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Abstract. 2D isothermal viscous incompressible flows are presented from the Navier-
Stokes equations in the Stream function-vorticity formulation and in the velocity-vorticity
formulation. The simulation is made using a numerical method based on a fixed point it-
erative process to solve the nonlinear elliptic system that results after time discretization.
The iterative process leads us to the solution of uncoupled, well-conditioned, symmetric
linear elliptic problems from which efficient solvers exist regardless of the space discretiza-
tion. The experiments take place on the lid driven cavity problem for Reynolds numbers
up to Re = 10000 and different aspect ratios A (A=ratio of the height to the width)
A=1and A # 1 such as A = 1/2, till A = 3. It appears that with velocity and
vorticity variables is more difficult to solve this kind of flows, at least with a numerical
procedure similar to the one applied in stream function and vorticity variables to solve an
analogous nonlinear elliptic system. To obtain such flows is not an easy task, especially
with the velocity-vorticity formulation. We report here results for moderate Reynolds
numbers (Re < 10000), although with them enough effectiveness is achieved to be able
to vary the aspect ratio of the cavity A, which causes the flow to be more unstable. Con-
tribution in this work is to consider rectangular cavities of drag, which can impact on
isothermal turbulent flow patterns. Another contribution is to include a wide region of
the Reynolds number as well as different aspect ratios where we tested stability of the
numerical scheme.
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1 INTRODUCTION

In this work, we are dealing with the Navier-Stokes in two different formulations:
The Stream Function-vorticity and the Velocity-vorticity formulation. The problem we
are going to solve is the well known lid driven cavity problem, with Reynolds numbers
Re < 10000 and different aspect ratios A (A=ratio of the height to the width) of the
cavity.

Results, in both formulations, are obtained using a simple numerical scheme based on
a fixed point iterative process [1], applied to a nonlinear elliptic system resulting after
time discretization. The scheme has shown to be robust enough to handle such Reynolds
numbers, ([2] , and [3]) and different aspect ratios of the cavity [5].

Since we are working with Reynolds number up to 10000, as this number increases the
mesh has to be refined and a smaller time step has to be used, numerically, by stability
matters and physically, to capture the fast dynamics of the flow, as pointed out in ([2],
[3]). With the Velocity-vorticity formulation ([6], [7], [4]), a finer mesh and a smaller time
step has to be used, and because of this, computing time is in general very large.

2 Mathematical Models

Let Q C RY (N = 2,3) the region of a non-steady, viscous, incompressible flow, and I" its
boundary.

{ % _V2u+Vp+(u-V)u

f (a)
V-u 0 (1)

(b)
which are the Navier-Stokes equations in the primitive variables formulation. The system
has to be supplemented with appropriate boundary and initial conditions.

2.1 Stream function-vorticity Formulation

First we are going to speak about the Stream function-vorticity formulation.
In this case, we will restrict ourselves to a bidimensional region (2. Taking the curl in
both sides of the equation (1la) and taking into account that

0 0
{ulza_;f) UQZ_B_ifa (2>

which follows from (1b), with ¢ the stream function and wuy,us, the two components of
the velocity, we get:

{ V2 = (a) )

9
% Vw+u-Vw=f, (b)
where w is the vorticity (w = %i; — %—1;1). These are the Navier-Stokes equations in the

Stream function-vorticity formulation. The incompressibility condition (1b), by (2) is
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automatically satisfied, and the pressure does not appear any more, which is a great ad-
vantage with respect to the primitive variables formulation.

2.2 Velocity-Vorticity Formulation
Taking the curl in

w=-Vxu (4)

and using the identity Vx V xa = —V?a+V(V-a) and (1b), a velocity Poisson equation
results:

Viu= -V x w. (5)

Two Poisson equations for the velocity components are obtained, which together with
the equation for the vorticity gives us

G+ Vi =5 (a)
Q2 Vi = 92 (b) (6)
%—$V2w+u~Vw: w (¢

These are de Navier-Stokes equations in the Velocity-vorticity Formulation.

3 The Numerical Scheme.

Next, we are going to describe the numerical method used for solving the Navier-Stokes
equations in both formulations. For the time derivative appearing in the vorticity equation
in both schemes, the following second order approximation is used:

af 3fn+1 _ 4fn +fn_1

E(X, (n+ 1)At) = AL (7)

where x €2, n > 1, At denotes the time step, and f" ~ f(x,rAt), assuming f is smooth
enough.

3.1 Stream function-Vorticity formulation

Speaking about the Stream function-vorticity formulation, it can be observed that the
following nonlinear elliptic system has to be solved at each time level:

aw—vViw+u-Vw=f, wlr=w, (b)

{ V2¢ = —Ww, WP = 77bbc; (CL) (8)
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wn_wnfl

where a = %, v = ﬁ and f, = 2 —&—. To obtain (¢',w'), the first subinterval is
divided into M subintervals, and a first order scheme, such as Euler, is applied to each of
the M subintervals.

Next, we define R, by:

Ry(w,¥) = aw —vViw+u-Vw— f, . 9)

System (8) results equivalent to:

V2 =—w mQ, Y= on T (10)
Ry(w,¥) = 0 inQ w|r=wp

Now, for solving this system at time level (n+1) the following fixed point iterative
process [1] is used:

Given w™° = w™, Y™ = ™ solve until convergence in w and 1

v2¢n,m+1 = —W™mM  in Q,
gt = g on T (11)
(al — vVt = (al — vV?)w™™ — p,R,(w™, ™™ ) in Q,

nm+1 _ , nm+l
w = Wy, onI', p, > 0.

and then, take (Wt Yntl) = (WHmEL gprmtly,

3.2 The Velocity-Vorticity Formulation

In the case of the Velocity-Vorticity formulation, what we do is the following:

For the time derivatives appearing in the vorticity equation (7) is used, and the follow-
ing semidiscretized system is obtained, in (2,

% + V2’LL1 = _88_1.;
ou 2 _ Ow +1 _
Se+tViue =%, u = (12)

Ry(w,u) =0, w|r=wpe

where

R,(w,u) = aw —vV2w+u-Vw —f, | (13)
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Using again the fixed point iterative method described above , we get:

. 0 0 .
Given w™® = W™, u” = ul, uy” = ul solve until convergence on w, u; and usy
( 8“? ym+1 V2un’m+1 _ _ Qwmm
ot 1 oy
8un ot v2 nm+1l _ gu™m nm+1|_ _ n,m+l
+ T Oz u |F = Wy, (14)

(0 — VTR = (] — AY — pu R, ),
\ pw > 0, wn’m_‘—l’r\ = wbc’ .

1 1
and then, take (W™ wft ul ™) = (WP W uly ™).

4 Numerical experiments

The numerical experiments take place in rectangular domains Q = (a,b) x (¢,d), in
connection with the lid-driven cavity problem. The boundary condition of u is given by
u = (1,0) at the moving boundary y = d and u = (0,0) elsewhere.

A translation of the boundary condition in terms of the velocity primitive variable u
to the ¢ — w variables has to be performed when using the Stream function-vorticity
formulation. Following [8], ¥» = 0 is chosen on I', and by Taylor expansion of (8a) on the
boundary, with h, and h, the space steps, one obtains:

(07 Y, ) = _2}112 [81/}( x> y? ) - ¢(2hma Y, t)] + O<h926)
w(a, Y, t) 2h2 [ (CL has Y, ) %ZJ( = 2hg, y, t)] + O(hi)
W(,0,1) = — 5tz 80, by £) — (i, 20, D] + O(R2) (15)
w(w,b,t) = ﬁ[&ﬁ(w, — hy,t) — (2, b — 2h,, t)] — % + O(h2).

Now, for the Velocity-vorticity formulation, the boundary conditions are given by:

u =0, ug—O,w—a“2 onl', =a

ul—O,ug—O,w—86“20nF =b 16
u =0,u=0,w=— %ulonf =c (16)
u =1, ug—O,w—da“1 onl'y=d

In Figure 1 we show results obtained for Re = 1000, A = 1/2, Hx = Hy = 1/128,
dt = .01 arriving to 7" = 100 (reaching the steady state), and using the Stream Function-
vorticity formulation. Left, we show the graphics of the Stream Function, and right the
graphics of the isovorticity contours. We did a mesh independence study and results agree

1265



B. Bermudez, A. Rangel-Huerta, D. Alanis and W. Fermin Guerrero S.

well.

In Figure 2, results are reported for Re = 1000 and the same parameters described
above, but with aspect ratio A = 2.

Now, in the Figure 3, we report results again for Re = 1000 and with the same value
of the parameters, but now the aspect ratio is A = 3.

Next, in Figure 4, results for Re = 5000, A =2, Hx = Hy = 1/512, dt = .001 arriving
to T' = 100.

In Figures 5 and 6, we report results for Re = 10000, Hx = Hy = 1/512, dt = .001
arriving again to 7' = 100. In Figure 5 A = 2 and in Figure 6 A = 3.

All the above results were obtained using the Stream function-vorticity formulation.
And as one can notice, the mesh is not very fine, even for Re = 10000 and dt is not so small.

In Figures 7 and 8 we sow results using the Velocity-vorticity formulation. In Figure 7
for Re = 1000, A =1/2, Hx = Hy = 1/256, dt = .0001, T' = 100. Comparing the results
obtained with the Stream Function-vorticity formulation, shown in Figure 1, it can be
observed that in Figure 1 more contours appear, and the values of Hx and Hy are the
half of the latter and dt ten times higher.

In Figure 8 for Re = 5000, A =2, Hx = Hy = 1/512 dt = .0001, and 7" = 100 also.
Figure 4, obtained with the Stream Function-vorticity formulation results much more
better, and dt is again is again ten times higher.

Results obtained with the Stream Function-vorticity formulation were obtained in much
more less time, using a coarser mesh and more contours appear in the graphics. We could
not arrive with the Velocity-vorticity formulation to results for Re = 10000 because of
the finer mesh needed and also because the dt has to be much more smaller and too much
computer time and memory is needed in this last case.
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Figure 1: Stream function, left, and isovorticity contours, right, for Re = 1000 A = 1/2, dt = .01,
Hx = Hy = 1/128, using the Stream function-vorticity formulation.
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Figure 2: Stream function, left, and isovorticity contours, right, for Re = 1000 A = 2, dt = .01,
Hx = Hy = 1/128, using the Stream-function-vorticity formulation.
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Figure 3: Stream function, left, and isovorticity contours, right, for Re = 1000 A = 3, dt = .01,
Hx = Hy = 1/128, using the Stream function-vorticity formulation.
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Figure 4: Stream function, left, and isovorticity contours, right, for Re = 5000 A = 2, dt = .001,
Hx = Hy = 1/512, using the Stream function-vorticity formulation.
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Figure 5: Stream function, left, and isovorticity contours, right, for Re = 10000 A = 2, dt = .001,
Hx = Hy = 1/512, using the Stream-function-vorticity formulation.
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Figure 6: Stream function, left, and isovorticity contours, right, for Re = 10000 A = 3, dt = .001,
Hx = Hy = 1/512, using the Stream function-vorticity formulation.
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Figure 7: Stream function, left, and isovorticity contours, right, for Re = 1000 A = 1/2, dt = .001,
Hx = Hy = 1/256, using the Velocity-vorticity formulation.
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Figure 8: Stream function, left, and isovorticity contours, right, for Re = 5000 A = 2, dt = .0001,
Hx = Hy = 1/512, using the Velocity-vorticity formulation.
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5 Conclusions

We are presenting efficient numerical methods for solving the Navier-Stokes equations
in the Stream funtion-vorticity and the Velocity-vorticity formulations. Both formulations
provide turbulent flow patterns of the cavity for a wide range of Reynolds numbers. New
results of flow profiles in conditions not included in the literature are presented ([7]).

We note that you for this range of numbers, stream flow patterns agree with those
reported in the literature ([9]). However, the instrumentation for the Velocity-vorticity
formulation is more complicated for effects of maintaining numerical stability. The time
step, and the mesh size must be drastically reduced compared with those used in the
Stream function-vorticity formulation. This results in a big cost of computing time and
memory. In the Velocity-vorticity formulation the cavity flow lines are reproduced (not
as well as with the Stream function-vorticity formulation using a coarser mesh size).

The numerical procedure applied to the Stream Function-vorticity formulation is not
as good for the Velocity-vorticity formulation, however, the way it behaves, through the
discretization parameters, and the order of discretization, gives us another point of view
of the behavior of flows under different numerical methods and different formulations.
The difficulty of the Velocity-vorticity formulation is reinforced through some works such
as [9] who with a very different more sophisticated method reported driven cavity flows
for moderate Reynolds numbers, lower than ours.
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