to be constant, the 
differential operators act only on the basis functions. This fact can be used to discretize partial 
differential equations.  

By replacing the unknown solution u  with the interpolation given by equation (4), the 
governing equation at every interior node can be stated in terms of the interpolation 
coefficients. The interpolation coefficients are further replaced by the components of vector 
l , thus expressing the governing equation at every interior node by the unknown solution 
values and given boundary conditions for nodes that belong to the influence domain, centered 
on the considered node. The resulting governing equation is for each interior node l  stated as 

 1 1
,( ), ( ),

, ,
, ( ), ( ), ,

, ,

( ) ( )
l l l ls k s k ik i s k s kl l l l l

k i i
i

k
iku A D g b A D        

   

       r r   (8) 

In this expression the boundary and the domain indicators j
  and j

  are used to achieve an 
efficient notation. The indicators evaluate to one, if the corresponding point j  belongs to the 
set under consideration and to zero otherwise. 

      The set of linear equations for the unknown solution values stated in (8) is sparse and 
can be solved efficiently by specialized solvers. The numerical performance of the method 
has been investigated in our recent publications [21–23]. 
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4 PRELIMINARY RESULTS ON LFEMC DC CASTING 

4.1 Geometry and Boundary Conditions 

In present work we are considering the governing equation (1) applied to the axisymmetric 
case of the DC casting of round aluminium billets. The temperature field, which has the 
largest influence on the deformation and stress field during DC casting, is calculated by the 
heat and fluid flow model. The model itself along with the material properties used is in more 
detail presented in the accompanying contribution by Šarler et al.. Material properties are 
obtained from the JMatPro for the alloy AA6082, which is being considered in our case. 

Since linear thermoelasticity could not cope with the behavior of fluids, only the part of the 
billet that is solid is considered for the thermoelasticity model. The top boundary of the 
computational domain is chosen in such a way that it coincides with the position of the 
liquidus isotherm. The boundary conditions and the computational domain are shown in 
Figure 2. On the symmetry axis, the symmetry boundary conditions are assumed. On the 
bottom the deformation in vertical direction is assumed zero, while zero traction is prescribed 
in the radial direction. The outer surface is assumed to be free, except for the topmost part, 
which is constrained by the mould. In this part, the radial deformation is prescribed to be zero, 
while the zero traction is assumed in the vertical direction. On the top boundary, the 

  

Figure 1 The node arrangement used for 
the discretization of the stress 

equilibrium equation. The circles 
represent interior points and the squares 

the boundary points. 

Figure 2 Geometry of the considered DC casting 
example with scheme of the boundary conditions. 
The computational domain for the solid mechanics 

model is denoted by solid line while the 
computational domain for the heat and mass 
transfer model additionally includes the part 

denoted by the dashed line. 

0,

0

r

zu
u

r







0t

Mp t n

0, 0r zt u 

164



Boštjan Mavrič and Božidar Šarler 

 6 

metallostatic pressure of the metal above the liquidus line is applied. 
Although in DC casting many process parameters are important, in this work we are 

considering only the effect of low-frequency electromagnetic stirring (EMS). Some 
preliminary results regarding the effect of the two parameters are demonstrated in the 
following two sections. With the reference solution at nominal casting speed 80 mm/min and 
without the EMS applied is shown in Figure 3. 

   
Figure 3 The stress state during DC casting. From left to right the plots show radial, vertical, 

and circumferential stress.  

4.2 Effect of casting speed 
Casting speed has important influence on the quality of the cast piece. The effect on the 

circumferential stress is shown in Figure 4. On all the plots the isoline of zero circumferential 
stress is shown. We can see that at the nominal casting speed of 80 mm/min the stress isoline 
touches the liquidus isoline on the surface of the billet. All the solidifying area thus 
experiences compressive stress. In case the casting speed is either increased or decreased, the 
zero stress isoline makes contact with the liquidus line in the interior of the billet. The 
solidifying area on the outside of the point of intersection experiences tensile stress, which 
increases the possibility of cracking. 
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Figure 4 The effect of the casting speed on the circumferential stress. From left to right the 
plots show circumferential stress at casting speed of 60 mm/min, 80 mm/min and 100 

mm/min. On each plot the zero isoline is shown. 

 

4.3 Effect of EMS 
In this study the driving current with amplitude 10 A and frequency 20 Hz has been 

applied to the casting process at the nominal casting speed of 80 mm/min. The difference 
between the reference stress without EMS and the stress when EMS is applied are shown in 
Figure 5. We can see that the application of EMS reduces the circumferential stress in the 
outer region and thus decreases the possibility of cracking. The effect of the EMS is beneficial 
also to the other two components, since the amplitude of the variations is slightly reduced.  

Circumferential stress [Pa]

-1.000e+09 3.5e+80-3.5e+8-7e+8 7.000e+080 0.35 0.7-0.7 -0.35-0.1
Circumferential stress [GPa]
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Figure 5 The difference in stress when the EMS is applied. From left to right the plots show 

the difference in radial, vertical, and circumferential stress. 

5 CONCLUSIONS 
The meshless method formulated in the paper is applied to the problem of LFEMC DC 
casting. The preliminary results obtained by the method show great potential in modelling of 
DC casting.  

In this paper only a simple thermoelastic model for the stationary state of the process is 
considered. In the future, we plan on extending the model to incorporate plastic phenomena 
and to introduce full coupling between the deformation field and the heat and mass transfer 
model. 
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