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Abstract. A parallel fully-coupled approach has been developed for the fluid-structure in-
teraction problem in a cerebral artery with aneurysm. An Arbitrary Lagrangian-Eulerian
formulation based on the side-centered unstructured finite volume method [2] is employed
for the governing incompressible Navier-Stokes equations and the classical Galerkin fi-
nite element formulation is used to discretize the constitutive law for the Saint Venant-
Kirchhoff material in a Lagrangian frame for the solid domain. A special attention is given
to construct an algorithm with exact fluid mass/volume conservation while obeying the
global discrete geometric conservation law (DGCL). The resulting large-scale algebraic
linear equations are solved using a one-level restricted additive Schwarz preconditioner
with a block-incomplete factorization within each partitioned sub-domains. The parallel
implementation of the present fully coupled unstructured fluid-structure solver is based
on the PETSc library for improving the efficiency of the parallel algorithm. The proposed
numerical algorithm is applied to a complicated problem involving unsteady pulsatile
blood flow in a cerebral artery with aneurysm as a realistic fluid-structure interaction
problem encountered in biomechanics.

1 INTRODUCTION

The development of increasingly accurate and reliable simulation tools in hemody-
namics allows to better understand development of cardiovascular diseases, design and
evaluation of medical devices and prediction of surgical outcomes. It is known that hemo-
dynamic factors like the wall shear stress (WSS) play a major role in cardiovascular
diseases. In particular, areas of turbulence, flow recirculation or places where the artery
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wall is subject to low or oscillating shear stress are at higher risk for plaque formation
and disease.

To investigate the influence of hemodynamic factors in blood vessels, we have developed
a parallel fluid-structure interaction (FSI) analysis technique [1] and applied to a compli-
cated problem involving unsteady pulsatile blood flow in a cerebral artery with aneurysm
as a realistic fluid-structure interaction problem encountered in biomechanics. The side-
centered unstructured finite volume method based on an arbitrary Lagrangian-Eulerian
formulation [2] is employed for the governing incompressible Navier-Stokes equations and
the classical Galerkin finite element formulation is used to discretize the constitutive law
for the compressible Saint Venant-Kirchhoff material in a Lagrangian frame. The present
arrangement of the primitive variables leads to a stable numerical scheme and it does
not require any ad-hoc modifications in order to avoid odd-even pressure decoupling or
spurious pressure modes on unstructured meshes [3]. To the authors’ best knowledge, the
present arrangement of the primitive variables is not considered for the FSI problems.
In the present work, a special attention will be given to satisfy the continuity equation
exactly within each element and the summation of the continuity equations can be exactly
reduced to the domain boundary. In addition, a special attention is given to construct
a second-order ALE algorithm obeying the local DGCL [4]. Furthermore, a more com-
patible discrete kinematic boundary condition is enforced at the common fluid-structure
interface in order to satisfy the global DGCL, which is required in order to conserve total
fluid volume/mass at machine precision.

FSI simulations in general can be solved in a monolithic or partitioned way. In the
partitioned approach, separate solvers are utilized for the fluid and structure subprob-
lems. The main advantage of the partitioned approach is the ability to reuse existing
solvers which allows the application of different, possibly more efficient, computational
methods specifically developed for either the fluid or the structure subproblem. Although
the implementation of this approach is relatively easy, it does, however, suffer some seri-
ous drawbacks. The fixed point iterations tend to converge slowly and the iterations may
diverge in the presence of strong fluid-structure coupling due to the high fluid/structure
density ratio which causes to the so-called artificial added mass effect [5]. In a fully cou-
pled (monolithic) approach, the fluid and structure equations are discretized and solved
simultaneously as a single equation system for the entire problem. However, this requires
an efficient numerical technique for the solution of a large system of coupled nonlinear alge-
braic equations, which poses the major challenge of monolithic FSI approaches, especially
in large scale problems. Although monolithic solvers are believed to be too expensive for
use in large-scale problems, more recent studies [6, 7] demonstrate that monolithic solvers
are competitive even in the case of weak fluid-structure interactions problems. In the
present paper, the original system of equations is preconditioned with an upper triangu-
lar right preconditioner which results in a scaled discrete Laplacian instead of a zero block
in the original system due to the divergence-free constraint. Then a one-level restricted
additive Schwarz preconditioner with a block-incomplete factorization within each parti-
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tioned sub-domains is utilized for the resulting fully coupled system. The implementation
of the preconditioned Krylov subspace algorithm, matrix-matrix multiplication and the
restricted additive Schwarz preconditioner are carried out using the PETSc [8] software
package developed at the Argonne National Laboratories.

2 MATHEMATICAL AND NUMERICAL FORMULATION

The integral form of the incompressible Navier-Stokes equations over an arbitrary mov-
ing control volume are discretized using the arbitrary Lagrangian-Eulerian (ALE) based
side-centered finite volume method [2]. In this approach, the velocity vector components
are defined at the mid-point of each cell face, while the pressure term is defined at el-
ement centroids. The present arrangement of the primitive variables leads to a stable
numerical scheme and it does not require any ad-hoc modifications in order to enhance
the pressure-velocity coupling. In the current discretization, the continuity equation is
satisfied within each hexahedral elements at machine precision and the summation of
the discrete equations can be exactly reduced to the domain boundary, which is im-
portant for the global mass conservation. In addition, a special attention is given to
construct a second-order accurate arbitrary Lagrangian-Eulerian algorithm obeying the
discrete geometric conservation law (DGCL) [4]. The classical Galerkin finite element
formulation is used to discretize the governing solid equations for the compressible Saint
Venant-Kirchhoff material. In here, the displacements at any point in the isoparametric
hexahedral element are approximated by a linear combination of the displacements at
the nodal points of the element. The numerical simulation of fluidstructure interaction
problems requires to fulfill two coupling conditions: the kinematic and the dynamic con-
tinuity across the fluid-solid interface at all times. The kinematic boundary condition
on the fluid-structure interface is driven by requiring continuity of the velocity while the
dynamic condition means that the equilibrium equation holds for the surface traction at
the common fluid-structure interaction boundary. However, the problem with the clas-
sical application of kinematic boundary condition is that the discrete equations are not
compatible with the global DGCL and the total volume/mass of the fluid domain will
not conserved at machine precision if an incompressible fluid is fully enclosed in the solid
domain. A more compatible application of the kinematic boundary condition is given
in [1] in order to conserve total fluid volume/mass at machine precision. In the present
paper, the original system of equations is preconditioned with an upper triangular right
preconditioner which results in a scaled discrete Laplacian instead of a zero block in the
original system due to the divergence-free constraint. Then a one-level restricted addi-
tive Schwarz preconditioner with a block-incomplete factorization within each partitioned
sub-domains is utilized for the resulting fully coupled system. The implementation of
the preconditioned Krylov subspace algorithm, matrix-matrix multiplication and the re-
stricted additive Schwarz preconditioner are carried out using the PETSc [8] software
package developed at the Argonne National Laboratories. The METIS library [9] is used
to partition the computational domain for a balanced domain decomposition.
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3 NUMERICAL RESULTS

In this section, the numerical method is applied to a more complicated problem involv-
ing unsteady pulsatile blood flow in a cerebral artery with aneurysm. The geometry of the
arterial lumen is taken from the work of Marchandise et al. [10]. The average radius of the
arterial lumen is 0.1075cm at the inlet and the values are 0.0855cm and 0.0729cm at the
two outflow ends. All hexahedral conforming mesh generation for the present geometry
is rather challenging and the DISTENE MeshGems-Hexa algorithm based on the octree
method is used to generate the initial all hexahedral conforming coarse mesh. Then the
CUBIT Geometry and Mesh Generation Toolkit developed at the Sandia National Lab-
oratories [11] is employed to refine the initial mesh with optimization-based smoothing
techniques. The boundary layer mesh is constructed by extruding the mesh in the out-
ward normal direction. However, this approach is not suitable for the construction of the
mesh for the vascular wall due its relatively large thickness which leads to untangled ele-
ments. For this purpose, we use the radial basis function (RBF) based mesh deformation
algorithm given in [2] which moves the coarsened number of mesh vertices on the lumen
surface in the outward normal direction exactly with a distance of 0.02cm, meanwhile
the rest of vertices on the lumen surface vertices are moved using the RBF interpolation.
In addition, we added two layers of hexahedral meshes at the inflow and outflow ends
in order to make these surfaces planar. The computational mesh shown in Figure 1-a
consists of 501,065 vertices and 472,794 hexahedral elements for the fluid domain. The
solid domain is constructed using 5 layers of hexahedral elements across the arterial wall
and consists of 262,870 vertices and 262,275 elements leading to 7,364,244 DOF for the
whole domain.

The boundary condition at the inflow is set to the periodic velocity boundary condition
across a single cell distance with the time-dependent prescribed mass flow rate given in
[12]. The time variation of the cross-sectional average velocity at the inlet is provided
in Figure 1-b. At the outflow the natural (traction-free) boundary condition is imposed.
Although more realistic outflow conditions such as the resistive boundary condition [13]
may be applied, neither the resistance parameter nor the physical properties of the arterial
system is available to us. For the solid domain, the arterial walls are clamped near to the
inflow and a Neumann homogeneous boundary condition is applied on the other ends of
the structure as in the work of Crosetto et al. [14]. On the exterior surface of the solid
domain, we impose the following condition due to the support of exterior tissue [14]

σsn+ αsd = 0 (1)

with αs = 1× 104. Rayleigh damping [C] = α[M ] + β[K] with α = 6× 103 and β = 0 is
also introduced in order to model the damping effect of surrounding tissue. The present
simulations are carried out with a constant time step of 0.004s. In these simulations, the
blood is assumed to be a Newtonian fluid and the material properties are provided in
Table 1.
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The numerical simulation of the blood flow within the present saccular aneurysm is pre-
sented by Salmon et al. [15] by assuming that the vessel wall is rigid. The non-dimensional
Reynolds number based on the peak cross-sectional average velocity and the trunk radius
at the entrance cross section Re = ρf ŪmaxR̄/µf is equal to 159.38. The Womersley num-
ber, based on the trunk radius at the entrance cross section Wo = R̄

√
ω/νf equals to

1.6 with an angular frequency of ω = 2π rad/s. The Strouhal number St = ωR̄/Ūmax is
0.016. In the current numerical simulations, the vessel wall is modelled as an isotropic
hyperelastic material using the compressible Saint Venant-Kirchhoff model. The present
numerical calculations are started impulsively and the numerical solutions presented in
here correspond to third cardiac cycle. The velocity vector magnitude contours are pre-
sented in several planes normal to y−axis along with the stream traces in Figure 2-a at

[a] [b]

Figure 1: The computational all hexahedral conformal mesh with 735,069 hexahedral elements and
763,935 nodes (7,364,244 DOF) for fluid and solid domains [a] and the time variation of the total mass
flow rate at inlet [b].

Table 1: Material properties.

Fluid
Density ρf [g/cm3] 1

Dynamic viscosity µf [g/cmṡ] 0.04

Solid
Density ρs [g/cm

3] 1.2

Poisson ratio νs 0.45

Young modulus Es [dynes/cm
2] 6× 106
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[a] [b]

Figure 2: The computed velocity vector magnitude contours at several planes normal to y−axis with
streamtraces [a] and the arterial wall displacement [b] at t = 2.2s

t = 2.2s. The velocity contours indicate that a low velocity zone exists towards to the
end of the saccular aneurysm. In addition, a large swirl is observed within the saccular
aneurysm. Furthermore, three-dimensional Dean vortices are observed within the two
curved branches of the saccular aneurysm. These three-dimensional flow structures may
be seen more clearly from Figure 3-b. The simulations also indicate that the initial artery
wall deformation at the inlet section is not radially symmetric due to the elliptical geome-
try of the inlet cross section. The maximum deformation is observed at the middle of the
bifurcation of the branch where the lumen surface curvature is very small, as seen from
Figure 2-b. In these simulations, it is important to impose the support due to exterior tis-
sue since the branches tend to move away from each other due to the employed Neumann
homogeneous boundary condition at the outlets. The computed wall shear stress (WSS)
lines in Figure 3-a indicate separation line just before the saccular aneurysm. Large shear
stresses are also observed close to the shoulder of the branch bifurcation. However wall
shear stress is rather low towards to the end of the saccular aneurysm where the velocity
magnitude is relatively low. It should be noted that the use of present octree based all
hexahedral meshes leads to a more effective solution technique since the background mesh
consists of mostly uniform Cartesian meshes. Therefore, the combination of the present
algorithm with the octree based mesh generation is very efficient for treating complex
FSI problems. However, we should mention that there are still open issues related to all
hexahedral conformal mesh generation [16].
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[a] [b]

Figure 3: The wall shear stress lines [a] and the vertical velocity component contours with the 3d
streamtraces [b] at t = 2.16s.

4 CONCLUSIONS

The parallel monolithic approach [1] has been applied to the unsteady pulsatile blood
flow in a cerebral artery with aneurysm. The governing equations for the incompressible
Navier-Stokes equations for the fluid dopmain is discretized using the side-centered finite
volume method based on an Arbitrary Lagrangian Eulerian formulation meanwhile the
nonlinear Saint Venant-Kirchhoff equations for the solid domain is discretized using the
classical Galerkin finite element. The continuity equation is satisfied within each element
exactly and the summation of the continuity equations can be exactly reduced to the do-
main boundary, which is important for the global mass conservation. In addition, a special
attention is given to construct a second-order ALE algorithm obeying the DGCL. Fur-
thermore, a more compatible application of kinematic boundary condition is introduced
at the common fluid-structure interface in order to conserve total fluid volume/mass at
machine precision. The resulting large-scale nonlinear equations from the discretization
of fluid and solid domains are solved in a fully coupled form using a monolithic approach
based on a one-level restricted additive Schwarz preconditioner with a block-incomplete
factorization within each partitioned sub-domains.

5 ACKNOWLEDGMENTS

The authors acknowledge financial support from Turkish National Scientific and Tech-
nical Research Council (TUBITAK) through project number 112M107. The authors also
gratefully acknowledge the use of the computing resources provided by the National Cen-
ter for High Performance Computing of Turkey (UYBHM) under grant number 10752009
and the computing facilities at TUBITAK ULAKBIM, High Performance and Grid Com-
puting Center.

7

122



Ali Eken and Mehmet Sahin

REFERENCES

[1] A. Eken and M. Sahin, A parallel monolithic algorithm for the numerical simulation
of large-scale fluid structure interaction problems. (submitted).

[2] B. Erzincanli and M. Sahin, An arbitrary Lagrangian-Eulerian formulation for solv-
ing moving boundary problems with large displacement and rotations. Journal of
Computational Physics (2013) 255:660–679.

[3] Y. H. Hwang, Calculations of incompressible flow on a staggered triangle grid, Part
I: Mathematical formulation. Numer. Heat Transfer B(1995) 27:323–1995.

[4] P. D. Thomas and C. K. Lombard, Geometric conservation law and its application
to flow computations on moving grids. AIAA J. (1979) 17:1030–1037.

[5] C. Förster and W. A. Wall and E. Ramm, Artificial added mass instabilities in se-
quential staggered coupling of nonlinear structures and incompressible viscous flows.
Comput. Meth. Appl. Mech. Engrg. (2007) 196:1278-1293.

[6] M. Heil and A. L. Hazel and J. Boyle, Solvers for large-displacement fluid struc-
ture interaction problems: segregated versus monolithic approaches. Comput. Mech.
(2008) 43:91–101.
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